
Evolution Strategies for Approximate Solution of Bayesian Games

Zun Li and Michael P. Wellman
University of Michigan, Ann Arbor
{lizun, wellman}@umich.edu

Abstract

We address the problem of solving complex Bayesian games,
characterized by high-dimensional type and action spaces,
many (> 2) players, and general-sum payoffs. Our approach
applies to symmetric one-shot Bayesian games, with no given
analytic structure. We represent agent strategies in parametric
form as neural networks, and apply natural evolution strategies
(NES) (Wierstra et al. 2014) for deep model optimization. For
pure equilibrium computation, we formulate the problem as
bi-level optimization, and employ NES in an iterative algo-
rithm to implement both inner-loop best response optimization
and outer-loop regret minimization. In simple games including
first- and second-price auctions, it is capable of recovering
known analytic solutions. For mixed equilibrium computation,
we adopt an incremental strategy generation framework, with
NES as strategy generator producing a finite sequence of ap-
proximate best-response strategies. We then calculate equilib-
ria over this finite strategy set via a model-based optimization
process. Both our pure and mixed equilibrium computation
methods employ NES to efficiently search for strategies over
the function space, given only black-box simulation access
to noisy payoff samples. We experimentally demonstrate the
efficacy of all methods on two simultaneous sealed-bid auction
games with distinct type distributions, and observe that the
solutions exhibit qualitatively different behavior in these two
environments.

1 Introduction
Bayesian games (Harsanyi 1967) model incomplete infor-
mation by encoding uncertainty over opponents’ hidden in-
formation in terms of beliefs over player types. Types are
drawn from a common knowledge prior distribution. Each
player is informed of its own type, and decides its action
strategically as a function of this private information. This
framework provides a standard model for many economic
games, such as auctions, and has informed the design of
many real-world market-based systems, including mecha-
nisms for online advertising. In this paper, we focus on
one-shot, symmetric Bayesian games (SBG), where both
type space and action space are subsets of multidimensional
Euclidean spaces (McAdams 2003). Multi-object auctions
(Christodoulou, Kovács, and Schapira 2008) provide a canon-
ical example of this game class, with types as parameter

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

vectors defining valuations for sets of goods, and strategies
mapping such types to bids for these goods.

A Bayesian-Nash equilibrium (BNE) is a configuration
of strategies that is stable in the sense that no player can
increase the expected value of its outcome by deviating to
another strategy. As our games are symmetric, it is natural
to seek symmetric BNE, and to exploit symmetric repre-
sentations for computational purposes. A classical approach
(Milgrom and Weber 1982; McAfee and McMillan 1987) for
deriving pure symmetric BNE is to solve a differential equa-
tion for a fixed point of an analytical best response mapping.
However for many SBGs of interest, analytic solution is hin-
dered by irregular type distributions and nonlinear payoffs,
and dimensionality of type and action spaces.

Instead of seeking analytical solutions, we formulate the
problem of computing BNE as a high-dimensional optimiza-
tion, and present computational results that bridge classical
economic theories and modern AI techniques. We parameter-
ize agent strategies as neural networks, therefore approximate
the original functional strategy space as a high-dimensional
vector space of network weights. Our algorithmic approach
is based on natural evolution strategies (NES) (Wierstra et al.
2014), a black-box optimization algorithm based on stochas-
tic search in the parameter space. NES has been recently
shown a competitive optimization technique for non-smooth
environments like those often tackled by RL (Salimans et al.
2017). We consider it well suited for our purpose of equi-
librium computation, as SBGs typically exhibit large payoff
discontinuities (Reny 1999).

We present methods for computing both pure and mixed
BNE (PBNE and MBNE). With player symmetry, computing
PBNE can be cast as a minimax optimization. Our proposed
algorithm employs one NES process to implement an approx-
imate best response operator, and another NES to search for
an approximate fixed-point of this operator via regret mini-
mization. This approach to some extent mirrors the classical
analytic approach mentioned above.

Finding stable profiles in pure strategies may be difficult
for games endowed with complex strategic landscape. Indeed
the existence of PBNE can be assured only with certain as-
sumptions such as regularity of type distributions (Milgrom
and Weber 1985). To search for approximate MBNE, we con-
struct finite approximations of the original infinite game by
discretizing the strategy space (Dasgupta and Maskin 1986),



and consider mixed equilibria of these restricted games.
We resort to an incremental strategy generation framework
(McMahan, Gordon, and Blum 2003) to implement this ap-
proach, where NES again is employed as strategy generator
producing a finite sequence of approximate best-response
strategies. We then extract strategic information of a restricted
strategy set by regressing a finite game model via supervised
learning, and calculate a mixed equilibrium of this learned
game as the solution.

2 Related Work
Although there is a rich literature in economics on characteriz-
ing properties of equilibria in Bayesian games (Milgrom and
Weber 1985; Athey 2001; McAdams 2003; Reny 2011), the
problem of solving for BNE computationally is less explored.
It is known that computing PBNE for discrete strategy space
(where both type and action are discrete) is NP-complete
(Conitzer and Sandholm 2008), and computing PBNE for
simultaneous Vickrey auctions is even PP-hard (Cai and Pa-
padimitriou 2014). These seem to discourage attempts to
develop general solvers for Bayesian games.

However efforts directed to specific classes of Bayesian
games has not been inhibited, and over the years substantial
results have been obtained both theoretically and empiri-
cally. Some work focuses on the two-player case: Reeves
and Wellman (2004) derived analytical best response for
Bayesian game with piece-wise linear payoff functions, and
Ceppi, Gatti, and Basilico (2009) gave experimental results
on the support-enumeration approach. Other research ad-
dresses symmetric Bayesian games with more players. Vorob-
eychik and Wellman (2008) used self-play implemented by
simulated annealing to find PBNE in SBGs. We likewise
employ a form of stochastic search, but avoiding the limita-
tions of self-play (Balduzzi et al. 2019) and with methods
that extend to high-dimensional settings. Wellman, Sodomka,
and Greenwald (2017) tackled simultaneous Vickrey auctions
by applying empirical game-theoretical analysis on a set of
hand-crafted strategies solving for MBNE. They identified
effective heuristic bidding strategies, however these strategies
generally require computation exponential in the number of
goods.

