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ABSTRACT
When aggregating preferences of multiple agents, strategyproof-

ness is a fundamental requirement. For randomized voting rules,

so-called social decision schemes (SDSs), strategyproofness is usu-

ally formalized with the help of utility functions. In a central result,

Gibbard [21] characterizes the set of SDSs that are strategyproof

with respect to all utility functions and shows that these SDSs

are either indecisive or unfair. For finding more insights into the

trade-off between strategyproofness and decisiveness, we propose

the notion of𝑈 -strategyproofness which requires that only voters

with a utility function in the set 𝑈 cannot manipulate. This strat-

egyproofness notion allows us to given detailed bounds on when

strategyproofness and decisiveness are compatible. In particular,

we show that if the utility functions in𝑈 value the best alternative

much more than other alternatives, there are𝑈 -strategyproof SDSs

that choose an alternative with probability 1 whenever all but 𝑘

voters rank it first. We also prove for rank-based SDSs that this

large gap in the utilities is required to be strategyproof and that

the gap must increase in 𝑘 . On the negative side, we show that

𝑈 -strategyproofness is incompatible with Condorcet-consistency if

𝑈 satisfies minimal symmetry conditions and there are at least four

alternatives. For three alternatives, the Condorcet rule can be char-

acterized based on𝑈 -strategyproofness for the set𝑈 containing all

equi-distant utility functions.
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1 INTRODUCTION
When a group of agents wants to find a joint decision in a struc-

tured way, they can choose from a multitude of different voting

rules. However, it is not clear which rule is the best one as each one

has its benefits. This problem lies at the core of social choice theory

which draws increased attention by computer scientists because

it can be used to reason about computational multi-agent systems

(see, e.g., [11, 12, 14, 19]). A fundamental requirement for voting

rules is strategyproofness, i.e., agents should not be able to benefit
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by lying about their preferences. In a seminal result, Gibbard [20]

and Satterthwaite [28] have shown that every deterministic strate-

gyproof voting rule is dictatorial if there are at least three different

outcomes possible.

Randomization allows to escape this impossibility theorem, and

we analyze therefore social decision schemes (SDSs). These func-

tions aggregate the preferences of agents to lotteries over alterna-

tives which determine for every alternative its winning chances.

The final winner is then decided by chance according to these proba-

bilities. While this model allows to circumvent many impossibilities,

it is not straightforward how to define strategyproofness because

the voters’ preferences over lotteries are unclear. Maybe the most

prominent approach is to assume that voters use cardinal utility

functions on the alternatives to compare lotteries with respect to

their expected utilities. Even though voters have cardinal utility

functions, they still report ordinal preference relations to the SDS.

Hence, strategyproofness is defined by quantifying over all utility

functions that are consistent with a preference relation: an SDS is

strategyproof if voting honestly maximizes the expected utility for

every voter and every utility function that is consistent with his

true preferences. This strategyproofness notion, often called SD-
strategyproofness, has been analyzed by Gibbard [21] and Barberà

[3] who prove that all SD-strategyproof SDSs are indecisive in the

sense that they almost always randomize over multiple alternatives.

In particular, Benoît [5] has shown that SD-strategyproofness is
incompatible with the basic democratic idea that an alternative

should be the winner of an election if an absolute majority of the

voters report it as their best alternative. In more detail, Benoît [5]

shows that SD-strategyproof SDSs cannot even choose an alterna-

tive always as unique winner if all voters but one report it as their

favorite choice.

While it is unfortunate that SD-strategyproofness does not allow
for decisive SDSs, this strategyproofness notion seems also too

demanding because in many situations not all utility functions are

plausible. For instance, when a representative body votes about

budget proposals for allocating money to various departments,

it seems reasonable that similar proposals have similar utilities.

Thus, we might neglect utility functions with a large gap between

such options when discussing strategyproofness. For formalizing

this observation, we introduce𝑈 -strategyproofness which requires

that truth telling only maximizes the expected utility of a voter if

his utility function is in the set 𝑈 . Note that this definition does

not forbid utility functions 𝑢 ∉ 𝑈 , but voters with such a utility

functionmight be able tomanipulate.Moreover, if the set𝑈 contains

all possible utility functions, 𝑈 -strategyproofness is equal to SD-
strategyproofness, and if we restrict 𝑈 to smaller sets, we derive

less demanding strategyproofness notions.
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Note that𝑈 -strategyproofness allows for a more detailed analy-

sis than SD-strategyproofness because it enables us to analyze the

exact set of utility functions𝑈 for which an SDS is𝑈 -strategyproof.

Instead of crudely labeling an SDS as manipulable, we can prove for

which types of voters an SDS is strategyproof. Conversely, we can

also formulate impossibility results based on 𝑈 -strategyproofness

for strongly restricted sets𝑈 and thus, we can pinpoint the source

of manipulability far more detailed than with other strategyproof-

ness notions. Hence,𝑈 -strategyproofness offers both the possibility

of positive results by finding𝑈 -strategyproof SDSs for large sets𝑈 ,

and of strong impossibility results by using only a small number of

utility functions. Finally, information about 𝑈 -strategyproofness

can also be valuable in practice: if the social planner can roughly

guess the utility functions of the voters, he might be able to

choose an SDS preventing manipulations. Even if the social plan-

ner does not have such insights, he might opt for an SDS that is

𝑈 -strategyproof for a large set 𝑈 . The reason for this is that such

an SDS is immune to manipulations from most voters and the SDS

might satisfy additional properties that are not compatible with

SD-strategyproofness.
Other than introducing this new strategyproofness notion, we

employ its advantages to investigate the trade-off between strat-

egyproofness and decisiveness in detail. On the positive side, we

show that there are𝑈 -strategyproof SDSs that assign an alternative

probability 1whenever all but𝑘 voters agree that it is the best option

if the utility functions in 𝑈 value the best alternative much more

than the other alternatives. This shows that𝑈 -strategyproofness al-

lows for more positive results than SD-strategyproofness for which
no such SDSs exist if𝑘 > 0. Moreover, we prove for rank-based SDSs

that this gap in the utility functions is required to be strategyproof

and that it must even increase in 𝑘 . On the other hand, we demon-

strate that𝑈 -strategyproofness allows for strong impossibilities by

showing that it is incompatible with Condorcet-consistency if the

set𝑈 satisfies minimal symmetry conditions between preferences

and there are at least four alternatives. This result also holds for

three alternatives unless the utility functions in𝑈 are equi-distant.

In this special case, the Condorcet rule satisfies𝑈 -strategyproofness

and Condorcet-consistency and is even characterized by these ax-

ioms if there is an odd number of voters.

2 RELATEDWORK
To our knowledge, we are the first authors who explicitly in-

vestigate 𝑈 -strategyproofness. Nevertheless, ideas similar to 𝑈 -

strategyproofness have been used before. For instance, Sen [29]

proves the random dictatorship theorem based on a strategyproof-

ness notion that is derived from a restricted set of utility func-

tions. Hence, Sen’s result can be interpreted as a first result on

𝑈 -strategyproofness. Moreover, the notion of partial strategyproof-

ness introduced by Mennle and Seuken [25] is also derived by

restricting the utility functions. However, partial strategyproofness

defines how the set of utility functions can be restricted and it is

thus less general than𝑈 -strategyproofness. Moreover, Mennle and

Seuken analyze assignment mechanisms instead of randomized vot-

ing mechanisms. Finally, results on set-valued social choice (where

the outcome of an election is a non-empty set of alternatives in-

stead of a lottery) often derive preferences over sets of alternatives

based on utility functions. For instance, Duggan and Schwartz [15]

and Benoît [5] employ this approach for motivating their strate-

gyproofness notions. As a consequence, these results can also be

formulated with 𝑈 -strategyproofness. The relationship between

these results and𝑈 -strategyproofness is discussed in more detail

in Section 4.

There are also various results on other strategyproofness notions

in randomized social choice (see, e.g., [2, 3, 7, 8, 21, 23]), many of

which are surveyed by Brandt [9]. These results either prove the

incompatibility of strategyproofness with other axioms, or show

existence results by characterizing specific SDSs. Our results differ

from previous ones as we investigate a different question: instead

of asking whether an SDS is strategyproof according to some defi-

nition, we ask for which utility functions it is strategyproof.

Moreover, strategyproofness is often considered for restricted

domains of preference profiles (see, e.g., [6, 13, 17, 18]). For in-

stance, Bogomolnaia et al. [6] discuss an attractive SDS that is SD-
strategyproof for dichotomous preferences. 𝑈 -strategyproofness

can be interpreted similarly, but we focus on utility functions in-

stead of preference profiles: 𝑈 -strategyproof SDSs are immune to

manipulations if we restrict the domain of utility functions to 𝑈 .

Even more,𝑈 -strategyproofness guarantees by definition that vot-

ers with a utility function in𝑈 cannot manipulate even if all utility

functions and preference relations are possible.

Another field related to 𝑈 -strategyproofness is cardinal social

choice, where the input of social decision schemes consists of the

utility functions of the voters. If the domain of such a scheme

consists of all utility functions, every strategyproof scheme is, under

mild additional assumptions, a variant of a random dictatorship

(see, e.g., [4, 16, 24, 26]). As noted by Dutta et al. [16], these negative

results break down if the domain of cardinal SDSs is restricted, but

this setting is in general not well understood. Our results on 𝑈 -

strategyproofness provide insights in this problem because every

𝑈 -strategyproof SDS can be interpreted as a cardinal SDS that is

strategyproof for the domain𝑈 .

Finally, note that our model assumptions are quite similar to

those used in the analysis of the distortion of SDSs (see, e.g., [1,

22, 27]). Just as these authors, we assume that voters only report

ordinal preferences but use utility functions to evaluate the quality

of a lottery. Whereas distortion focuses on the welfare of SDSs, we

investigate their resistance to strategic behavior of voters.

3 PRELIMINARIES
Let 𝑁 = {1, . . . , 𝑛} be a finite set of voters and let 𝐴 be a set con-

taining𝑚 alternatives. A preference relation is an anti-symmetric,

transitive, complete, and reflexive binary relation on 𝐴 and 𝑅𝑖 de-

notes the preference relation of voter 𝑖 . Let R denote the set of

all preference relations on 𝐴. A preference profile 𝑅 is an 𝑛-tuple

containing the preference of every voter 𝑖 ∈ 𝑁 , i.e., 𝑅 ∈ R𝑛
. When

writing preference profiles, we indicate the corresponding voter

directly before the preference relation to clarify which voter sub-

mits which preference relation. For example, 1 : 𝑎, 𝑏, 𝑐 indicates

that voter 1 reports that he prefers 𝑎 to 𝑏 to 𝑐 .

In this paper, we discuss social decision schemes (SDSs), which are

functions that map preference profiles to lotteries on 𝐴. A lottery
𝑝 is a function from the set of alternatives 𝐴 to the interval [0, 1]
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such that

∑
𝑥 ∈𝐴 𝑝 (𝑥) = 1. Let Δ(𝐴) denote the set of all lotteries on

𝐴. Then, a social decision scheme is a function 𝑓 : R𝑛 → Δ(𝐴) and
we denote with 𝑓 (𝑅, 𝑥) the probability assigned to 𝑥 by the lottery

𝑓 (𝑅).
The definition of SDSs allows for a huge variety of functions,

some of which seem not desirable. Therefore, we introduce axioms

to narrow down the set of SDSs. A very uncontroversial axiom

is unanimity, which requires of an SDS 𝑓 that 𝑓 (𝑅, 𝑥) = 1 for all

preference profiles 𝑅 in which all voters agree that 𝑥 is the best

choice. While this axiom is so weak that is usually considered

indisputable, it is also irrelevant in practice as ballots are usually

not unanimous. Therefore, we introduce the stronger notion of

𝑘-unanimity: an SDS 𝑓 is 𝑘-unanimous, or unanimous up to 𝑘

voters, if 𝑓 (𝑅, 𝑥) = 1 whenever 𝑛 − 𝑘 or more voters report 𝑥 as the

best alternative. By definition, unanimity is equal to 0-unanimity

and note that 𝑘-unanimity is only well-defined if 𝑘 < 𝑛
2
. A well-

known strengthening of 𝑘-unanimity is Condorcet-consistency. For

defining this axiom, let 𝑛𝑥𝑦 (𝑅) = |{𝑖 ∈ 𝑁 : 𝑥𝑅𝑖𝑦}|− |{𝑖 ∈ 𝑁 : 𝑦𝑅𝑖𝑥}|
denote the majority margin between two alternatives 𝑥,𝑦 ∈ 𝐴 in

the preference profile 𝑅. An alternative 𝑥 is the Condorcet winner in
a preference profile 𝑅 if 𝑛𝑥𝑦 (𝑅) > 𝑛𝑦𝑥 (𝑅) for all other alternatives
𝑦 ∈ 𝐴 \ {𝑥}. Less formally, an alternative 𝑥 is the Condorcet winner

if it is preferred to every other alternative by a majority of the

voters. Finally, an SDS 𝑓 is Condorcet-consistent if 𝑓 (𝑅, 𝑥) = 1 for

all profiles 𝑅 and alternatives 𝑥 ∈ 𝐴 such that 𝑥 is the Condorcet

winner in 𝑅.

An important class of SDSs are rank-based SDSs. The basic idea

of these schemes is that voters assign ranks to the alternatives and

that an SDS should only rely on these ranks, but not on which

voter assigns which rank to an alternative. For formalizing this

concept, we denote with 𝑟 (𝑅𝑖 , 𝑥) = |{𝑦 ∈ 𝐴 : 𝑦𝑅𝑖𝑥}| the rank of

alternative 𝑥 in voter 𝑖’s preference. Moreover, we define the rank
vector 𝑟∗ (𝑅, 𝑥) as the vector that contains the rank of 𝑥 with respect

to every voter in increasing order, i.e., 𝑟∗ (𝑅, 𝑥)𝑖 ≤ 𝑟∗ (𝑅, 𝑥)𝑖+1 for

all 𝑖 ∈ {1, . . . , 𝑛 − 1}, and the rank matrix 𝑟∗ (𝑅) as the matrix that

contains the rank vectors of all alternative as rows. Finally, we call

an SDS 𝑓 rank-based if it only depends on the rank matrix, i.e.,

𝑓 (𝑅) = 𝑓 (𝑅′) for all preference profiles 𝑅, 𝑅′
with 𝑟∗ (𝑅) = 𝑟∗ (𝑅′).

The set of rank-based SDSs contains many prominent functions

such as point scoring rules and anonymous SDSs that only depend

on the first-ranked alternatives of the voters.
1

4 𝑈 -STRATEGYPROOFNESS
A central problem in social choice is that of manipulability: voters

may lie about their preferences to achieve a better outcome. While

the definition of a manipulation is easy if an SDS never randomizes

between multiple alternatives, it is not clear how to compare non-

degenerate lotteries. A classical approach for this problem is to

assume that voters are endowed with utility functions 𝑢𝑖 : 𝐴 → R.
We impose the constraint that no voter assigns the same utility

to two alternatives, i.e., 𝑢𝑖 (𝑥) ≠ 𝑢𝑖 (𝑦) for all voters 𝑖 ∈ 𝑁 and

alternatives 𝑥,𝑦 ∈ 𝐴, to ensure that the ordinal preference relation

induced by a utility function is anti-symmetric. We denote with U
the set of all such utility functions and say that a utility function

𝑢 ∈ U is consistent with a preference relation 𝑅 if 𝑢 (𝑥) ≥ 𝑢 (𝑦)

1
An SDS 𝑓 is anonymous if 𝑓 (𝑅) = 𝑓 (𝜋 (𝑅)) for all permutation 𝜋 : 𝑁 → 𝑁 .

iff 𝑥𝑅𝑦 for all alternatives 𝑥,𝑦 ∈ 𝐴. Finally, each voter 𝑖 uses his

utility function 𝑢𝑖 to compare lotteries by their expected utilities
E[𝑝]𝑢𝑖 =

∑
𝑥 ∈𝐴 𝑝 (𝑥)𝑢𝑖 (𝑥), i.e., a voter 𝑖 prefers a lottery 𝑝 weakly

to another lottery 𝑞 if E[𝑝]𝑢𝑖 ≥ E[𝑞]𝑢𝑖 .
Even though we assume the existence of utility functions, voters

only report ordinal preferences. Hence, SDSs cannot depend on the

utility functions for computing the outcome, but strategyproofness

requires that voters cannot increase their expected utility by voting

dishonestly. Consequently, strategyproofness is often defined by

quantifying over all utility functions that are consistent with a

preference relation. This approach results in SD-strategyproofness
as introduced by Gibbard [21]: an SDS 𝑓 is SD-strategyproof if

E[𝑓 (𝑅)]𝑢𝑖 ≥ E[𝑓 (𝑅′)]𝑢𝑖 for all voters 𝑖 ∈ 𝑁 , preference profiles 𝑅,

𝑅′
, and utility functions𝑢𝑖 ∈ U such that𝑢𝑖 is consistent with𝑅𝑖 and

𝑅 𝑗 = 𝑅′
𝑗
for all 𝑗 ∈ 𝑁 \ {𝑖}. Unfortunately, the characterizations of

Gibbard [21] and Barberà [3] show that only rather unattractive and

indecisive SDSs satisfy this strategyproofness notion. However, SD-
strategyproofness lacks relevance for many practical applications

as not all utility functions are plausible and also gives only shallow

theoretical insights into the conflict between strategyproofness and

decisiveness.

In order to address these problems, we define a novel strate-

gyproofness notion by restricting the set of feasible utility func-

tions 𝑈 beforehand: an SDS 𝑓 is 𝑈 -strategyproof if E[𝑓 (𝑅)]𝑢𝑖 ≥
E[𝑓 (𝑅′)]𝑢𝑖 for all voters 𝑖 ∈ 𝑁 , preference profiles 𝑅, 𝑅′

, and utility
functions 𝑢𝑖 ∈ 𝑈 such that 𝑢𝑖 is consistent with 𝑅𝑖 and 𝑅 𝑗 = 𝑅′

𝑗

for all 𝑗 ∈ 𝑁 \ {𝑖}. Less formally, 𝑈 -strategyproofness only re-

quires that voters with a utility function in 𝑈 cannot increase their

expected utility by misrepresenting their preferences. Hence, U-

strategyproofness is equal to SD-strategyproofness, and restricting

the set of utility functions leads to less demanding strategyproof-

ness notions. Note that𝑈 -strategyproofness can solve both prob-

lems of SD-strategyproofness: on the one side, we can investigate

whether an SDS is manipulable in practice by investigating the

exact set of utility functions for which it is strategyproof, and on

the other side, we can find the core of impossibility results by using

𝑈 -strategyproofness for small sets 𝑈 . Next, we discuss an exam-

ple to illustrate the difference between 𝑈 -strategyproofness and

SD-strategyproofness.

Example 1. Consider the profiles 𝑅1
and 𝑅2

shown in the sequel

and let 𝑓 denote an SDS such that 𝑓 (𝑅1, 𝑥) = 1

3
for 𝑥 ∈ {𝑎, 𝑏, 𝑐}

and 𝑓 (𝑅2, 𝑏) = 1. Moreover, consider the utility functions 𝑢1 with

𝑢1 (𝑎) = 2, 𝑢1 (𝑏) = 1, 𝑢1 (𝑐) = 0, 𝑢2 with 𝑢2 (𝑎) = 3, 𝑢2 (𝑏) = 1,

𝑢2 (𝑐) = 0, and 𝑢3 with 𝑢3 (𝑎) = 3, 𝑢3 (𝑏) = 2, and 𝑢3 (𝑐) = 0. All

these utility functions are only consistent with voter 1’s preference

relation in 𝑅1
, and thus, we can check whether he can benefit by

deviating to 𝑅2
. A quick calculation shows that E[𝑓 (𝑅1)]𝑢1

= 1 =

E[𝑓 (𝑅2)]𝑢1
, E[𝑓 (𝑅1)]𝑢2

= 4

3
> 1 = E[𝑓 (𝑅2)]𝑢2

, and E[𝑓 (𝑅1)]𝑢3
=

5

3
< 2 = E[𝑓 (𝑅2)]𝑢3

. Hence, voter 1 can increase his expected

utility if his utility function is 𝑢3 and thus, 𝑓 is SD-manipulable. In

contrast, voter 1 does not benefit from deviating to 𝑅2
if his utility

function is 𝑢1 or 𝑢2. Since the preference relations of the remaining

voters are not consistent with 𝑢1, 𝑢2, and 𝑢3, it follows that 𝑓 is

{𝑢1, 𝑢2}-strategyproof on these two profiles.



GAIW’21, May 2021, London, UK Patrick Lederer

𝑅1
: 1: 𝑎, 𝑏, 𝑐 2: 𝑏, 𝑐, 𝑎 3: 𝑐, 𝑎, 𝑏

𝑅2
: 1: 𝑏, 𝑎, 𝑐 2: 𝑏, 𝑐, 𝑎 3: 𝑐, 𝑎, 𝑏

In our results, we always consider𝑈 -strategyproofness for sym-
metric sets𝑈 , i.e., we assume that𝑢 ∈ 𝑈 implies that𝑢𝜋 = 𝑢◦𝜋 ∈ 𝑈

for every permutation 𝜋 on𝐴. This formalizes the natural condition

that all preference relations should be treated equally. As the next

proposition shows, this symmetry condition is rather weak since

every neutral SDS is 𝑈 -strategyproof for a symmetric set 𝑈 if it is

strategyproof for at least one utility function.
2

Proposition 1. If a neutral SDS is 𝑈 -strategyproof for a non-empty
set𝑈 , then it is𝑈 ′-strategyproof for a symmetric set𝑈 ′ with𝑈 ⊆ 𝑈 ′.

Proof. Let 𝑓 denote a neutral SDS that is 𝑈 -strategyproof for

a non-empty set𝑈 and let𝑈 ′ = {𝑢 ◦ 𝜋 : 𝑢 ∈ 𝑈 , 𝜋 ∈ Π} denote the
smallest symmetric set that contains𝑈 . We suppose in the sequel

that 𝑈 ≠ 𝑈 ′
as otherwise, there is nothing to show. Moreover,

assume for contradiction that 𝑓 is not𝑈 ′
-strategyproof. This means

that there are two preference profiles 𝑅 and 𝑅′
, a voter 𝑖 , a utility

function𝑢 ∈ 𝑈 , and a permutation 𝜋 : 𝐴 → 𝐴 such that 𝑅 𝑗 = 𝑅′
𝑗
for

all 𝑗 ∈ 𝑁 \ {𝑖}, 𝑢𝜋 = 𝑢 ◦ 𝜋 is consistent with 𝑅𝑖 , and E[𝑓 (𝑅′)]𝑢𝜋 >

E[𝑓 (𝑅)]𝑢𝜋 . Note that 𝑢𝜋 ∉ 𝑈 as otherwise, this assumption is in

direct conflict with the𝑈 -strategyproofness of 𝑓 .

Next, let 𝑅 = 𝜋 (𝑅), i.e., 𝑥𝑅 𝑗𝑦 if and only if 𝜋 (𝑥)𝑅 𝑗𝜋 (𝑦) for all
𝑥,𝑦 ∈ 𝐴 and 𝑗 ∈ 𝑁 , and

¯𝑅′ = 𝜋 (𝑅′) denote the profiles derived by

permuting 𝑅 and 𝑅′
with 𝜋 . Moreover, let 𝜋−1

denote the inverse

permutation of 𝜋 , i.e., 𝜋−1 (𝜋 (𝑥)) = 𝑥 for all 𝑥 ∈ 𝐴. Note that 𝑢

is consistent with 𝑅𝑖 because 𝑥𝑅𝑖𝑦 ⇐⇒ 𝜋−1 (𝑥)𝑅𝑖𝜋−1 (𝑦) ⇐⇒
𝑢𝜋 (𝜋−1 (𝑥)) ≥ 𝑢𝜋 (𝜋−1 (𝑦)) ⇐⇒ 𝑢 (𝑥) ≥ 𝑢 (𝑦) for all 𝑥,𝑦 ∈ 𝐴.

Furthermore, it follows from neutrality that 𝑓 (𝑅, 𝜋 (𝑥)) = 𝑓 (𝑅, 𝑥)
and 𝑓 (𝑅′, 𝜋 (𝑥)) = 𝑓 (𝑅′, 𝑥) for all 𝑥 ∈ 𝐴. Hence, we can calculate

that

E[𝑓 (𝑅)]𝑢 =
∑︁
𝑥 ∈𝐴

𝑓 (𝑅, 𝑥)𝑢 (𝑥) =
∑︁
𝑥 ∈𝐴

𝑓 (𝑅, 𝜋 (𝑥))𝑢 (𝜋 (𝑥))

=
∑︁
𝑥 ∈𝐴

𝑓 (𝑅, 𝑥)𝑢𝜋 (𝑥) <
∑︁
𝑥 ∈𝐴

𝑓 (𝑅′, 𝑥)𝑢𝜋 (𝑥)

=
∑︁
𝑥 ∈𝐴

𝑓 ( ¯𝑅′, 𝜋 (𝑥))𝑢 (𝜋 (𝑥)) =
∑︁
𝑥 ∈𝐴

𝑓 ( ¯𝑅′, 𝑥)𝑢 (𝑥) = E[𝑓 ( ¯𝑅′)]𝑢 .