Rabinovich et al. (2013) considered Bayesian games with
continuous type space and discrete action space, and provided
both theoretical convergence results as well as experimen-
tal validations for the fictitious play algorithm. Recent work
(Wang, Shen, and Zuo 2020) gave computational results for
first-price auctions with discrete type space and continuous
action space. For a more general class of multi-item auction,
works (Christodoulou, Kovács, and Schapira 2008; Dütting
and Kesselheim 2017) studied algorithms of theoretical in-
terest for combinatorial Vickrey auctions, and Bosshard et al.
(2017) presented experimental results on applying grid search
to solve the Local-Local-Global auctions. For succinct game
models, works (Singh, Soni, and Wellman 2004) and (Jiang
and Leyton-Brown 2010) formulated the notion of incom-
plete information in graphical games and action-graph games,
together with corresponding computational methods, respec-
tively. Armantier, Florens, and Richard (2008) approximated
the Bayesian game to be solved by a sequence of constrained

games, and designed numerical methods by solving approx-
imate partial differential equations for equilibrium compu-
tation. Nevertheless, none of the above works developed a
computational method that scales with player numbers as
well as the dimensions of type space and action space.

Solving Bayesian games is also relevant to real-world ap-
plications such as advertising auctions. Chawla and Hart-
line (2013) theoretically proved the uniqueness of symmetric
BNE for a class of rank-based auction formats including
generalized first-price auctions. Gomes and Sweeney (2014)
derived a closed-form expression of the symmetric PBNE for
generalized second-price auctions.

In work independent and concurrent with ours, Hei-
dekrüger et al. (2021) also employ NES to compute BNE.
Whereas we solve the game from a central perspective, they
model the result of decentralized learning agents. Other key
differences are that we assume and exploit symmetry, and
develop methods to compute MBNE as well as PBNE. They
in contrast consider a general asymmetric setting and focus
on finding PBNE.

3 Preliminaries
3.1 Bayesian Games
One-shot, simultaneous-move symmetric Bayesian games
provide a standard model for common strategic scenarios
such as auctions (Krishna 2009). Formally, an SBG consists
of (N ,T ,A ,P, u), with N = {1, . . . , N} being the set
of agents, T the set of types and A the set of actions. We
focus on the case where T and A are compact subsets of
RT and RA, with T and A the dimensions of type and action
space, respectively.

In a play of the SBG, agents simultaneously and privately
observe their types, drawn i.i.d. from a common knowledge
distribution t ∼ P , then independently choose their respec-
tive actions conditional on this private information. More
formally, an agent’s pure strategy s is a deterministic map-
ping from the type space to the action space s : T → A .
We denote the set of all such mappings as S . For computa-
tional purposes in this paper we represent a pure strategy as a
neural network. Though the space of multilayer perceptrons
of a fixed architecture may not perfectly coincide with S , in
effect we can represent any strategy to a close approximation
due to the expressive power of deep models.

For playing action an = sn(tn), agent n receives a
real-valued payoff u(an,a−n | tn) : A × A N−1 ×
T → R, which depends on its own type and ac-
tion along with the profile of other agents’ actions
a−n ∈ A N−1. Player symmetry entails that one’s pay-
off value is permutation-invariant to the opponents’ actions:
u(an, aπ(1), . . . , aπ(N) | tn) = u(an, a1, . . . , aN | tn) for
any permutation π of orderN−1. For a given strategy profile
(s1, . . . , sN ), the ex interim (EI) payoff is the expected pay-
off marginalized over opponents’ types: u(sn, s−n | tn) ,
Et−n∼PN−1 [u(sn(tn), s1(t1), . . . , sN (tN )) | tn)], and the
ex ante (EA) payoff averages over one’s own type random-
ness u(sn, s−n) = Etn∼P [u(sn, s−n | tn)].

A mixed strategy σ ∈ ∆(S ) defines a probability mea-
sure over the pure strategy space and allows one to make



stochastic decisions.1 For a given mixed strategy profile
(σ1, . . . , σN ), the EI and EA payoffs for agent n of type tn
are u(σn,σ−n | tn) , Esn∼σn,s−n∼σ−n

[u(sn, s−n | tn)]

and u(σn,σ−n) , Etn∼P [u(σn,σ−n | tn)].
For SBGs we are often interested in one’s payoff given

all N − 1 others adopt the same strategy. We write u(σ′,σ)
for the EA payoff of an agent choosing strategy σ′ while
the rest choose σ. For strategy σ and pure strategy s, we
call u(s,σ) the deviation payoff to pure strategy s against
opponent mixture σ, or the fitness of s under σ.

3.2 Bayesian-Nash Equilibrium
In a symmetric profile, every agent adopts the same strategy.
For symmetric games, we generally prefer to find solutions
in symmetric profiles, and these are guaranteed to exist in a
variety of settings (Nash 1951; Cheng et al. 2004; Chawla
and Hartline 2013; Hefti 2017). The symmetric regret of strat-
egy σ is given by REGRET(σ) , maxs∈S u(s,σ)−u(σ,σ).
Our goal is to search for σ that minimizes loss REGRET(σ),
in other words, a symmetric profile where each agent approx-
imately best responds to the others. If REGRET(σ) ≤ ε, we
call σ an (EA) ε-BNE. For the pure case (i.e., σ ∈ S ) we
more specifically label σ an (EA) ε-PBNE, and for the mixed
case an (EA) ε-MBNE.

3.3 Black-Box Games
While many classic Bayesian games possess closed-form
solutions (Krishna 2009), many others are intractable via
analytical reasoning. To develop computational methods for
general SBGs of interest, therefore, we adopt a more uni-
versal formulation and represent the game by a black-box
payoff oracle O : S N × Ω → RN . In this black-box (also
termed simulation-based) setting, the basic operation is a
query by the game analyst, who submits a joint pure strat-
egy s ∈ S N to O, and receives in return a payoff vector
u ∈ RN recording payoffs for each agent realized through
agent-based simulation (with a random seed ω ∈ Ω). We as-
sume the analyst is aware of N ,T ,A and player symmetry,
but neither the type distribution P nor a direct representation
of the payoff function u. Therefore the goal is to find approx-
imate equilibria given only stochastic black-box simulation
access to the game.