However, this contradicts that 𝑓 is𝑈 -strategyproof as there is a

utility function 𝑢 ∈ 𝑈 with which a voter can manipulate. Hence,

the assumption that 𝑓 violates𝑈 ′
-strategyproofness is wrong. □

A special case of our symmetry assumption is that 𝑈 con-

sists of a single utility function 𝑢 and its renamings, i.e., that

𝑈 = {𝑢 ◦ 𝜋 : 𝜋 ∈ Π}, where Π denotes the set of all permuta-

tions on 𝐴. In this case, we write 𝑢Π-strategyproofness instead of

𝑈 -strategyproofness. In particular, note that 𝑢Π-strategyproofness

associates every preference relation with exactly one utility func-

tion, whereas {𝑢}-strategyproofness, i.e., strategyproofness for a
single utility function 𝑢, only affects a single preference relation.

Since the utility of an alternative only depends on its rank for

𝑢Π-strategyproofness, we often write 𝑢 (𝑘) to denote the utility of

the 𝑘-th best alternative of a voter. As the next proposition shows,

it suffices to consider 𝑢Π-strategyproofness or even {𝑢}-strategy-
proofness because the maximal set of utility functions that are

2
An SDS 𝑓 is neutral if 𝑓 (𝜋 (𝑅), 𝜋 (𝑥)) = 𝑓 (𝑅, 𝑥) for every permutation 𝜋 : 𝐴 → 𝐴.

consistent with a single preference relation and for which an SDS

is strategyproof is convex.

Proposition 2. The set 𝑈𝑅𝑖 = {𝑢 ∈ U : 𝑢 is consistent with 𝑅𝑖 and
𝑓 is {𝑢}-strategyproof} is for every SDS 𝑓 and every preference rela-
tion 𝑅𝑖 convex.

Proof. Let 𝑓 denote an SDS and consider an arbitrary pref-

erence relation 𝑅𝑖 . We need to show that the set 𝑈𝑅𝑖 = {𝑢 ∈
U : 𝑢 is consistent with 𝑅𝑖 and 𝑓 is {𝑢}-strategyproof} is convex.

First, note that if |𝑈𝑅𝑖 | ≤ 1, the set is trivially convex. Hence, assume

|𝑈𝑅𝑖 | ≥ 2 and consider two arbitrary utility functions 𝑢,𝑢 ′ ∈ 𝑈𝑅𝑖

with 𝑢 ≠ 𝑢 ′. We need to show that 𝑢 ′′ = 𝜆𝑢 + (1 − 𝜆)𝑢 ′ ∈ 𝑈𝑅𝑖

for every 𝜆 ∈ (0, 1). First note that 𝑢 ′′ is consistent with 𝑅𝑖 as

𝑥𝑅𝑖𝑦 entails for all alternatives 𝑥,𝑦 ∈ 𝐴 that 𝑢 (𝑥) ≥ 𝑢 (𝑦) and
𝑢 ′(𝑥) ≥ 𝑢 ′(𝑦). As a consequence, 𝑢 ′′(𝑥) = 𝜆𝑢 (𝑥) + (1 − 𝜆)𝑢 ′(𝑥) ≥
𝜆𝑢 (𝑦) + (1 − 𝜆)𝑢 ′(𝑦) = 𝑢 ′′(𝑦).

Next, we need to show that 𝑓 is also {𝑢 ′′}-strategyproof. As-
sume for contradiction that this is not the case. Then, there are two

preference profiles 𝑅 and 𝑅′
and a voter 𝑖 ∈ 𝑁 such that 𝑅 𝑗 = 𝑅′

𝑗

for all 𝑗 ∈ 𝑁 \ {𝑖}, 𝑅𝑖 is consistent with 𝑢 ′′, and E[𝑓 (𝑅′)]𝑢′′ >

E[𝑓 (𝑅)]𝑢′′ . By the definition of 𝑢 ′′, this means that 𝜆E[𝑓 (𝑅′)]𝑢 +
(1 − 𝜆)E[𝑓 (𝑅′)]𝑢′ > 𝜆E[𝑓 (𝑅)]𝑢 + (1 − 𝜆)E[𝑓 (𝑅)]𝑢′ . This in-

equality is only true if E[𝑓 (𝑅′)]𝑢 > E[𝑓 (𝑅)]𝑢 or E[𝑓 (𝑅′)]𝑢′ >

E[𝑓 (𝑅)]𝑢′ . However, as 𝑢 and 𝑢 ′ are also both consistent with 𝑅𝑖 ,

this implies that 𝑓 violates either {𝑢}-strategyproofness or {𝑢 ′}-
strategyproofness. Hence, {𝑢,𝑢 ′} ⊈ 𝑈𝑅𝑖 which contradicts our

initial assumption, and thus, 𝑓 must be {𝑢 ′′}-strategyproof. This
means that 𝑢 ′′ ∈ 𝑈𝑅𝑖 and that𝑈𝑅𝑖 is indeed convex. □

As a consequence of this proposition, proving that an SDS is

{𝑢1, . . . , 𝑢𝑘 }-strategyproof for a few utility functions𝑢1, . . . , 𝑢𝑘 that

are consistent with a preference relation 𝑅𝑖 implies that it is 𝑈 -

strategyproof for the convex hull of {𝑢1, . . . , 𝑢𝑘 }. If the considered
SDS is additionally neutral, if follows from Proposition 1 that the

SDS is𝑈 -strategyproof for a large symmetric set. Also, Proposition 2

can be used to find𝑈 -strategyproof SDSs with a computer-aided

approach because we can now encode𝑈 -strategyproofness for large

sets 𝑈 by considering a small number of utility functions. Hence,

we can reduce the search for 𝑈 -strategyproof SDSs to solving a

linear feasibility problem.

Next, note that 𝑈 -strategyproofness inherits many attractive

properties from SD-strategyproofness: for instance, the convex

combination of𝑈 -strategyproof SDSs is itself𝑈 -strategyproof, i.e.,

the set of 𝑈 -strategyproof SDSs is convex for every set 𝑈 . As a

consequence of this observation, it is often possible to construct

an anonymous 𝑈 -strategyproof SDS based on a non-anonymous

𝑈 -strategyproof SDS while preserving various other axioms. The

central idea for this is that given a non-anonymous𝑈 -strategyproof

SDS 𝑓 , we can define for every permutation 𝜏 : 𝑁 → 𝑁 the SDS 𝑓 𝜏

that first permutes the input profile 𝑅 with 𝜏 and then computes 𝑓 .

It is straightforward that 𝑓 𝜏 is𝑈 -strategyproof and inherits many

other properties from 𝑓 . Finally, the SDS 𝑓 ∗ (𝑅) = 1

𝑛!

∑
𝜏 ∈T

𝑓 𝜋 (𝑅),
where T denotes the set of all permutations on 𝑁 , is also 𝑈 -

strategyproof and anonymous.

Another similarity between 𝑈 -strategyproofness and SD-
strategyproofness is proven in the next proposition: both axioms

disincentivize even manipulations from groups of voters with the
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same preferences. For formalizing this observation, we first need to

introduce 𝑈 -group-manipulability and 𝑈 -group-strategyproofness.

We say that an SDS 𝑓 is𝑈 -group-manipulable if there is a subset of

the voters 𝐼 ⊆ 𝑁 , two preference profiles 𝑅, 𝑅′
, and a utility func-

tion 𝑢𝑖 ∈ 𝑈 for every voter 𝑖 ∈ 𝐼 such that 𝑅 𝑗 = 𝑅′
𝑗
for all 𝑗 ∈ 𝑁 \ 𝐼 ,

𝑅𝑖 = 𝑅 𝑗 for all 𝑖, 𝑗 ∈ 𝐼 , 𝑢𝑖 is consistent with 𝑅𝑖 for every voter 𝑖 ∈ 𝐼 ,

E[𝑓 (𝑅′)]𝑢𝑖 ≥ E[𝑓 (𝑅)]𝑢𝑖 for all 𝑖 ∈ 𝐼 , and the last inequality is strict

for at least one voter 𝑖∗ ∈ 𝐼 . Less formally, this means that a group

of voters with the same preferences can deviate such that each

voter is weakly better of and at least one voter strictly increases his

expected utility. Inversely, we call an SDS 𝑈 -group-strategyproof

if it cannot be 𝑈 -group-manipulated by any subset of the voters

𝐼 ⊆ 𝑁 .

Proposition 3. An SDS is 𝑈 -strategyproof if and only if it is 𝑈 -
group-strategyproof.

Proof. Let 𝑓 denote an arbitrary SDS. It follows immediately

that 𝑓 is 𝑈 -strategyproof if it is 𝑈 -group-strategyproof because

𝑈 -group-strategyproofness is also defined for singleton sets of

voters. Hence, we focus on the direction from left to right and

assume that 𝑓 is𝑈 -strategyproof for some set𝑈 . Moreover, assume

for contradiction that 𝑓 is 𝑈 -group-manipulable, i.e., that there

are two preference profiles 𝑅, 𝑅′
, a set of voters 𝐼 ⊆ 𝑁 , and a

utility function 𝑢𝑖 for every voter 𝑖 ∈ 𝐼 such that 𝑅 𝑗 = 𝑅′
𝑗
for all

𝑗 ∈ 𝑁 \ 𝐼 , 𝑅𝑖 = 𝑅 𝑗 for all 𝑖, 𝑗 ∈ 𝐼 , 𝑢𝑖 is consistent with 𝑅𝑖 for all

𝑖 ∈ 𝐼 , E[𝑓 (𝑅′)]𝑢𝑖 ≥ E[𝑓 (𝑅)]𝑢𝑖 for all 𝑖 ∈ 𝐼 , and the last inequality

is strict for some voter 𝑖∗ ∈ 𝐼 . The last assumption means that there

is a utility function 𝑢∗ ∈ 𝑈 such that 𝑢∗ is consistent with 𝑅𝑖 and

E[𝑓 (𝑅′)]𝑢∗ > E[𝑓 (𝑅)]𝑢∗ .

Next, consider the preference profiles 𝑅0, . . . , 𝑅 |𝐼 |
such that 𝑅0 =

𝑅,𝑅 |𝐼 | = 𝑅′
, and𝑅𝑘+1

differs from𝑅𝑘 for all𝑘 ∈ {0, . . . , |𝐼 |−1} by re-
placing the preference relation 𝑅𝑖 of a voter in 𝐼 with his preference

in 𝑅′
. 𝑈 -strategyproofness entails for each 𝑘 that E[𝑓 (𝑅𝑘 )]𝑢∗ ≥

E[𝑓 (𝑅𝑘+1)]𝑢∗ as these profiles only differ in the preference of a

single voter and 𝑢∗ ∈ 𝑈 is consistent with 𝑅𝑖 for all 𝑖 ∈ 𝐼 . It follows

from this observation that E[𝑓 (𝑅)]𝑢∗ ≥ E[𝑓 (𝑅′)]𝑢∗ contradicting

our assumption that E[𝑓 (𝑅)]𝑢∗ < E[𝑓 (𝑅′)]𝑢∗ . This means that the

initial assumption is wrong and 𝑓 is𝑈 -group-strategyproof. □

Finally, observe that𝑈 -strategyproofness can be used to transfer

results from set-valued social choice to the probabilistic setting. We

explain this relation using the impossibility result of Benoît [5] as

example. This theorem states that strategyproofness is incompatible

with 1-unanimity for set-valued social choice functions if the voters’

preferences over sets of alternatives satisfy the following conditions,

where 𝑎𝑖 denotes the 𝑖-th best alternative of a voter.

(1) The singleton set {𝑎1} is preferred to every other outcome.

(2) The set {𝑎1, 𝑎2} is preferred to every other outcome but {𝑎1}.
(3) The singleton set {𝑎2} is preferred to every other outcome

but {𝑎1} and {𝑎1, 𝑎2}.
(4) Every other set is preferred to the singleton set {𝑎𝑚}.
For formulating this result for SDSs, wewant to compare lotteries

only based on their support supp(𝑝) = {𝑥 ∈ 𝐴 : 𝑝 (𝑥) > 0}. Follow-
ing this idea, the first and fourth constraint are trivial in our model

as 𝑢 (1) > 𝑢 (𝑥) > 𝑢 (𝑚) for all 𝑥 ∈ {2, . . . ,𝑚 − 1}. Moreover, the

third constraint implies the second one as𝑢 (2) < 𝜆𝑢 (1)+(1−𝜆)𝑢 (2)

for every 𝜆 with 0 < 𝜆 < 1. Hence, we focus on the third constraint

and define 𝜖𝑓 = min𝑥 ∈𝐴,𝑅∈R𝑛
:𝑓 (𝑅,𝑥)>0

𝑓 (𝑅, 𝑥) as the smallest non-

zero probability assigned to an alternative by the SDS 𝑓 . Note

that 𝜖𝑓 is well-defined since SDSs are defined for a fixed set of

alternatives and voters. Given this probability, we derive that a

voter prefers every lottery that randomizes only over his best two

alternatives to every other lottery if his utility function satisfies

𝑢 (2) > (1 − 𝜖𝑓 )𝑢 (1) + 𝜖𝑓 𝑢 (3). After rearranging this equation, we

can formulate Benoît’s impossibility as follows.