3.4 Natural Evolution Strategies
NES (Wierstra et al. 2014) belongs to a family of black-
box optimization algorithms called evolution strategies (ES)
that can be viewed as abstract versions of natural selec-
tion processes. The goal of NES is to maximize a fitness
function F (θ) with respect to neural network weights θ,
given only stochastic black-box access to its point val-
ues. Instead of directly optimizing F , the idea is to con-
struct gradient estimators of a Gaussian smoothing objective

1A behavioral strategy b : T → ∆(A ) is a mapping from
the type space to the space of probability measures on the action
space. It turns out that mixed and behavioral strategies can each be
shown equivalent to the other under certain conditions (Milgrom
and Weber 1985).

Algorithm 1: Natural Evolution Strategies
Input: Black-box function F , hyperparameters J, α, ν
Output: Approximate maximum θ of F

1 Algorithm NES(F, J, α, ν)
2 Initialize θ;
3 for i = 1, 2, . . . do
4 Sample ε1, . . . , εJ ∼ N (0, I);
5 ∀j, rj+ ← F (θ + νεj), rj− ←

F (θ − νεj); rj ← rj+ − rj−;
6 θ ← θ + α 1

Jν

∑
j rjεj ;

7 end
8 return θ, F (θ);

Eε∼N (0,I)[F (θ + νε)] with bandwidth hyperparameter ν,
and apply stochastic gradient ascent accordingly. As a tech-
nique for optimizing neural networks, NES has been shown
competitive with other back-propagation based methods of
deep RL (Salimans et al. 2017). For the purpose of equi-
librium computation, we employ NES as a subroutine to
optimize deep strategies for different choices of fitness func-
tions.

We elaborate our version of NES in Algorithm 1. Ini-
tialized with network weights θ, on each iteration NES
constructs a finite difference approximation of the gradient
through random search over the space of θ, and updates the
deep model towards the direction of higher expected fitness
values. To construct such gradients, NES first samples a pop-
ulation of noisy vectors ε1, . . . , εJ in the parameter space
from a normal distribution. For each of such ε-s, it perturbs
θ into a pair of antithetic variables (θ ± νε), and evaluates
the corresponding fitness values as r±. This ensures that
the quantity v = 1

2ν (r+ − r−)ε is an unbiased estimator of
∇θEε[F (θ+νε))], and the stochastic gradient is constructed
as the empirical average of all these v-s enabling gradient
ascent updates.

4 Computing Pure Equilibrium via
Minimax Optimization

4.1 Overview
In this section, we demonstrate how to compute PBNE in
SBGs by exploiting game structure and the power of NES
as a black-box optimizer. We showcase that due to player
symmetry the problem of calculating a symmetric PBNE
is equivalent to computing a minimax equilibrium in a re-
duced two-player zero-sum game, and therefore design a
co-evolutionary algorithm (Algorithm 2) implemented by
two NES processes to solve this bi-level optimization prob-
lem. In this approach, we employ one NES to compute an
approximate best response and a regret value for a given pure
strategy in the inner loop, and another NES in the outer loop
to minimize this approximate regret function over the pure
strategy space. We next develop the details of the algorithm.

4.2 A Minimax Formulation
Recall that computing PBNE is equivalent to minimizing
REGRET over the pure strategy space, which can be formu-



Algorithm 2: Minimax-NES for PBNE
Input: Payoff Oracle O, hyperparameters

J1, J2, α1, α2, ν1, ν2
Output: Approximate PBNE sθ

1 Function MinusRegret(θ)
2 V ← O(sθ, sθ);
3 θ′, DEV ← NES(O(·, sθ), J1, α1, ν1);
4 return V −DEV ;
5 Algorithm MiniMax()
6 return NES(MinusRegret, J2, α2, ν2)

lated as
min
s∈S

REGRET(s) = min
s∈S

max
s′∈S

u(s′, s)− u(s, s) (1)

i.e., we can view this optimization as a two-player zero-sum
game: a primary agent who aims to choose s that minimize
REGRET, and an adversary who selects the best response s′
against s to implement the REGRET. This concise formula-
tion exploits player symmetry such that the N − 1 opponents
can be abstracted as one agent when computing a symmetric
equilibrium (Hefti 2017; Vadori et al. 2020).

4.3 Inner Loop: NES as the Best Response
Optimizer

To optimize objective (1), we need to acquire a best response
strategy as well as a maximum deviation value for a given
pure strategy sθ parameterized by θ. To achieve this we uti-
lize NES and the payoff oracleO to optimize a neural strategy
sθ′ as an approximate best response, as marked in line 3 of
Algorithm 2. Since to compute a best response against strat-
egy sθ is to maximize the deviation payoff function u(·, sθ),
we need to provide such stochastic value queries to this devi-
ation function, by refactoring the payoff oracle as O(·, sθ).
O(·, sθ) takes a deep strategy sθ′ as input and outputs its
stochastic fitness values under sθ. This can be implemented
by controlling one agent n adopting sθ′ with the rest sθ , sam-
pling this joint profile many times and taking the average
payoff of n across these samples of different type realizations
as the final output. Then we pass this wrapped refactored pay-
off oracle to NES for automatic best response optimization.

4.4 Outer Loop: NES as the Regret Minimizer
The inner loop just described provides with an approximate
maximum deviation value for any pure strategy,DEV in line
3 of Algorithm 2. We can hence estimate REGRET(sθ) by
first evaluating u(sθ, sθ) as V via payoff oracle O, shown
in line 2 of Algorithm 2, and set the regret estimator as
DEV − V . To compute an approximate PBNE, we employ
another NES in the outer loop that minimizes such surrogate
regret function over the pure strategy space. To accomplish
that we wrap a black-box function MinusRegret that re-
turns V −DEV for a given deep strategy, which is delivered
to the outer-loop NES for regret minimization. Hence the
interaction between the agent in the outer loop and the adver-
sary in the inner loop each implemented by an NES process
enables an efficient algorithm to compute symmetric PBNE
in SBGs.

0 20 40 60 80 100 120

Valuation Input

0

50

100

150

200

250

B
id

O
u

tp
u

t

FP[2]

FP[3]

FP[4]

SP[2]

SP[3]

TP[3]

TP[4]

Figure 1: Point plots for strategy functions learned by
minimax-NES in games with known analytical solutions

4.5 Results for Games with Analytical Solutions
As a preliminary experiment, we investigate the strategies
learned by minimax-NES in those SBGs with known ana-
lytical solutions. The algorithmic specifications are detailed
in Section 6.1 and the appendix (Li and Wellman 2021).
Specifically, we consider2 N -player unit-item first-price auc-
tions, second-price auctions and third-price auctions, de-
noted as FP[N ] and SP[N ] and TP[N ]. It is known that for
uniform valuation distribution U [0, t] the canonical PBNE
is s(t) = (N−1N )t for FP[N ], s(t) = t for SP[N ] and
s(t) = (N−1N−2 )t for TP[N ]. We plot the relation between
the input valuation and output bid of the strategies produced
by minimax-NES in these environments in Figure 1, where
we let t = 128. The results show that minimax-NES learns
these canonical equilibria. Notice that classical derivations
for these PBNE imposed a variety of constraints on the so-
lutions, such as monotonicity (Riley and Samuelson 1981),
while our method only implicitly relies on the expressiveness
and differentiability of deep models yet still learned these
canonical PBNE. We hypothesize these equilibria are the
unique solutions representable by deep neural networks.

5 Computing Mixed Equilibrium via
Incremental Strategy Generation

5.1 Overview
In this section, we consider computing mixed equilibria for
SBGs by interleaving strategy exploration and equilibrium
calculation. This approach fits a generic paradigm for reason-
ing games with complex strategy space called incremental
strategy generation (ISG). ISG maintains a finite restricted set
of pure strategies S that discretizes the intractable strategic
landscape, and iteratively enlarges this set via best responses
to explore rational regions of the game. A mixture over such
representative set of strategies is computed in each iteration,
serving as a quality mixed equilibrium of the full game. ISG

2In the appendix we also include experiments for games with
more complex solutions such as all-pay auctions, but we did not
successfully reproduce their canonical analytic results.



Algorithm 3: Incremental Strategy Generation
Input: Payoff Oracle O. Meta-solver MS.

Hyperparameters J, α, ν ;
Output: A finite strategy set S, a mixed strategy σ

over S
1 Initial strategy set S = {s0}, a singleton distribution

σ with σ(s0) = 1;
2 for i = 1, 2, . . . do
3 σ ←MS(O, S, σ);
4 s′, DEV ← NES(O(·,σ), J, α, ν);
5 S ← S ∪ {s′};
6 end

had been shown great success in domains of two-player zero-
sum stochastic games (McMahan, Gordon, and Blum 2003),
security games (Jain et al. 2011; Bosansky et al. 2015; Wang
et al. 2019; Wright, Wang, and Wellman 2019), extensive-
form games (Bosansky et al. 2014), multiagent RL (Lanctot
et al. 2017) and multiplayer team games (Zhang and An
2020).

We next elaborate the usage of ISG in our SBG context,
as diagrammed in Algorithm 3. The ISG framework consists
of two components: a meta-solver (MS) and a best response
oracle (BR). Initialized as a singleton strategy set, on each it-
eration of ISG, MS takes the restricted strategy set S resulted
from the previous iteration as input and outputs a probability
mixture σ over S. The mixture is expected to constitute a
quality equilibrium when none of the pure strategies is domi-
nant over the others. Common meta-solvers include self-play
(which puts all mass on the last strategy), fictitious play (uni-
formly mixing over S), replicator dynamics (that computes
an NE in the restricted game) and other more developed ones
(Balduzzi et al. 2019; Muller et al. 2020).

After MS had output σ, BR generates a new strategy into
S that is a(n) (approximate) best response against opponent
mixture σ. The functionality of BR is to explore and include
strategies in regions where agents are more likely to exhibit
rational behavior, producing a more robust strategy popula-
tion and reinforcing the mixture quality calculated by MS
in the next iteration. In our version of ISG we use NES to
implement BR (line 4 of Algorithm 3) where in Algorithm 1
we let the fitness function F be O(·,σ), being consistent
with Section 4.

We next discuss our choices of meta-solvers.

5.2 Fictitious Play

The first choice of meta-solver is fictitious play (FP), which
puts a uniform mixture on current strategy set S. FP-type
algorithms had been shown great success in a variety of
games beyond the version for tabular normal-form games
(Rabinovich et al. 2013; Heinrich, Lanctot, and Silver 2015).
We believe FP is a competitive baseline in our problem, since
a uniform mixture may capture the diversity of the strategic
landscape to some extent.

5.3 Nash Equilibrium
Our second choice of meta-solver is to output a Nash equi-
librium of the restricted game with support S, which also
reflects the double-oracle algorithm (McMahan, Gordon, and
Blum 2003). We adopt projected replicator dynamics (RD)
(Lanctot et al. 2017) to reach an equilibrium. Suppose we
are given the exact payoff function u, in each iteration with
opponent mixture σ, RD will update the probability mass
of each pure strategy s by an amount proportional to the its
present aggregated deviation value σ(s)(u(s,σ)− u(σ,σ)),
after which an L2 projection (Wang and Carreira-Perpinán
2013) onto ∆(S) is operated to ensure it remain on the prob-
ability simplex. Therefore by evolving the mixture towards
strategies with higher fitness values, the converged mixed
strategy is expected to be stable at the end of the dynam-
ics, and the new strategies are anticipated to be generated in
rational regions.