Proposition 4. There is no SDS 𝑓 that satisfies 1-unanimity and
𝑢Π-strategyproofness if 𝑢 (1) − 𝑢 (2) <

𝜖𝑓
1−𝜖𝑓 (𝑢 (2) − 𝑢 (3)),𝑚 ≥ 3,

and 𝑛 ≥ 3.

This proposition sheds new light on Benoît’s impossibility theo-

rem: the central requirement of the impossibility result are voters

that are close to indifferent between their first and second best

option. This refines Benoît’s reasoning who justifies his strate-

gyproofness notion with voters who ”like his or her two favorite

alternatives ”much more” than the rest of the alternatives”.
3

Based on similar ideas as shown above, we can also formulate

the Duggan-Schwartz impossibility theorem [15] and many other

results from set-valued social choice with𝑈 -strategyproofness.

5 RESULTS
In the sequel, we employ 𝑈 -strategyproofness to analyze the trade-

off between strategyproofness and decisiveness in more detail. In

particular, we investigate two decisiveness axioms:𝑘-unanimity and

Condorcet-consistency. The first axiom allows for positive results

if suitable utility functions are considered, whereas Condorcet-

consistency is incompatible with 𝑢Π-strategyproofness for every

utility function𝑢 ∈ U. Due to space limitations, we defer the proofs

of all theorems into the appendix and provide short proof sketches

instead.

5.1 𝑘-unanimity
A central result of Gibbard [21], who attributes it to Hugo Son-

nenschein, is that the SDS called random dictatorship (henceforth

RD) is the only SD-strategyproof SDS that satisfies unanimity and

anonymity. This SDS assigns an alternative 𝑥 in a profile 𝑅 the prob-

ability
𝑃𝐿 (𝑅,𝑥)

𝑛 , where 𝑃𝐿(𝑅, 𝑥) = |{𝑖 ∈ 𝑁 : ∀𝑦 ∈ 𝐴 : 𝑥𝑅𝑖𝑦}| denotes
the plurality score of alternative 𝑥 . A commonmethod for executing

RD is to choose a voter uniformly at random and to return his most

preferred alternative as winner. While RD is one of the most attrac-

tive SD-strategyproof SDSs, it violates 𝑘-unanimity for every 𝑘 > 0.

Even more, Benoît [5] has shown that every SD-strategyproof SDS
is in conflict with 𝑘-unanimity for 𝑘 > 0.

However, we can define a variant of RD that satisfies both

𝑘-unanimity for an arbitrary 𝑘 ∈ {0, . . . , ⌊𝑛−1

2
⌋} and 𝑈 -

strategyproofness for a large set of utility functions𝑈 . Hence, con-

sider the following SDS, which we call 𝑘-random dictatorship (ab-

breviated by RD𝑘
): if at least 𝑛 − 𝑘 voters agree that alternative 𝑥 is

3
Benoît [5] also discusses a variant for SDSs in which he uses the minimal non-zero

probability assigned to an alternative. However, Benoît only gives an example showing

that there is a suitable utility function such that the required preferences over sets

extend to preferences over lotteries.
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the best choice, assign alternative 𝑥 a probability of 1; otherwise, re-

turn the outcome of RD. As we show in Theorem 1, RD𝑘
satisfies𝑈 -

strategyproofness for𝑈 = {𝑢 ∈ U : 𝑢 (1) −𝑢 (2) ≥ 𝑘 (𝑢 (2) −𝑢 (𝑚))},
i.e., if voters have a strong preference for the first alternative, RD𝑘

is strategyproof. Unfortunately, the definition of 𝑈 depends on 𝑘 ,

i.e., for large values of 𝑘 , there must be an extremely large gap

between 𝑢 (1) and 𝑢 (2). Another variant of RD, which we refer to

as OMNI , solves this problem. This SDS assigns probability 1 to an

alternative 𝑥 if more than half of the voters report 𝑥 as their best

alternative, and otherwise randomizes uniformly among all alterna-

tives that are at least once top-ranked. This SDS is𝑈 -strategyproof

for𝑈 = {𝑢 ∈ U : 𝑢 (1) −𝑢 (2) ≥ ∑𝑚
𝑖=3

𝑢 (2) −𝑢 (𝑖)}. While OMNI sat-
isfies ⌊𝑛−1

2
⌋-unanimity for all numbers of voters and alternatives,

the condition on𝑈 seems only realistic if there are few alternatives.

Theorem 1. For every 𝑘 ∈ {1, . . . , ⌊𝑛−1

2
⌋}, RD𝑘 satisfies 𝑈 -

strategyproofness for𝑈 = {𝑢 ∈ U : 𝑢 (1) − 𝑢 (2) ≥ 𝑘 (𝑢 (2) − 𝑢 (𝑚))}
and violates {𝑢}-strategyproofness for every utility function 𝑢 with
𝑢 (1) − 𝑢 (2) < 𝑘 (𝑢 (2) − 𝑢 (𝑚)). Moreover, OMNI satisfies 𝑈 -
strategyproofness for𝑈 = {𝑢 ∈ U : 𝑢 (1) −𝑢 (2) ≥ ∑𝑚

𝑖=3
𝑢 (2) −𝑢 (𝑖)}

and violates {𝑢}-strategyproofness for every utility function 𝑢 with
𝑢 (1) − 𝑢 (2) < ∑𝑚

𝑖=3
𝑢 (2) − 𝑢 (𝑖).

The constraint on 𝑈 for RD𝑘
arises quite naturally by consid-

ering the preference profile in which 𝑛 − 𝑘 − 1 voters top-rank

the second best alternative of voter 𝑖 and the remaining 𝑘 voters

report the worst alternative of voter 𝑖 as their favorite option. In

this situation, voter 𝑖 can ensure that his second best alternative

becomes the unique winner by top-ranking it. Hence, voter 𝑖 needs

to value his best alternative much more than the other alternatives

as this modification otherwise increases his expected utility. For

the bounds for OMNI , the worst case looks similar: all alternatives

are top-ranked and voter 𝑖’s second best alternative is top-ranked

by ⌊𝑛
2
⌋ voters. In this situation, voter 𝑖 has an expected utility of∑𝑚

𝑘=1
𝑢 (𝑘)

𝑚 . However, if voter 𝑖 misreports his second best alterna-

tive as his best one, this alternative is chosen with probability 1

guaranteeing him an expected utility of 𝑢 (2). Solving the resulting

inequality results in the bound for OMNI .
While it is positive that 𝑘-unanimity and 𝑈 -strategyproofness

can be simultaneously satisfied at all, the bounds on the sets 𝑈 in

Theorem 1 become increasingly worse with large 𝑘 and𝑚. This

raises the question for less demanding bounds on the utility func-

tions. As our next theorem shows, the approach used for defining

RD𝑘
and OMNI has unfortunately not much space for improvement

as both SDSs are rank-based.

Theorem 2. There is no rank-based SDS that satisfies 𝑢Π-strategy-
proofness and 𝑘-unanimity for 0 < 𝑘 < 𝑛

2
if 𝑚 ≥ 3, 𝑛 ≥ 3, and

𝑢 (1) − 𝑢 (2) < ∑𝑚
𝑖=𝑚−𝑘∗+1

𝑢 (2) − 𝑢 (𝑖), where 𝑘∗ = min(𝑘,𝑚 − 2).

The proof of Theorem 2 works by contradiction: we assume

that there is a 𝑘-unanimous rank-based SDS 𝑓 that satisfies 𝑢Π-

strategyproofness for a utility function 𝑢 with 𝑢 (1) − 𝑢 (2) <∑𝑚
𝑖=𝑚−𝑘∗+1

𝑢 (2) −𝑢 (𝑖). Our analysis then starts at a profile 𝑅 where

𝑛 − 𝑘∗ voters favor 𝑎 the most, which implies that 𝑓 (𝑅, 𝑎) = 1 due

to 𝑘-unanimity. The central argument is next a rather involved

construction that shows that a voter can weaken alternative 𝑎 from

the first rank to the second one without affecting the outcome. By

repeatedly applying this construction, we eventually arrive at a

profile 𝑅′
where only 𝑘∗ voters top-rank 𝑎 and the remaining voters

top-rank 𝑏, but 𝑓 (𝑅′, 𝑎) = 1. This is in conflict with 𝑘-unanimity as

𝑛 − 𝑘∗ ≥ 𝑛 − 𝑘 voters agree on 𝑏 as best choice but 𝑓 (𝑅′, 𝑏) ≠ 1.

Remark 1. A computer-aided approach has shown that there are

SDSs that satisfy 𝑘-unanimity and 𝑢Π-strategyproofness for util-

ity functions 𝑢 with 𝑢 (1) − 𝑢 (2) <
∑𝑚
𝑖=𝑚−𝑘∗+1

𝑢 (2) − 𝑢 (𝑖) if we
dismiss rank-basedness and 𝑚 ≤ 4. Hence, it seems that rank-

basedness is required for Theorem 2. However, it should be men-

tioned that the SDSs found by the computer are very technical

and only 𝑢Π-strategyproof for a single utility function 𝑢. Moreover,

most bounds of the theorem are tight: if𝑚 = 2, the majority rule,

which randomizes uniformly among the alternatives that are top-

ranked by the most voters, is even SD-strategyproof, and if 𝑛 = 2,

𝑘-unanimity is not well-defined for 𝑘 > 0. Furthermore, the con-

dition on the utility functions is almost tight: RD1
shows that the

bound is tight for 1-unanimity, and OMNI shows that the bound is

tight if𝑘∗ =𝑚−2. Finally, RD𝑘∗
shows that no constraint of the type

𝑢 (1) −𝑢 (2) ≤ ∑𝑚
𝑖=𝑚−𝑘∗+1

𝑢 (2) −𝑢 (𝑖) +𝜖 with 𝜖 > 0 can result in an

impossibility because we can always find a utility function 𝑢 such

that

∑𝑚
𝑖=𝑚−𝑘∗+1

𝑢 (2) − 𝑢 (𝑖) + 𝜖 ≥ 𝑢 (1) − 𝑢 (2) ≥ 𝑘∗ (𝑢 (2) − 𝑢 (𝑚))
by making the difference between 𝑢 (𝑖) and 𝑢 (𝑚) for 𝑖 ≥ 3 suffi-

ciently small. Nevertheless, it remains open to find rank-based SDSs

that satisfy 𝑈 -strategyproofness for 𝑈 = {𝑢 ∈ U : 𝑢 (1) − 𝑢 (2) =∑𝑚
𝑖=𝑚−𝑘∗+1

𝑢 (2) − 𝑢 (𝑖)} and 2 ≤ 𝑘∗ ≤ 𝑚 − 3.

Remark 2. Note that it is fairly common assumption that SDSs

are not defined for a fixed number of voters but for all possi-

ble electorates. In this setting, a common consistency criterion

for an SDS is homogeneity. This axiom requires for all profiles

𝑅 that 𝑓 (𝑅) = 𝑓 (𝑘𝑅), where the profile 𝑘𝑅 consists of 𝑘 copies

of 𝑅. Note that if a homogeneous SDS is 1-unanimous for an

electorate of size 𝑛, it is𝑚 − 2-unanimous for electorates of size

𝑛(𝑚 − 2). Hence, if a rank-based SDS for variable electorates sat-

isfies homogeneity and 1-unanimity for some electorate of size

𝑛, it can only satisfy 𝑢Π-strategyproofness on all input profiles if

(𝑢 (1) − 𝑢 (2)) ≥ ∑𝑚
𝑖=3

(𝑢 (2) − 𝑢 (𝑖)) because of Theorem 2. This

observation shows that strategyproofness is a much harder re-

quirement for SDSs with variable electorates (that satisfy a weak

consistency axiom such as homogeneity). In particular, this is true

as 1-unanimity gets more natural with an increasing number of

voters.

Remark 3. All anonymous SDSs that are tops-only (i.e, that only

depend on the first-ranked alternatives of the voters) are obviously

rank-based and hence, Theorem 2 applies for them. Even more, the

theorem also applies for tops-only SDSs if they violate anonymity.

The reason for this is that, given a non-anonymous tops-only SDS 𝑓

that satisfies 𝑘-unanimity for some 𝑘 > 0 and𝑢Π-strategyproofness

for some utility function 𝑢, we can construct an anonymous tops-

only SDS that satisfies 𝑢Π-strategyproofness for the same utility

function𝑢 and 𝑘-unanimity for the same 𝑘 as the original SDS. This

construction works as follows: given 𝑓 and a permutation 𝜏 on the

voters, the SDS 𝑓 𝜏 first permutes the voters according to 𝜏 and then

computes 𝑓 on the permuted profile. Clearly, 𝑓 𝜏 is𝑢Π-strategyproof

and 𝑘-unanimous for every permutation 𝜏 . Next, we define T as the

set of all permutations on 𝑁 and 𝑓 ∗ = 1

𝑛!