Model Learning However in our problem, the issue for
replicator dynamics or other Nash-solvers is that we do not
have the exact evaluation of deviation payoff u(s,σ) but
only its stochastic query values, which may require a sig-
nificant number of samples to control the variance for each
update, and inhibit Nash-solvers from converging to stable
solutions. To reduce sample complexity and computational
intractability, we adopt a supervised model-learning approach
(Vorobeychik, Wellman, and Singh 2007; Wiedenbeck, Yang,
and Wellman 2018; Sokota, Ho, and Wiedenbeck 2019; Li
and Wellman 2020) that regresses the pure-strategy payoff
function of this finite restricted game model, and further pro-
vides RD with deviation estimation for mixture computation.
The key here is to exploit a succinct game representation.
Notice that for finite symmetric games with M strategies, it
suffices to record u(s, f1, . . . , fM ), where s is the pure strat-
egy chosen by the principal agent and fm counts the fraction
of its opponents choosing strategy m. Then by assuming the
ground-truth payoff function varies smoothly with strategy
counters, we can use a function approximator to learn such
succinct representation by extracting correlations among dif-
ferent pure-strategy payoff entries.

More concretely, we regress the restricted game with
|S| = M by sampling a dataset from the payoff oracle and
learning a value network û : ∆(S)→ RM as the empirical
game model. The input training feature of û is a vector of
strategy counters, each dimension counting the fraction of
other players choosing the corresponding strategy, and the
output targets are the payoffs for each of the M pure strate-
gies when adopted by the principal agent. Then to estimate
the deviation payoffs under opponent mixture σ, we directly
set σ as the input to the value network, and obtain M values
as deviation payoff estimations. We consider this approach
applies to finite symmetric games with many players, since
the strategy counters are expected to conform the probability
mixture due to law of large number.

6 Experiments
6.1 Setups
Algorithmic Configurations We represent each pure strat-
egy as a two-layer perceptron with hidden node size 32



0 10 20 30
Number of Iteration

5

10

15

20

25
R

eg
re

t
MBS[5,5]

SP

MM

FP

RD

(a)

0 10 20 30
Number of Iteration

10

20

30

R
eg

re
t

MBS[10,10]
SP

MM

FP

RD

(b)

0 10 20 30 40
Number of Iteration

0

10

20

30

40

R
eg

re
t

MBS[15,15]
SP

MM

FP

RD

(c)

Figure 2: Results for market-based scheduling environments

for each layer separated by ReLU units. The hyperparam-
eters for NES are tuned as follows. We fixed population size
J = 4 + 3blog dc as the default setting adopted by Wierstra
et al. (2014), where d is the number of parameters of the deep
model. For every fitness function we apply a grid search to
select the best bandwidth ν and learning rate α within certain
ranges, to maximize the performance of the resulted NES.
We adopt Adam optimizer (Kingma and Ba 2014) to automat-
ically adjust the learning rate initialized with α during the
stochastic gradient ascent process. In addition to the vanilla
NES described in Section 3.4, our implementation employs
a fitness-shaping trick (Wierstra et al. 2014) to enhance the
robustness of the optimization process.

For black-box functions O(·, s) and O(·,σ), each query
we run an agent-based simulation for 5000 times and take the
corresponding average payoff values as the outputs. In the
model-learning part of RD, for each empirical game model
with |S| = M , we draw 2000 vectors of strategy counters
from a Dirichlet distribution as training features, and for
each feature we calculate M pure strategy payoffs via 500
Monte-Carlo samples as training targets. We adopt a two-
layer network with hidden node size 32 each for game model
learning.

Please refer to supplementary material (Li and Wellman
2021) for more details on implementation and hyperparame-
ter selection.

Environments We test our methods on two simultaneous
sealed-bid auctions: market-based scheduling (MBS) (Reeves
et al. 2005) and homogeneous-good auctions (HG) (Well-
man, Sodomka, and Greenwald 2017), both of which are
SBGs with multidimensional type space and action space
possessing no analytical solution. We elaborate the game
mechanisms as follows.

Market-Based Scheduling In an MBS environment, an
agent’s objective is to acquire enough number of slots to
fulfil its task through strategic bidding. More specifically, for
an MBS with K slots, each agent is rendered a type vector
with dimension K + 1: an integer Λ ∈ [1,K] specifying
the total number of slots needed, and a valuation vector v ∈
RK , where vk is the valuation realized if it acquired its Λ-th
slot at the k-th auction. If it had not obtained Λ slots in the
end then its valuation is 0. Λ is drawn from an exponential
distribution, while vk are constructed by first independently

drawing K numbers uniformly from [0, 50], and reordering
the values to satisfy a non-increasing constraint. Each slot
is allocated to the highest bidder and priced via a second-
price payment rule, so an action is a bidding vector b ∈ RK
specifying the bids for each of the K auctions. The payoff of
one agent is the difference between its realized valuation and
payment. This auction format exhibits both complementarity
and substitutability.

Homogeneous-Good Auctions In an HG of K goods,
K Vickery auctions are simultaneously operated for sell-
ing homogeneous items. Each agent is rendered a type vector
t ∈ RK , where tk is the marginal valuation of acquiring
the k-th good. t1 is drawn uniformly from [0, 128], with tk
drawn uniformly from [0, tk−1] for k > 1. An action is a
vector of K bids for each of the K auctions. This auction
format exhibits perfect substitutability.

In our experimental presentation we use MBS [N,K] and
HG [N,K] to denote MBS and HG with N agents and K
goods, respectively.

Evaluation Metric and Methods We compare four meth-
ods in all of our experiments: self-play and minimax that
compute PBNE, with fictitious play and replicator dynam-
ics solving for MBNE. Each method runs for MAXT tri-
als of different random seeds, with each trial continues
for MAXI iterations. Each of such iteration generates a
new pure strategy, resulting in a restricted pure strategy
set S with |S| = 4 × MAXT × MAXI totally. Denote
σAL,i,t the strategy output (which could be either pure or
mixed) algorithm AL produces at iteration i of trial num-
ber t. Since we do not have an exact best response ora-
cle, we estimate the regret of σAL,i,t in the full game as
maxs∈S u(s,σAL,i,t) − u(σAL,i,t,σAL,i,t), instead of us-
ing NES to compute an approximate best response. Then
we measure the performance of an algorithm by plotting its
regret curve averaged across different trials. We consider this
evaluation approach utilizes the results the most and largely
reduces the bias introduced by NES as an approximate best
response operator. Furthermore to reduce statistical bias of
taking maximum during regret calculations, we first estimate
each of the |S| deviation values via 5000 Monte-Carlo sam-
ples, select the 10 strategies with highest scores, calculate the
deviation values for these 10 again via 50000 samples and
take the maximum of these as the final maximum deviation



0 10 20 30
Number of Iteration

20

40

60

R
eg

re
t

HG[5,5]

SP

MM

FP

RD

(a)

0 10 20 30
Number of Iteration

20

40

60

80

R
eg

re
t

HG[10,10]

SP

MM

FP

RD

(b)

0 10 20 30 40
Number of Iteration

40

60

80

100

R
eg

re
t

HG[15,15]

SP

MM

FP

RD

(c)

Figure 3: Results for homogeneous good environments

estimation. We next specify the strategy output for each of
the four algorithms.