∑
𝜏 ∈T

𝑓 𝜏 , i.e., 𝑓 ∗ averages
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𝑘
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𝑢 (2)

Figure 1: Illustration of Theorem 1 and Theorem 2. We as-
sume that there are 5 alternatives and consider a utility func-
tion𝑢 with𝑢 (2) = 3,𝑢 (3) = 2,𝑢 (4) = 1, and𝑢 (5) = 0. The figure
shows for which values of 𝑢 (1) the SDSs RD (blue area), RD1

(green area), RD2 (magenta area), and OMNI (orange area) are
𝑢Π-strategyproof on the vertical axis. The horizontal axis
illustrates for which values of 𝑘 these SDSs are 𝑘-unanimous.
The red area displays the impossibility of Theorem 2 and the
gray area marks invalid values of 𝑢 (1) as 𝑢 (1) > 𝑢 (2) is by
definition required.

over all 𝑓 𝜏 . It is simple to verify that 𝑓 ∗ is anonymous and tops-

only due to its definition. Moreover, it is also 𝑢Π-strategyproof as it

can be represented as the convex combination of 𝑢Π-strategyproof

SDSs. Finally, it is 𝑘-unanimous because every SDS 𝑓 𝜏 satisfies this

axiom. Hence, if there is a tops-only SDS that satisfies 𝑘-unanimity

and𝑢Π-strategyproofness for a utility function𝑢 with𝑢 (1)−𝑢 (2) <∑𝑚
𝑖=𝑚−𝑘∗+1

𝑢 (2) − 𝑢 (𝑖), there is also an anonymous tops-only SDS

that satisfies these properties. As Theorem 2 shows that such an SDS

does not exist, it follows from the contraposition that there is also

no non-anonymous tops-only SDS that satisfies both 𝑘-unanimity

for 𝑘 > 0 and 𝑢Π-strategyproofness for a utility function 𝑢 with

𝑢 (1) − 𝑢 (2) < ∑𝑚
𝑖=𝑚−𝑘∗+1

𝑢 (2) − 𝑢 (𝑖).

Remark 4. Theorem 1 and Theorem 2 have an intuitive interpre-

tation: if voters have a strong preference for their best alternative,

it becomes possible to achieve strategyproofness and decisiveness.

This follows as strategyproofness is compatible with 𝑘-unanimity if

there is a sufficiently large gap between 𝑢 (1) and 𝑢 (2). In contrast,

it is impossible that an SDS satisfies both axioms if voters are close

to indifferent between their best two alternatives. For the class of

general SDSs, this is shown by Benoît [5], and for the class of rank-

based SDSs, Theorem 2 significantly weakens the requirements on

the utility functions.

Remark 5. Figure 1 summarizes the results of this section with

the help of an example. For this figure, we assume that there are 5

alternatives and a large number of voters 𝑛 ≥ 11, and we fixed all

utilities but 𝑢 (1). Hence, we can compute for all SDSs of Theorem 1

how large the value of 𝑢 (1) has to be in order to achieve strate-

gyproofness. In particular, we see for RD𝑘
that 𝑢 (1) increases in 𝑘

and that the bound of OMNI is independent of 𝑘 . Moreover, note

that the required values of 𝑢 (1) are quite large compared to 𝑢 (2)
for all SDSs but RD. However, the red area shows the values of 𝑢 (1)
for which Theorem 2 applies and hence, these large values are in-

deed required. The white area shows the open problem mentioned

in Remark 1, i.e., that we do not know a rank-based SDS which

satisfies𝑈 -strategyproofness tightly for the bound of Theorem 2 if

2 ≤ 𝑘∗ ≤ 𝑚 − 3.

5.2 Condorcet-consistency
As there are even rank-based SDS that are 𝑘-unanimous and 𝑈 -

strategyproof for large sets𝑈 , the question arises whether stronger

decisiveness notions can be achieved by dismissing rank-basedness.

Unfortunately, we find a negative answer to this question by con-

sidering Condorcet-consistency.

Theorem 3. There is no Condorcet-consistent SDS that satisfies 𝑢Π-
strategyproofness regardless of the utility function 𝑢 if𝑚 ≥ 4, 𝑛 ≥ 5

and 𝑛 ≠ 6, 𝑛 ≠ 8.

The proof of this result works by contradiction and relies on a

case distinction on the utility function𝑢. If𝑢 (1)−𝑢 (2) < 𝑢 (2)−𝑢 (𝑚),
the utility of the second best alternative is larger than the average

utility, which means that a voter can manipulate by making his

second best alternative into the Condorcet winner. If 𝑢 (1) − 𝑢 (𝑚 −
1) > 𝑢 (𝑚−1)−𝑢 (𝑚), voters value their secondworst alternative less
than the uniform lottery. As a consequence, there is a voter who can

manipulate by weakening his second worst alternative such that

it is no longer the Condorcet winner. Finally, note that these two

cases are exhaustive: the strictness of the utility function 𝑢 entails

that𝑢 (𝑚−1) −𝑢 (𝑚) < 𝑢 (1) −𝑢 (𝑚−1) if𝑢 (1) −𝑢 (2) ≥ 𝑢 (2) −𝑢 (𝑚)
and𝑚 ≥ 4.

A close inspection of the proof shows that the impossibility

also holds if 𝑚 = 3 unless 𝑈 only contains equi-distant utility

functions, i.e., utility functions 𝑢 with 𝑢 (1) − 𝑢 (2) = 𝑢 (2) − 𝑢 (3).
This raises the question whether there is a 𝑈 -strategyproof SDS

that satisfies Condorcet-consistency in this special case. Indeed, the

Condorcet rule (abbreviated by COND), which assigns probability 1

to the Condorcet winner whenever it exists and returns the uniform

lottery over all alternatives otherwise, satisfies𝑈 -strategyproofness

for this set. Even more, the Condorcet rule is uniquely characterized

by these axioms if 𝑛 is odd.

Theorem 4. The Condorcet rule is the only Condorcet-consistent SDS
that satisfies 𝑈 -strategyproofness for 𝑈 = {𝑢 ∈ U : 𝑢 (1) − 𝑢 (2) =
𝑢 (2) − 𝑢 (3)} if𝑚 = 3 and 𝑛 is odd.

It is easy to show that the Condorcet-rule is 𝑈 -strategyproof

for 𝑈 = {𝑢 ∈ U : 𝑢 (1) − 𝑢 (2) = 𝑢 (2) − 𝑢 (3)} if 𝑚 = 3 because

the uniform lottery on all three alternatives has for every voter

the expected utility of 𝑢 (2). Hence, manipulating to a preference

profile with a Condorcet winner to one without is only beneficial

if the Condorcet winner is the least preferred alternative of the

manipulator. However, the voter cannot change the Condorcet

winner in this case and thus no manipulation is possible. By a

symmetric argument, it is not possible to manipulate form a profile

without a Condorcet winner to a profile with a Condorcet winner.
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As this simple observation suffices to show that the Condorcet rule

is 𝑈 -strategyproof, we focus next on showing that no other SDS 𝑓

satisfies both Condorcet-consistency and 𝑈 -strategyproofness for

this set. For this, we show that there must be a profile 𝑅 and a voter

𝑖 such that voter 𝑖’s expected utility is less than 𝑢 (2). Moreover,

this voter can either make his second best alternative into the

Condorcet winner or revert to a preference profile in which each

alternative is chosen with a probability of
1

3
. As both cases yield an

expected utility of 𝑢 (2) for voter 𝑖 , we have found a contradiction

to𝑈 -strategyproofness.

Remark 6. The Condorcet rule is also 𝑈 -strategyproof for the set

of equi-distant utility functions 𝑈 if𝑚 = 3 and 𝑛 is even. However,

other SDSs satisfy Condorcet-consistency and𝑈 -strategyproofness

for even 𝑛, too. For instance, the SDS that assigns the Condorcet

winner probability 1 whenever it exists and uniformly random-

izes among the top-ranked alternatives otherwise satisfies also all

required axioms. This follows by the same argument as for the Con-

dorcet rule as every voter has an expected utility of at least 𝑢 (2) if
there is no Condorcet winner. In particular, if a voter manipulates

from a profile with Condorcet winner to one without, his expected

utility after the manipulation is at most 𝑢 (2), which means that

such a manipulation is not beneficial.

Remark 7. A well-known class of SDSs are tournament solu-

tions which only depend on the majority relation 𝑅𝑀 = {(𝑥,𝑦) ∈
𝐴2

: 𝑛𝑥𝑦 (𝑅) ≥ 𝑛𝑦𝑥 (𝑅)} of the input profile 𝑅 to compute the out-

come. For these SDSs, unanimity and 𝑢Π-strategyproofness en-

tail Condorcet-consistency. Thus, there are no unanimous and 𝑢Π-

strategyproof tournament solutions, regardless of the utility func-

tion 𝑢, if𝑚 ≥ 4. This is in harsh contrast to results for set-valued

social choice, where attractive tournament solutions satisfy various

strategyproofness notions (see, e.g., [10]).

Remark 8. Recall that {𝑢}-strategyproofness implies 𝑢Π-

strategyproofness for neutral SDSs. Hence, Theorem 3 is also

true if we use strategyproofness for a single utility function and

neutrality instead of 𝑢Π-strategyproofness. Moreover, Theorem 3

is also true for asymmetric sets 𝑈 if there is a subset 𝑈 ′ ⊆ 𝑈

such that 𝑈 ′
contains for every preference relation a consistent

utility function and all utility functions 𝑢 ∈ 𝑈 ′
either satisfy

𝑢 (1) − 𝑢 (2) < 𝑢 (2) − 𝑢 (𝑚) or 𝑢 (1) − 𝑢 (𝑚 − 1) > 𝑢 (𝑚 − 1) − 𝑢 (𝑚).
Similar observations also hold for Theorem 2.

Remark 9. The proof of Theorem 3 also reveals more insights

about the compatibility of 𝑘-unanimity and 𝑢Π-strategyproofness

for general SDSs. In particular, the first case shows that no ⌈𝑛
3
⌉-

unanimous SDS can be 𝑢Π-strategyproof for a utility function 𝑢

with 𝑢 (1) − 𝑢 (2) < 𝑢 (2) − 𝑢 (𝑚) if𝑚 ≥ 4 and 𝑛 ≥ 3.

Remark 10. At first glance, Theorem 4 might seem rather weak

as we consider 𝑈 -strategyproofness for a rather restricted set of

utility functions. However, the theorem entails that voters with

utility functions that are close to equi-distant can only gain little by

manipulating the Condorcet rule, and many voters may therefore

not manipulate in the end. This idea results in another interesting

strategyproofness notion by only considering manipulations that

increase the utility of a voter by a sufficient amount.

6 CONCLUSION AND DISCUSSION
We study a new strategyproofness notion called 𝑈 -

strategyproofness. Whereas the common notion of SD-
strategyproofness is derived by quantifying over all utility

functions,𝑈 -strategyproofness is derived by quantifying only over

the utility functions in a specified set𝑈 . This new strategyproofness

notion arises from practical observations as often not all utility

functions are plausible, and also has theoretical advantages because

it allows for a much finer analysis than SD-strategyproofness.
After formally introducing 𝑈 -strategyproofness, we analyze the

compatibility of 𝑈 -strategyproofness and decisiveness axioms

such as 𝑘-unanimity and Condorcet-consistency. In particular, we

discuss SDSs that satisfy 𝑘-unanimity for any 𝑘 with 0 < 𝑘 < 𝑛/2

and𝑈 -strategyproofness if the set𝑈 only contains utility functions

𝑢 for which 𝑢 (1) − 𝑢 (2) is sufficiently large. Moreover, we show

for rank-based SDSs that the large gap between 𝑢 (1) and 𝑢 (2)
is required to be strategyproof and even has to increase in 𝑘 .

We also prove that 𝑈 -strategyproofness is incompatible with

Condorcet-consistency if the set 𝑈 is symmetric and𝑚 ≥ 4. This

impossibility also holds if 𝑚 = 3 unless the utility functions

in 𝑈 are equi-distant. In this special case and if 𝑛 is odd, the

Condorcet rule can be characterized by𝑈 -strategyproofness and

Condorcet-consistency.

Our results have a very intuitive interpretation: strategyproof-

ness is only compatible with decisiveness if each voter has a clear

best alternative. Even more, the more decisiveness is required, the

stronger voters have to favor their best alternative. This conclusion

is highlighted by Theorems 1 and 2 as well as the impossibility of

Benoît [5]. Moreover, it coincides with the informal argument that

it is easier to manipulate for a voter who deems many alternatives

acceptable as he can just report another acceptable alternative as

his best one. Hence, our results show that the main source of ma-

nipulability are voters who are close to indifferent between some

alternatives.

Finally, note that the notion of 𝑈 -strategyproofness leads to

various interesting problems: for instance, the gap between the

utility functions used in Benoît’s impossibility and the utility func-

tions for which we know 𝑈 -strategyproof SDSs is huge. This

leads to the question whether we can strengthen Benoît’s impos-

sibility. Similar questions also arise for other results translated

from set-valued social choice to randomized social choice using 𝑈 -

strategyproofness as we can now investigate their exact boundaries.