Self-Play (SP): SP is also called iterated best response. At
each iteration SP outputs a best response to the pure strategy
of the previous iteration.

Minimax (MM): For Algorithm 2, we define one iteration
as one step of gradient ascent (line 6 of Algorithm 1) in the
outer loop, which outputs a pure strategy.

Fictitious Play (FP): On each iteration FP outputs a uni-
form mixture over S.

Replicator Dynamics (RD): RD outputs a Nash mixture
for a restricted game, which is a mixed strategy.

6.2 Results
We test our methods on MBS and HG environments of 5,
10, and 15 agents with the same number of goods. Each
experiment runs for 5 trials. The results are shown in Figures
2 and 3.

Our first observation is that self-play performs poorly in
nearly all of our experiments. It tends to cycle in the strategic
landscape and shows no explicit improvement from the initial
strategy. This contrasts with the results of Vorobeychik and
Wellman (2008), which were obtained for a different game
with much lower-dimensional strategy space. In our context,
we find that best responses cycle around the intransitive re-
gions of the game.

Our second observation is that the RD meta-solver gen-
erally outperforms FP. FP outputs a uniform mixture of all
strategies explored, which may include strategies generated
early on that are not effective against those learned later. Equi-
librium based methods, in contrast, will ignore strategies once
they are no longer part of a solution. However the observed
performance gaps between FP and RD are relatively small.
The equilibrium-based method entails much greater computa-
tional cost than FP (detailed in supplementary material) due
to model learning and training data sampling, thus FP could
be an advantageous computational method in certain settings.

We are particularly interested in the performance of
minimax-NES, which exhibited qualitatively different behav-
ior in our two experimental environments. In MBS, minimax-
NES produces strategies that are generally less robust than
the mixed equilibria, whereas in HG it is able to reach pure
strategies that surpass both FP and RD in terms of stabil-
ity. This advantage is especially pronounced in environment

HG [5, 5]. We attribute the difference to the distinct game
characteristics induced by MBS and HG valuations. MBS
environments produce more complex strategic landscapes,
for (1) its type representation involves Γ as an integer which
prevents an atomless type distribution that is usually required
for the existence of pure equilibria (Milgrom and Weber
1985), and (2) complementarity in valuations makes strategy
outcomes more sensitive to other-agent behavior. Therefore
it may be difficult for minimax-NES to reach a pure strat-
egy region that is robust globally. While for HG the types
are vectors of marginal valuations which we hypothesize a
representation more amenable for the deep models to extract
strategic information.

Comparison to Hand-Crafted Strategies We compare
the performance of bidding strategies derived by our methods
against state-of-the-art strategies for simultaneous sealed-
bid auctions that optimize the bid vector based on proba-
bilistic price predictions. Specifically, our reference is to
hand-crafted bidding strategies based on self-confirming pre-
dictions, defined as probability distributions over prices that
result when all bidders optimize with respect to these distri-
butions. Such strategies, which we denote SC, were found
in an study employing empirical game-theoretical analysis
by Wellman, Sodomka, and Greenwald (2017) to be effec-
tive against a broad range of bidding strategies from prior
literature.

The idea of a self-confirming price prediction (SCPP) is
that it summarizes opponents’ behavior near an equilibrium.
Assuming all the N − 1 opponents employ some strong
heuristic bidding strategies, SC computes an approximate
best response to the resulted SCPP, using a hand-crafted bid-
generation methods. Since the calculation involves searching
for an optimal bundle with respect to predicted price, effec-
tively enumerating all possible bundles, SC generally takes
exponential time in the number of goods. This also makes
it more expensive to evaluate an action, compared with one
forward pass of the neural strategies.

The version of SC we adopt in the following experi-
ments is LocalBid initialized with ExpectedMU64 (Wellman,
Sodomka, and Greenwald 2017). Due to the exponential
computational cost we are only able to test on MBS [5, 5] and
HG [5, 5] environments.

First we compare the robustness of SC equilibrium to our



Instance SP MM FP RD SC
MBS [5, 5] 19.1 3.51 3.47 2.51 5.30
HG [5, 5] 49.7 7.62 28.9 26.0 11.0

Table 1: Regret of SC compared with other methods within S

Instance SP MM FP RD
MBS [5, 5] 0.0 3.46 0.74 1.71
HG [5, 5] 0.45 3.05 0.0 0.0

Table 2: Regret of our methods with respect to SC

methods, by measuring their regret values with our restricted
set S, as shown in Table 1. The performances of our meth-
ods are measured by taking the outputs of the last iteration,
averaged across different runs. The results showed that in
MBS [5, 5] the SC equilibrium surpasses only self-play in
terms of stability, while in HG [5, 5] it is more robust than
methods SP, FP, RD, but is still inferior to MM. This demon-
strates that our methods produce comparably or even more
quality equilibria than SC globally.

Next we investigate more on the strategic dependencies
among these strategies, by testing the robustness of our meth-
ods against SC. We here measure the regret values of our
methods to SC, shown in Table 2. The results shows that SC
especially exploits MM in both environments. This validates
that MM produces near-equilibrium strategies and SC ex-
ploits such class of strategies according to its designs. We
further consider the results suggest a strategic dependency
among different strategies and illustrate that there exist no
single strategy that can outperform the others in all cases.

7 Conclusion
In contrast to classic works in auction theory that seek an-
alytical solutions, we formulate the problem of computing
BNE as an empirical optimization problem. Scaling compu-
tational methods to the dimensions of types and actions as
well as player number immediately calls for tractable solu-
tion representation and efficient optimization techniques. We
found that combining the expressive power of deep models
with NES as a black-box optimization technique effectively
supports solution of a general class of complex symmetric
Bayesian games.