Moreover, it seems also interesting to analyze the compatibility of

𝑈 -strategyproofness with a multitude of other axioms. A particular

interesting question is the compatibility of 𝑈 -strategyproofness

with suitable efficiency notions as axioms of these types are often

incompatible.
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APPENDIX: OMITTED PROOFS
In this appendix, we provide the proofs omitted in the main body.

Note that we use additional notation here for presenting prefer-

ence profiles. In particular, we use the ∗-symbol to represent all

missing alternatives. For instance, the preference relation 𝑎, ∗, 𝑏
means that 𝑎 is preferred to every other alternative, 𝑏 is the least

preferred alternative, and the remaining alternatives can be ordered

arbitrarily.

Theorem 1. For every 𝑘 ∈ {1, . . . , ⌊𝑛−1

2
⌋}, RD𝑘 satisfies 𝑈 -

strategyproofness for𝑈 = {𝑢 ∈ U : 𝑢 (1) − 𝑢 (2) ≥ 𝑘 (𝑢 (2) − 𝑢 (𝑚))}
and violates {𝑢}-strategyproofness for every utility function 𝑢 with
𝑢 (1) − 𝑢 (2) < 𝑘 (𝑢 (2) − 𝑢 (𝑚)). Moreover, OMNI satisfies 𝑈 -
strategyproofness for𝑈 = {𝑢 ∈ U : 𝑢 (1) −𝑢 (2) ≥ ∑𝑚

𝑖=3
𝑢 (2) −𝑢 (𝑖)}

and violates {𝑢}-strategyproofness for every utility function 𝑢 with
𝑢 (1) − 𝑢 (2) < ∑𝑚

𝑖=3
𝑢 (2) − 𝑢 (𝑖).

Proof. First, we show that RD𝑘
, 𝑘 ∈ {1, . . . , 𝑛−1

2
}, is 𝑈 -

strategyproof for 𝑈 = {𝑢 ∈ U : 𝑢 (1) − 𝑢 (2) ≥ 𝑘 (𝑢 (2) − 𝑢 (𝑚))}.
Assume for contradiction that it is not the case, i.e., that there are

a utility function 𝑢 with 𝑢 (1) − 𝑢 (2) ≥ 𝑘 (𝑢 (2) − 𝑢 (𝑚)), profiles 𝑅
and 𝑅′

, and a voter 𝑖 ∈ 𝑁 such that 𝑅 𝑗 = 𝑅′
𝑗
for all 𝑗 ∈ 𝑁 \ {𝑖}, 𝑢

is consistent with 𝑅𝑖 , and E[RD𝑘 (𝑅′)]𝑢 =
∑
𝑥 ∈𝐴 𝑢 (𝑥)RD𝑘 (𝑅′, 𝑥) >∑

𝑥 ∈𝐴 𝑢 (𝑥)RD𝑘 (𝑅, 𝑥) = E[RD𝑘 (𝑅)]𝑢 . If neither 𝑅 nor 𝑅′
contain

𝑛−𝑘 voters who agree on a most preferred alternative, RD𝑘
is equal

to RD for both profiles. As RD is even SD-strategyproof, it follows
that it is also {𝑢}-strategyproof and hence, voter 𝑖 cannot manipu-

late RD𝑘
in this case. Moreover, RD𝑘

can also not be manipulated

if 𝑛 − 𝑘 voters agree on a most preferred alternative in 𝑅: if voter 𝑖

is one of those voters he obtains already his maximal utility and if

voter 𝑖 prefers another alternative the most, he cannot affect the

outcome.

The only remaining case is that 𝑛 − 𝑘 − 1 voters agree that

an alternative 𝑎 is the best choice in 𝑅, voter 𝑖 prefers another

alternative 𝑏 the most, and the remaining 𝑘 voters prefer some

other alternatives the most. Then, voter 𝑖 might try to manipulate

by submitting 𝑎 as his best alternative in 𝑅′
. We assume in the

sequel that the last 𝑘 voters top-rank voter 𝑖’s worst alternative

𝑐 in 𝑅 as this minimizes voter 𝑖’s expected utility. Based on these

insights, we derive the following inequality for voter 𝑖’s expected

utility in 𝑅.

E[RD𝑘 (𝑅)]𝑢 ≥ 𝑛 − 𝑘 − 1

𝑛
𝑢 (𝑎) + 1

𝑛
𝑢 (𝑏) + 𝑘

𝑛
𝑢 (𝑐)

=
𝑛 − 𝑘 − 1

𝑛
𝑢 (𝑎) + 1

𝑛
𝑢 (1) + 𝑘

𝑛
𝑢 (𝑚)

Moreover, RD𝑘
assigns a probability of 1 to 𝑎 in 𝑅′

because 𝑛 −𝑘

voters report 𝑎 as their best alternative. Hence, it follows directly

that voter 𝑖’s expected utility is E[RD𝑘 (𝑅′)]𝑢 = 𝑢 (𝑎). Finally, we
compare the expected utilities of voter 𝑖 in 𝑅 and 𝑅′

.

𝑛 − 𝑘 − 1

𝑛
𝑢 (𝑎) + 1

𝑛
𝑢 (1) + 𝑘

𝑛
𝑢 (𝑚) ≥ 𝑢 (𝑎)

⇐⇒ 1

𝑛
(𝑢 (1) − 𝑢 (𝑎)) ≥ 𝑘

𝑛
(𝑢 (𝑎) − 𝑢 (𝑚))

The second line is derived by reformulating the equation in

the first line. Note that the left side of the simplified inequal-

ity is minimized and the right side is maximized if 𝑢 (𝑎) = 𝑢 (2).

Hence, the assumption that 𝑢 (1) − 𝑢 (2) ≥ 𝑘 (𝑢 (2) − 𝑢 (𝑚)) entails
that E[RD𝑘 (𝑅)]𝑢 ≥ E[RD𝑘 (𝑅′)]𝑢 and no manipulation is possi-

ble. Consequently, 𝑅𝐷𝑘
is {𝑢}-strategyproof for every 𝑢 ∈ 𝑈 =

{𝑢 ∈ U : 𝑢 (1) − 𝑢 (2) ≥ 𝑘 (𝑢 (2) − 𝑢 (𝑚))} and therefore also 𝑈 -

strategyproof.

Also note that the last inequality as well as and Proposition 1

immediately entail that RD𝑘
violates {𝑢}-strategyproofness for

every utility function 𝑢 with 𝑢 (1) − 𝑢 (2) < 𝑘 (𝑢 (2) − 𝑢 (𝑚)). The
reason for this is that

𝑛−𝑘−1

𝑛 𝑢 (2) + 1

𝑛𝑢 (1) +
𝑘
𝑛𝑢 (𝑚) < 𝑢 (2) is then

true and voter 𝑖 can manipulate if 𝑛 − 𝑘 − 1 voters top-rank his

second best alternative and the remaining 𝑘 voters top-rank his

worst alternative.

Next, we show that OMNI is 𝑈 -strategyproof for 𝑈 = {𝑢 ∈
U : 𝑢 (1) − 𝑢 (2) ≥ ∑𝑚

𝑖=3
(𝑢 (2) − 𝑢 (𝑖))}. Assume again for contra-

diction that this is not true, i.e, that there are a utility function 𝑢

with 𝑢 (1) −𝑢 (2) ≥ ∑𝑚
𝑖=3

(𝑢 (2) −𝑢 (𝑖)), preference profiles 𝑅 and 𝑅′
,

and a voter 𝑖 such that 𝑅 𝑗 = 𝑅′
𝑗
for all 𝑗 ∈ 𝑁 \ {𝑖}, 𝑢 is consistent

with 𝑅𝑖 , and E[OMNI (𝑅′)]𝑢 > E[OMNI (𝑅)]𝑢 . We proceed with a

case distinction on the outcomes of 𝑅 and 𝑅′
. First, assume that

OMNI (𝑅, 𝑎) = 1 for some alternative 𝑎 ∈ 𝐴. This means that a

majority of the voters reports 𝑎 as their best alternative and conse-

quently, these voters receive the best possible outcome. Moreover,

the remaining voters cannot influence the outcome and hence,

OMNI is𝑈 -strategyproof in this case.

Next, consider the case that the support of both OMNI (𝑅) and
OMNI (𝑅′) consists of at least two alternatives, i.e., OMNI returns
for both 𝑅 and 𝑅′

the uniform lottery over the top-ranked alterna-

tives of the respective profiles. Let 𝑆 = {𝑥 ∈ 𝐴 : OMNI (𝑅, 𝑥) > 0}
denote the set of alternatives with positive winning chance in 𝑅,

let 𝑎 denote the most preferred alternative of voter 𝑖 in 𝑅, and

let 𝑏 denote his most preferred alternative in 𝑅′
. If voter 𝑖 is the

only voter who top-ranks alternative 𝑎 in 𝑅, he cannot manipulate

because alternative 𝑎 receives no probability anymore if he mis-

reports another alternative as his top choice. As a consequence,

either OMNI (𝑅, 𝑎) = OMNI (𝑅′, 𝑏) and OMNI (𝑅, 𝑥) = OMNI (𝑅′, 𝑥)
for all 𝑥 ∈ 𝐴 \ {𝑎, 𝑏} if 𝑏 has not been top-ranked in 𝑅, or

OMNI (𝑅′, 𝑥) =
|𝑆 |

|𝑆 |−1
OMNI (𝑅, 𝑥) for all 𝑥 ∈ 𝐴 \ {𝑎} otherwise.

Both cases are no manipulation as only the probability assigned

to 𝑎 has been redistributed, but voter 𝑖 assigns the most utility to

alternative 𝑎.

If another voter top-ranks voter 𝑖’s best alternative 𝑎, voter 𝑖 can

only change the outcome by top-ranking an alternative that no voter

reports as his best one. Hence, the difference betweenOMNI (𝑅) and
OMNI (𝑅′) is that OMNI (𝑅′, 𝑏) = 1

|𝑆 |+1
instead of OMNI (𝑅,𝑏) = 0

and OMNI (𝑅, 𝑥) = 1

|𝑆 |+1
instead of OMNI (𝑅, 𝑥) = 1

|𝑆 | for all 𝑥 ∈ 𝑆 .

AsOMNI returns the uniform lottery on the top-ranked alternatives,

a voter’s expected utility is his average utility of the top-ranked

alternatives. Hence, reporting 𝑏 as best alternative is only a {𝑢}-
manipulation for voter 𝑖 if𝑢 (𝑏) >

∑
𝑥∈𝑆 𝑢 (𝑥)
|𝑆 | ; otherwise, the average

utility does not increase. However, this is not possible due to our

condition on 𝑢, which is equivalent to 𝑢 (2) ≤ 1

𝑚

∑𝑚
𝑘=1

𝑢 (𝑘). This
means that 𝑢 (2) has at most as much utility as the uniform lottery

over all alternatives. As a consequence, the average utility of a set

𝑋 that contains voter 𝑖’s best alternative is at least 1

𝑚

∑𝑚
𝑘=1

𝑢 (𝑘)
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because

1

𝑚

𝑚∑︁
𝑘=1

𝑢 (𝑘) = |𝑋 |
𝑚

∑︁
𝑥 ∈𝑋

𝑢 (𝑥)
|𝑋 | + |𝐴 \ 𝑋 |

𝑚

∑︁
𝑥 ∈𝐴\𝑋

𝑢 (𝑥)
|𝐴 \ 𝑋 | .

Since the last sum only contains alternatives with a utility of

at most 𝑢 (2), it follows that ∑𝑥 ∈𝐴\𝑋
𝑢 (𝑥)
|𝐴\𝑋 | ≤ 𝑢 (2) ≤ 1

𝑚

∑𝑚
𝑖=1

𝑢 (𝑖).
This entails that

∑
𝑥 ∈𝑋

𝑢 (𝑥)
|𝑋 | ≥ 1

𝑚

∑𝑚
𝑖=1

𝑢 (𝑖) as the above equation
cannot be true otherwise. Since OMNI (𝑅) puts positive probabil-
ity on voter 𝑖’s best alternative, we derive that E[OMNI (𝑅)]𝑢 ≥
1

𝑚

∑𝑚
𝑘=1

𝑢 (𝑖) ≥ 𝑢 (2). Finally, as 𝑢 (2) ≥ 𝑢 (𝑏), it follows that voter 𝑖
cannot {𝑢}-manipulate in this case.

As last case, assume that OMNI randomizes for 𝑅 over at least

two alternatives and for 𝑅′
only over a single alternative. This

is only possible if voter 𝑖 misreports an alternative 𝑏 as his best

choice in 𝑅′
and OMNI (𝑅′, 𝑏) = 1. Hence, the expected util-

ity of voter 𝑖 for 𝑅′
is at most 𝑢 (2). However, by the same line

of argumentation as in the previous paragraph, we derive that

E[OMNI (𝑅)]𝑢 ≥ 1

𝑚

∑𝑚
𝑖=1

𝑢 (𝑖) ≥ 𝑢 (2). Consequently, voter 𝑖 can-
not manipulate in this case either, which means that OMNI is 𝑈 -

strategyproof for𝑈 = {𝑢 ∈ U : 𝑢 (1) − 𝑢 (2) ≥ ∑𝑚
𝑖=3

𝑢 (2) − 𝑢 (𝑖)}.
Finally, note that OMNI violates {𝑢}-strategyproofness for ev-

ery utility function 𝑢 with 𝑢 (1) − 𝑢 (2) <
∑𝑚
𝑖=3

𝑢 (2) − 𝑢 (𝑖). Note
therefore that this assumption is equivalent to 𝑢 (2) >

∑𝑚
𝑘=1

𝑢 (𝑘)
𝑚 ,

and consider a preference profile in which every alternative is top-

ranked and voter 𝑖’s second ranked alternative is top-ranked by

⌊𝑛
2
⌋ voters. Note that we can assume without loss of generality

that 𝑢 is consistent with voter 𝑖’s preference as OMNI is neutral.
In this situation, each alternative has a winning chance of

1

𝑚 and

thus, voter 𝑖’s expected utility is

∑𝑚
𝑘=1

𝑢 (𝑘)
𝑚 . On the other side, voter

𝑖 can report his second best alternative as best one, which results in

the fact that it is chosen with probability 1 as it is now top-ranked

by an absolute majority of the voters. As 𝑢 (2) >
∑𝑚

𝑘=1
𝑢 (𝑘)

𝑚 , this is a

successful {𝑢}-manipulation for voter 𝑖 . □

Theorem 2. There is no rank-based SDS that satisfies 𝑢Π-strategy-
proofness and 𝑘-unanimity for 0 < 𝑘 < 𝑛

2
if 𝑚 ≥ 3, 𝑛 ≥ 3, and

𝑢 (1) − 𝑢 (2) < ∑𝑚
𝑖=𝑚−𝑘∗+1

𝑢 (2) − 𝑢 (𝑖), where 𝑘∗ = min(𝑘,𝑚 − 2).

Proof. Consider fixed values of 𝑛 ≥ 3,𝑚 ≥ 3, and 0 < 𝑘 < 𝑛
2
,

and let 𝑘∗ = min(𝑘,𝑚 − 2). We assume for contradiction that there

is a rank-based SDS 𝑓 for𝑚 alternatives and 𝑛 voters that satisfies

𝑘-unanimity and 𝑢Π-strategyproofness for some utility function 𝑢

with 𝑢 (1) − 𝑢 (2) < ∑𝑚
𝑖=𝑚−𝑘∗+1

𝑢 (2) − 𝑢 (𝑖). For deriving a conflict,
we proceed in two steps: first, we discuss a general construction

that allows to weaken an alternative 𝑎 that is currently assigned

probability 1 from first place to second place without affecting the

outcome if sufficiently many voters top-rank 𝑎. Secondly, we use

this construction repeatedly to derive a profile 𝑅∗ in which 𝑎 gets

probability 1 even though only 𝑘∗ voters report it as their best

choice. Moreover, we can ensure that the remaining 𝑛 − 𝑘∗ ≥ 𝑛 − 𝑘

voters agree that another alternative 𝑏 is the best outcome, and thus,

𝑓 (𝑅∗, 𝑎) = 1 contradicts 𝑘-unanimity because this axiom requires

that 𝑓 (𝑅∗, 𝑏) = 1.

Step 1: Let {𝑥0, . . . , 𝑥𝑘∗ } denote a set of 𝑘∗ + 1 alternatives and

let 𝑥𝑖 = 𝑥𝑖 mod 𝑘∗+1
to simplify notation. In this step, our goal

is to find profiles 𝑅0, . . . , 𝑅𝑘
∗
such that (i) 𝑟∗ (𝑅𝑖 ) = 𝑟∗ (𝑅 𝑗 ) for all

𝑖, 𝑗 ∈ {0, . . . , 𝑘∗}, and (ii) in every profile 𝑅𝑖 , there is a voter 𝑗∗

with preference 𝑥𝑖 , 𝑎, ∗, 𝑥𝑖+1, 𝑥𝑖+2, . . . , 𝑥𝑖+𝑘∗ . Given these profiles,

we show that 𝑓 (𝑅𝑖 , 𝑎) = 1 if 𝑓 (𝑅𝑖 , 𝑎) = 1 for all 𝑖 ∈ {0, . . . , 𝑘∗},
where 𝑅𝑖 denotes the profile derived from 𝑅𝑖 by letting voter 𝑗∗

swap his best alternative 𝑥𝑖 with 𝑎. For the sake of simplicity, we

focus in this step on the case that there are 𝑛 = 2𝑘∗ + 1 voters. If

there are more voters, we can just pick a suitable subset of 2𝑘∗ + 1

voters and apply our construction to these voters while keeping

the preferences of the other voters constant.

Next, we explain how to construct the profiles 𝑅0, . . . , 𝑅𝑘
∗
. In the

profile 𝑅𝑖 , the voters 𝑗 with 1 ≤ 𝑗 ≤ 𝑘∗ + 1 and 𝑗 mod 𝑘∗ + 1 ≠ 𝑖

have the preference 𝑎, 𝑥 𝑗 , ∗, 𝑥 𝑗+1, . . . , 𝑥 𝑗+𝑘∗−1
. Moreover, voter 𝑗∗

with 𝑗∗ ≤ 𝑘∗ + 1 and 𝑖 = 𝑗∗ mod 𝑘∗ + 1 has the preference

𝑥 𝑗∗ , 𝑎, ∗, 𝑥 𝑗∗+1, . . . , 𝑥 𝑗∗+𝑘∗ . Note that the construction of the pref-

erence of voter 𝑗∗ differs from the previous preferences only in the

swap of his best two alternatives. Moreover, if we restrict the prefer-

ences of these voters to the alternatives in {𝑥0, . . . , 𝑥𝑘∗ }, these voters
submit a cyclone. Next, the voters 𝑗 with𝑘∗+2 ≤ 𝑗 ≤ 2𝑘∗+1 and 𝑗 ≠

𝑘∗+1+𝑖 have the preference 𝑥 𝑗 , 𝑥0, ∗, 𝑥1, . . . , 𝑥 𝑗−1, 𝑥 𝑗+1, . . . , 𝑥 𝑗+𝑘∗ , 𝑎

and voter 𝑗 = 𝑘∗ + 1 + 𝑖 only swaps 𝑥 𝑗 with 𝑥0, i.e., his preference is

𝑥0, 𝑥 𝑗 , ∗, 𝑥1, . . . , 𝑥 𝑗−1, 𝑥 𝑗+1, . . . , 𝑥 𝑗+𝑘∗ , 𝑎. It should be mentioned that

in 𝑅0, alternative 𝑥0 = 𝑥0 is the second ranked by all voters 𝑗 with

𝑗 ≥ 𝑘∗ + 2 because 𝑗 = 𝑘∗ + 1 is always wrong in this case. Finally,

we assume for simplicity that all voters have the same preferences

on the alternatives in 𝑌 = 𝐴 \ {𝑎, 𝑥0, . . . , 𝑥𝑘∗ } (these alternatives
were abbreviated by the ∗-symbol in all previous preferences).

Note that all profiles 𝑅𝑖 have the same rank matrix because

𝑟∗ (𝑅𝑖 , 𝑥) = 𝑟∗ (𝑅 𝑗 , 𝑥) for all 𝑥 ∈ 𝐴 and 𝑖, 𝑗 ∈ {0, . . . , 𝑘∗}. For the
alternatives in 𝑌 , this claim holds since the preferences involving

these alternatives are always the same during the construction. For

the alternatives in 𝐴 \ 𝑌 , this follows because because the profile
𝑅0

differs from every other profile 𝑅𝑖 only in the preferences of

voters 𝑖 , 𝑘∗ + 1, and 𝑘∗ + 𝑖 + 1. Moreover, the preferences of these

voters also only differ in swaps between 𝑎, 𝑥0, and 𝑥𝑖 . In more detail,

𝑅𝑖
𝑖
is derived from 𝑅0

𝑖
by reinforcing 𝑥𝑖 against 𝑎, 𝑅

𝑖
𝑘∗+1

is derived

from 𝑅0

𝑘∗+1
by reinforcing 𝑎 against 𝑥0, and 𝑅

𝑖
𝑘∗+𝑖+1

is derived from

𝑅0

𝑘∗+𝑖+1
by reinforcing 𝑥0 against 𝑥𝑖 . As all these swaps happen

between first and second ranked alternatives, the rank vectors of

the alternatives in 𝐴 \ 𝑌 are equal in the profiles 𝑅0
and 𝑅𝑖 . Thus,

it holds that 𝑟∗ (𝑅0) = 𝑟∗ (𝑅𝑖 ) for all profiles 𝑅𝑖 , and therefore also

that 𝑟∗ (𝑅𝑖 ) = 𝑟∗ (𝑅 𝑗 ) for all 𝑖, 𝑗 ∈ {0, . . . , 𝑘∗}. Consequently, rank-
basedness implies that 𝑓 (𝑅𝑖 ) = 𝑓 (𝑅 𝑗 ) for all 𝑖, 𝑗 ∈ {0, . . . , 𝑘∗}.

Finally, it remains to show that 𝑓 (𝑅𝑖 , 𝑎) = 1 for all 𝑖 ∈ {0, . . . , 𝑘∗}.
We suppose therefore that 𝑓 (𝑅𝑖 , 𝑎) = 1 for all 𝑖 ∈ {0, . . . , 𝑘∗}, where
𝑅𝑖 denotes the profiles derived from 𝑅𝑖 by reinforcing 𝑎 against 𝑥𝑖
in the preference of voter 𝑗∗ ( 𝑗∗ = 𝑖 if 𝑖 > 0 or 𝑗∗ = 𝑘∗ + 1 else). As a

consequence, voter 𝑗∗ can ensure that his expected utility is 𝑢 (2) if
he deviates from 𝑅𝑖 to 𝑅𝑖 . Hence, 𝑢Π-strategyproofness entails that

the expected utility of voter 𝑗∗ in 𝑅𝑖 must be at least 𝑢 (2), which
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means that the following inequality must be true.

𝑢 (2) ≤𝑓 (𝑅𝑖 , 𝑥𝑖 )𝑢 (1) + 𝑓 (𝑅𝑖 , 𝑎)𝑢 (2)

+
∑︁
𝑦∈𝑌

𝑓 (𝑅𝑖 , 𝑦)𝑢 (𝑦)

+
𝑘∗∑︁
𝑗=1

𝑓 (𝑅𝑖 , 𝑥𝑖+𝑗 )𝑢 (𝑥𝑖+𝑗 )

We reformulate this inequality to highlight the similarity to our

condition on the utility function 𝑢.

𝑓 (𝑅𝑖 , 𝑥𝑖 ) (𝑢 (1) − 𝑢 (2)) ≥
∑︁
𝑦∈𝑌

𝑓 (𝑅𝑖 , 𝑦) (𝑢 (2) − 𝑢 (𝑦))

+
𝑘∗∑︁
𝑗=1

𝑓 (𝑅𝑖 , 𝑥𝑖+𝑗 ) (𝑢 (2) − 𝑢 (𝑥𝑖+𝑗 ))

Furthermore, note that we get for every profile 𝑅 𝑗
a symmetric

inequality to the one shown above. Also recall that 𝑓 (𝑅𝑖 ) = 𝑓 (𝑅 𝑗 )
for all 𝑖, 𝑗 ∈ {0, . . . , 𝑘∗} because of rank-basedness and thus, we can
substitute 𝑓 (𝑅 𝑗 , 𝑥) in all inequalities and for all alternatives 𝑥 ∈ 𝐴

with 𝑓 (𝑅𝑖 , 𝑥). Moreover, for every 𝑖 ∈ {1, . . . , 𝑘∗ + 1}, alternative
𝑥𝑖 is top-ranked by the manipulator in 𝑅𝑖 , and for every 𝑟 ∈ {𝑚 −
𝑘∗ + 1, . . . ,𝑚}, there is a single profile 𝑅 𝑗

such that the manipulator

ranks 𝑥𝑖 at position 𝑟 because of the symmetry of the considered

profiles. Hence, we derive the following inequality by summing up

over all constraints on 𝑓 (𝑅𝑖 ).
𝑘∗∑︁
𝑗=0

𝑓 (𝑅𝑖 , 𝑥 𝑗 ) (𝑢 (1) − 𝑢 (2)) ≥(𝑘∗ + 1)
∑︁
𝑦∈𝑌

𝑓 (𝑅𝑖 , 𝑦) (𝑢 (2) − 𝑢 (𝑦))

+
𝑘∗∑︁
𝑗=0

𝑓 (𝑅𝑖 , 𝑥 𝑗 )
𝑚∑︁

𝑙=𝑚−𝑘∗+1

(𝑢 (2) − 𝑢 (𝑙))

However, note that this inequality can only be true if 𝑓 (𝑅𝑖 , 𝑎) = 1

because 𝑢 (1) −𝑢 (2) < ∑𝑚
𝑗=𝑚−𝑘∗+1

(𝑢 (2) −𝑢 ( 𝑗)) by assumption and

𝑢 (2) ≥ 𝑢 (𝑦) for all𝑦 ∈ 𝑌 implies that

∑
𝑦∈𝑌 𝑓 (𝑅𝑖 , 𝑦) (𝑢 (2)−𝑢 (𝑦)) ≥

0. Hence, voter 𝑗∗ can swap his best and second best alternatives

in 𝑅𝑖 without affecting the outcome.