Our pure equilibrium computation method, minimax-NES,
parallels the classical analytical approach and could be re-
garded as a high-dimensional generalization of the global con-
vergence method of Vorobeychik and Wellman (2008). By ex-
ploiting player symmetry, the method employs NES for best-
response optimization and regret minimization. Here two
NES processes are integrated in one algorithm to reach mini-
max solutions. Our mixed equilibrium computation method,
ISG, employs NES as both best-response optimizer and strat-
egy generator. We tested our methods on two simultaneous-
auction games with qualitatively different properties, and
found that the mixed equilibria showed lower regret on en-
vironments with more complex strategic landscape, while
the solutions output by minimax-NES appeared to be more

robust in games with smoother topology.
Our methods rely on the power of NES as a function search-

ing tool in the strategy space. But since it is difficult to reach
the true optimum in such function space we hypothesize cer-
tain biases could be introduced by the algorithm NES itself.
Our evaluation approach was designed to mitigate this by
measuring regret with respect to all the pure strategies we
generated across experiment runs. In future work, we are
interested in testing other optimization alternatives including
genetic algorithms (Such et al. 2017) and comparing them
with NES.

Acknowledgments
This work was supported in part by the US Army Research
Office under MURI W911NF-18-1-0208.

References
Armantier, O.; Florens, J.-P.; and Richard, J.-F. 2008. Ap-
proximation of Nash equilibria in Bayesian games. Journal
of Applied Econometrics 23(7): 965–981.

Athey, S. 2001. Single crossing properties and the existence
of pure strategy equilibria in games of incomplete informa-
tion. Econometrica 69(4): 861–889.

Balduzzi, D.; Garnelo, M.; Bachrach, Y.; Czarnecki, W. M.;
Perolat, J.; Jaderberg, M.; and Graepel, T. 2019. Open-ended
learning in symmetric zero-sum games. In Thirty-Sixth Inter-
national Conference on Machine Learning, 434–443.

Bosansky, B.; Jiang, A. X.; Tambe, M.; and Kiekintveld,
C. 2015. Combining compact representation and incremen-
tal generation in large games with sequential strategies. In
Twenty-Ninth AAAI Conference on Artificial Intelligence, 812–
818.

Bosansky, B.; Kiekintveld, C.; Lisy, V.; and Pechoucek,
M. 2014. An exact double-oracle algorithm for zero-sum
extensive-form games with imperfect information. Journal
of Artificial Intelligence Research 51: 829–866.

Bosshard, V.; Bünz, B.; Lubin, B.; and Seuken, S. 2017.
Computing Bayes-Nash equilibria in combinatorial auctions
with continuous value and action spaces. In Twenty-Sixth
International Joint Conference on Artificial Intelligence, 119–
127.

Cai, Y.; and Papadimitriou, C. 2014. Simultaneous Bayesian
auctions and computational complexity. In Fifteenth ACM
Conference on Economics and Computation, 895–910.

Ceppi, S.; Gatti, N.; and Basilico, N. 2009. Computing
Bayes-Nash equilibria through support enumeration meth-
ods in Bayesian two-player strategic-form games. In 2009
IEEE/WIC/ACM International Joint Conference on Web In-
telligence and Intelligent Agent Technology, volume 2, 541–
548.

Chawla, S.; and Hartline, J. D. 2013. Auctions with unique
equilibria. In Fourteenth ACM Conference on Electronic
Commerce, 181–196.

Cheng, S.-F.; Reeves, D. M.; Vorobeychik, Y.; and Wellman,
M. P. 2004. Notes on equilibria in symmetric games. In Sixth



International Workshop on Game Theoretic and Decision
Theoretic Agents.
Christodoulou, G.; Kovács, A.; and Schapira, M. 2008.
Bayesian combinatorial auctions. In International Collo-
quium on Automata, Languages, and Programming, 820–
832.
Conitzer, V.; and Sandholm, T. 2008. New complexity results
about Nash equilibria. Games and Economic Behavior 63(2):
621–641.
Dasgupta, P.; and Maskin, E. 1986. The existence of equilib-
rium in discontinuous economic games, I: Theory. Review of
Economic Studies 53(1): 1–26.
Dütting, P.; and Kesselheim, T. 2017. Best-response dy-
namics in combinatorial auctions with item bidding. In
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, 521–533.
Gomes, R.; and Sweeney, K. 2014. Bayes-Nash equilibria of
the generalized second-price auction. Games and Economic
Behavior 86: 421–437.
Harsanyi, J. C. 1967. Games with incomplete information
played by Bayesian players, Part I. The basic model. Man-
agement Science 14(3): 159–182.
Hefti, A. 2017. Equilibria in symmetric games: Theory and
applications. Theoretical Economics 12(3): 979–1002.
Heidekrüger, S.; Sutterer, P.; Kohring, N.; Fichtl, M.; and
Bichler, M. 2021. Equilibrium learning in combinatorial
auctions: Computing approximate Bayesian Nash equilibria
via pseudogradient dynamics. In AAAI-21 Workshop on
Reinforcement Learning in Games.
Heinrich, J.; Lanctot, M.; and Silver, D. 2015. Fictitious self-
play in extensive-form games. In Thirty-Second International
Conference on Machine Learning, 805–813.
Jain, M.; Korzhyk, D.; Vaněk, O.; Conitzer, V.; Pěchouček,
M.; and Tambe, M. 2011. A double oracle algorithm for
zero-sum security games on graphs. In Tenth International
Conference on Autonomous Agents and Multi-Agent Systems,
327–334.
Jiang, A. X.; and Leyton-Brown, K. 2010. Bayesian action-
graph games. In Twenty-Third International Conference on
Neural Information Processing Systems, 991–999.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for stochas-
tic optimization. Preprint arXiv:1412.6980.
Krishna, V. 2009. Auction theory. Academic Press.
Lanctot, M.; Zambaldi, V.; Gruslys, A.; Lazaridou, A.; Tuyls,
K.; Pérolat, J.; Silver, D.; and Graepel, T. 2017. A uni-
fied game-theoretic approach to multiagent reinforcement
learning. In Thirty-First International Conference on Neural
Information Processing Systems, 4190–4203.
Li, Z.; and Wellman, M. P. 2020. Structure learning for
approximate solution of many-player games. In Thirty-Fourth
AAAI Conference on Artificial Intelligence, 2119–2127.
Li, Z.; and Wellman, M. P. 2021. Evolution strategies for
approximate solution of Bayesian games: Supplementary
material. Avaliable at https://rezunli96.github.io/.