Step 2: Our next goal is to use the construction in the last step

to derive a profile 𝑅 in which 𝑎 is top-ranked by only 𝑘∗ voters but
assigned probability 1. We therefore start at the profile 𝑅0

in which

the first 𝑛 − 𝑘∗ voters prefer alternative 𝑎 the most and the remain-

ing voters prefer 𝑎 uniquely the least. It follows from 𝑘-unanimity

that 𝑓 (𝑅0, 𝑎) = 1 as 𝑘∗ ≤ 𝑘 . Moreover,𝑢Π-strategyproofness entails

that all voters can reorder the alternatives in 𝐴 \ {𝑎} arbitrarily
without affecting the outcome. If a voter who prefers 𝑎 the most

reorders the remaining alternatives and 𝑎 does not obtain proba-

bility 1 anymore, he can 𝑢Π-manipulate by reverting back, and if a

voter who prefers 𝑎 the least reorders his alternatives and 𝑎 does

not obtain probability 1 anymore, he 𝑢Π-manipulates by applying

this modification. In particular, we can pick a subset 𝐼 of the voters

who prefer 𝑎 the most with |𝐼 | = 𝑘∗ + 1 and the 𝑘∗ voters who

prefer 𝑎 the least and assign them the preferences 𝑅𝑖 for every

𝑖 ∈ {0, . . . , 𝑘∗} without affecting the outcome. Consequently, we

can use the results of the last step and derive a profile 𝑅1
such that

𝑓 (𝑅1, 𝑎) = 1, the first 𝑛 − 𝑘∗ − 1 voters prefer 𝑎 the most, voter

𝑛 − 𝑘∗’s preference is 𝑥0, 𝑎, ∗, 𝑥1, . . . , 𝑥𝑘∗ , and the remaining voters

prefer 𝑎 the least. Moreover, it is easy to see that we can repeat this

step as long as at least 𝑘∗ + 1 voters top-rank 𝑎 as the construction

in step 1 is independent of the voters that are not used. Hence, by

repeatedly applying this construction, we derive a profile 𝑅 such

that 𝑓 (𝑅, 𝑎) = 1, 𝑘∗ voters prefer 𝑎 the most, 𝑛 − 2𝑘∗ voters report
𝑥0, 𝑎, ∗, 𝑥1, . . . , 𝑥𝑘∗ , and 𝑘∗ voters report 𝑎 as their least preferred

outcome.

Finally, recall that the voters who prefer 𝑎 the least can reorder

the alternatives in𝐴 \ {𝑎} arbitrarily without affecting the outcome.

Thus, these voters can also ensure that 𝑥0 is their best alternative

without changing the resulting lottery. However, this leads to a

profile 𝑅∗ in which 𝑛 − 𝑘∗ voters report 𝑥0 as their best alternative

and therefore 𝑘-unanimity requires that 𝑓 (𝑅∗, 𝑥0) = 1. This is

in conflict with the observation that 𝑓 (𝑅∗, 𝑎) = 𝑓 (𝑅, 𝑎) = 1 and

therefore, we have derived a contradiction. □

Next, we present an example for the constructions in the proof

of Theorem 2. Therefore, assume that 𝑓 is a rank-based SDS for

𝑚 = 4 alternatives and 𝑛 = 5 voters that satisfies 2-unanimity and

𝑢Π-strategyproofness for a utility function 𝑢 with 𝑢 (1) − 𝑢 (2) <
𝑢 (2) −𝑢 (3) +𝑢 (2) −𝑢 (4). By 2-unanimity, we know that 𝑓 (𝑅1, 𝑎) =
𝑓 (𝑅2, 𝑎) = 𝑓 (𝑅3, 𝑎) = 1 for the profiles shown in the sequel.

𝑅1
: 1: 𝑎, 𝑥1, 𝑥2, 𝑥0 2: 𝑎, 𝑥2, 𝑥0, 𝑥1 3: 𝑎, 𝑥0, 𝑥1, 𝑥2

4: 𝑥0, 𝑥1, 𝑥2, 𝑎 5: 𝑥2, 𝑥0, 𝑥1, 𝑎

𝑅2
: 1: 𝑎, 𝑥1, 𝑥2, 𝑥0 2: 𝑎, 𝑥2, 𝑥0, 𝑥1 3: 𝑎, 𝑥0, 𝑥1, 𝑥2

4: 𝑥1, 𝑥0, 𝑥2, 𝑎 5: 𝑥0, 𝑥2, 𝑥1, 𝑎

𝑅3
: 1: 𝑎, 𝑥1, 𝑥2, 𝑥0 2: 𝑎, 𝑥2, 𝑥0, 𝑥1 3: 𝑎, 𝑥0, 𝑥1, 𝑥2

4: 𝑥1, 𝑥0, 𝑥2, 𝑎 5: 𝑥2, 𝑥0, 𝑥1, 𝑎

Next, consider the profiles 𝑅4
, 𝑅5

, and 𝑅6
, which correspond to

the profiles 𝑅1
, 𝑅2

, and 𝑅0
discussed in step 1 of the proof, respec-

tively.

𝑅4
: 1: 𝑥1, 𝑎, 𝑥2, 𝑥0 2: 𝑎, 𝑥2, 𝑥0, 𝑥1 3: 𝑎, 𝑥0, 𝑥1, 𝑥2

4: 𝑥0, 𝑥1, 𝑥2, 𝑎 5: 𝑥2, 𝑥0, 𝑥1, 𝑎

𝑅5
: 1: 𝑎, 𝑥1, 𝑥2, 𝑥0 2: 𝑥2, 𝑎, 𝑥0, 𝑥1 3: 𝑎, 𝑥0, 𝑥1, 𝑥2

4: 𝑥1, 𝑥0, 𝑥2, 𝑎 5: 𝑥0, 𝑥2, 𝑥1, 𝑎

𝑅6
: 1: 𝑎, 𝑥1, 𝑥2, 𝑥0 2: 𝑎, 𝑥2, 𝑥0, 𝑥1 3: 𝑥0, 𝑎, 𝑥1, 𝑥2

4: 𝑥1, 𝑥0, 𝑥2, 𝑎 5: 𝑥2, 𝑥0, 𝑥1, 𝑎

Note that 𝑅1
differs only in the preference of voter 1 from 𝑅4

,

𝑅2
differs only in the preference of voter 2 from 𝑅5

, and 𝑅3
only

differs in the preference of voter 3 from 𝑅6
. Hence, we derive the

following inequalities from 𝑢Π-strategyproofness.

𝑢 (2) ≤𝑓 (𝑅4, 𝑥1)𝑢 (1) + 𝑓 (𝑅4, 𝑎)𝑢 (2)
+ 𝑓 (𝑅4, 𝑥2)𝑢 (3) + 𝑓 (𝑅4, 𝑥0)𝑢 (4)

𝑢 (2) ≤𝑓 (𝑅5, 𝑥2)𝑢 (1) + 𝑓 (𝑅5, 𝑎)𝑢 (2)
+ 𝑓 (𝑅5, 𝑥0)𝑢 (3) + 𝑓 (𝑅5, 𝑥1)𝑢 (4)

𝑢 (2) ≤𝑓 (𝑅6, 𝑥0)𝑢 (1) + 𝑓 (𝑅5, 𝑎)𝑢 (2)
+ 𝑓 (𝑅6, 𝑥1)𝑢 (3) + 𝑓 (𝑅6, 𝑥2)𝑢 (4)
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Moreover, all of these profiles have the same rank matrix and

thus, 𝑓 (𝑅4) = 𝑓 (𝑅5) = 𝑓 (𝑅6). This means that we can substitute

𝑓 (𝑅5, 𝑥) and 𝑓 (𝑅6, 𝑥) with 𝑓 (𝑅4, 𝑥) for all 𝑥 ∈ 𝐴 in the second and

third inequality. We derive the following equation by using this

observation and summing up all three inequalities.

3𝑢 (2) ≤
∑︁

𝑥 ∈{𝑥0,𝑥1,𝑥2 }
𝑓 (𝑅4, 𝑥)

(
𝑢 (1) + 𝑢 (3) + 𝑢 (4)

)
+ 3𝑓 (𝑅4, 𝑎)𝑢 (2)

Finally, we can reformulate this expression as shown in the proof of

Theorem 2 to derive from our assumption on 𝑢 and rank-basedness

that 𝑓 (𝑅4, 𝑎) = 𝑓 (𝑅5, 𝑎) = 𝑓 (𝑅6, 𝑎) = 1.

As last step, observe that voters 4 and 5 can change their pref-

erences without affecting the outcome in 𝑅6
as any other lottery

is a manipulation for them. Hence, it holds for the profile 𝑅7
that

𝑓 (𝑅7, 𝑎) = 1 because of 𝑢Π-strategyproofness. However, this is in

conflict with 2-unanimity because 3 voters report 𝑥0 as their best

alternative.

𝑅7
: 1: 𝑎, 𝑥1, 𝑥2, 𝑥0 2: 𝑎, 𝑥2, 𝑥0, 𝑥1 3: 𝑥0, 𝑎, 𝑥1, 𝑥2

4: 𝑥0, 𝑥1, 𝑥2, 𝑎 5: 𝑥0, 𝑥1, 𝑥2, 𝑎

Theorem 3. There is no Condorcet-consistent SDS that satisfies 𝑢Π-
strategyproofness regardless of the utility function 𝑢 if𝑚 ≥ 4, 𝑛 ≥ 5

and 𝑛 ≠ 6, 𝑛 ≠ 8.

Proof. Assume for contradiction that there is a Condorcet-

consistent SDS 𝑓 for𝑚 ≥ 4 alternatives and 𝑛 ≥ 5 voters (and 𝑛 ≠ 6.

𝑛 ≠ 8) that satisfies 𝑢Π-strategyproofness for some utility function

𝑢. The proof works by a case distinction: first we show that there

is no 𝑢Π-strategyproof SDS that is Condorcet-consistent if𝑚 ≥ 4,

𝑛 = 3, and𝑢 (1)−𝑢 (2) < 𝑢 (2)−𝑢 (𝑚). Next, we show that there is no

𝑢Π-strategyproof SDS that satisfies Condorcet-consistency if𝑚 ≥ 4,

𝑛 = 5, and 𝑢 (1) −𝑢 (𝑚 − 1) > 𝑢 (𝑚 − 1) −𝑢 (𝑚). These two cases are
exhaustive with respect to the utility functions, i.e., every utility

function on at least 4 alternatives either satisfies 𝑢 (1) − 𝑢 (2) <

𝑢 (2) −𝑢 (𝑚) or 𝑢 (1) −𝑢 (𝑚− 1) > 𝑢 (𝑚− 1) −𝑢 (𝑚): the strictness of
the utility function entails that 𝑢 (1) −𝑢 (𝑚 − 1) > 𝑢 (𝑚 − 1) −𝑢 (𝑚)
if 𝑢 (1) − 𝑢 (2) ≥ 𝑢 (2) − 𝑢 (𝑚). Note that both cases are proven for

a fixed value of 𝑛. Hence, we provide as last step arguments for

generalizing the impossibility from a fixed number of voters to

larger numbers of voters. Just as in the proof of Theorem 2, we

assume in the sequel that all voters have the same preferences on

the alternatives that are abbreviated by the ∗-symbol.

Case 1: 𝑢 (1) − 𝑢 (2) < 𝑢 (2) − 𝑢 (𝑚)
As first case, we assume that 𝑓 is defined for 𝑛 = 3 voters and

satisfies 𝑢Π-strategyproofness for a utility function 𝑢 with 𝑢 (1) −
𝑢 (2) < 𝑢 (2) −𝑢 (𝑚). Consider in this case the following preference

profiles and note that 𝑏 is the Condorcet winner in 𝑅2
, 𝑎 in 𝑅3

, and 𝑐

in 𝑅4
. Consequently, Condorcet-consistency entails that 𝑓 (𝑅2, 𝑏) =

𝑓 (𝑅3, 𝑎) = 𝑓 (𝑅4, 𝑐) = 1.

𝑅1
: 1: 𝑎, 𝑏, ∗, 𝑐 2: 𝑐, 𝑎, ∗, 𝑏 3: 𝑏, 𝑐, ∗, 𝑎

𝑅2
: 1: 𝑏, 𝑎, ∗, 𝑐 2: 𝑐, 𝑎, ∗, 𝑏 3: 𝑏, 𝑐, ∗, 𝑎

𝑅3
: 1: 𝑎, 𝑏, ∗, 𝑐 2: 