McAdams, D. 2003. Isotone equilibrium in games of incom-
plete information. Econometrica 71(4): 1191–1214.
McAfee, R. P.; and McMillan, J. 1987. Auctions and bidding.
Journal of Economic Literature 25(2): 699–738.
McMahan, H. B.; Gordon, G. J.; and Blum, A. 2003. Planning
in the presence of cost functions controlled by an adversary.
In Twentieth International Conference on Machine Learning,
536–543.
Milgrom, P. R.; and Weber, R. J. 1982. A theory of auctions
and competitive bidding. Econometrica 1089–1122.
Milgrom, P. R.; and Weber, R. J. 1985. Distributional strate-
gies for games with incomplete information. Mathematics of
Operations Research 10(4): 619–632.
Muller, P.; Omidshafiei, S.; Rowland, M.; Tuyls, K.; Perolat,
J.; Liu, S.; Hennes, D.; Marris, L.; Lanctot, M.; Hughes, E.;
et al. 2020. A generalized training approach for multiagent
learning. In Eighth International Conference on Learning
Representations.
Nash, J. 1951. Non-cooperative games. Annals of Mathemat-
ics 286–295.
Rabinovich, Z.; Naroditskiy, V.; Gerding, E. H.; and Jennings,
N. R. 2013. Computing pure Bayesian-Nash equilibria in
games with finite actions and continuous types. Artificial
Intelligence 195: 106–139.
Reeves, D. M.; and Wellman, M. P. 2004. Computing best-
response strategies in infinite games of incomplete informa-
tion. In Twentieth Conference on Uncertainty in Artificial
Intelligence, 470–478.
Reeves, D. M.; Wellman, M. P.; MacKie-Mason, J. K.; and
Osepayshvili, A. 2005. Exploring bidding strategies for
market-based scheduling. Decision Support Systems 39(1):
67–85.
Reny, P. J. 1999. On the existence of pure and mixed strategy
Nash equilibria in discontinuous games. Econometrica 67(5):
1029–1056.
Reny, P. J. 2011. On the existence of monotone pure-strategy
equilibria in Bayesian games. Econometrica 79(2): 499–553.
Riley, J. G.; and Samuelson, W. F. 1981. Optimal auctions.
The American Economic Review 71(3): 381–392.
Salimans, T.; Ho, J.; Chen, X.; Sidor, S.; and Sutskever, I.
2017. Evolution strategies as a scalable alternative to rein-
forcement learning. Preprint arXiv:1703.03864.
Singh, S.; Soni, V.; and Wellman, M. 2004. Computing
approximate Bayes-Nash equilibria in tree-games of incom-
plete information. In Fifth ACM Conference on Electronic
Commerce, 81–90.
Sokota, S.; Ho, C.; and Wiedenbeck, B. 2019. Learning
deviation payoffs in simulation-based games. In Thirty-Third
AAAI Conference on Artificial Intelligence, 2173–2180.
Such, F. P.; Madhavan, V.; Conti, E.; Lehman, J.; Stan-
ley, K. O.; and Clune, J. 2017. Deep neuroevolution: Ge-
netic algorithms are a competitive alternative for training
deep neural networks for reinforcement learning. Preprint
arXiv:1712.06567.



Vadori, N.; Ganesh, S.; Reddy, P.; and Veloso, M. 2020.
Calibration of shared equilibria in general sum partially ob-
servable Markov games. In Thirty-Third International Con-
ference on Neural Information Processing Systems, 14118–
14128.
Vorobeychik, Y.; and Wellman, M. P. 2008. Stochastic search
methods for Nash equilibrium approximation in simulation-
based games. In Seventh International Joint Conference on
Autonomous Agents and Multi-Agent Systems, 1055–1062.
Vorobeychik, Y.; Wellman, M. P.; and Singh, S. 2007. Learn-
ing payoff functions in infinite games. Machine Learning
67(1-2): 145–168.
Wang, W.; and Carreira-Perpinán, M. A. 2013. Projection
onto the probability simplex: An efficient algorithm with a
simple proof, and an application. Preprint arXiv:1309.1541.
Wang, Y.; Shi, Z. R.; Yu, L.; Wu, Y.; Singh, R.; Joppa, L.;
and Fang, F. 2019. Deep reinforcement learning for green
security games with real-time information. In Thirty-Third
AAAI Conference on Artificial Intelligence, volume 33, 1401–
1408.
Wang, Z.; Shen, W.; and Zuo, S. 2020. Bayesian Nash equilib-
rium in first-price auction with discrete value distributions. In
Nineteenth International Conference on Autonomous Agents
and Multi-Agent Systems, 1458–1466.
Wellman, M. P.; Sodomka, E.; and Greenwald, A. 2017. Self-
confirming price-prediction strategies for simultaneous one-
shot auctions. Games and Economic Behavior 102: 339–372.
Wiedenbeck, B.; Yang, F.; and Wellman, M. P. 2018. A re-
gression approach for modeling games with many symmetric
players. In Thirty-Second AAAI Conference on Artificial
Intelligence, 1266–1273.
Wierstra, D.; Schaul, T.; Glasmachers, T.; Sun, Y.; Peters,
J.; and Schmidhuber, J. 2014. Natural evolution strategies.
Journal of Machine Learning Research 15(1): 949–980.
Wright, M.; Wang, Y.; and Wellman, M. P. 2019. Iterated
deep reinforcement learning in games: History-aware training
for improved stability. In Twentieth ACM Conference on
Economics and Computation, 617–636.
Zhang, Y.; and An, B. 2020. Converging to team-maxmin
equilibria in zero-sum multiplayer games. In Thirty-Seventh
International Conference on Machine Learning.


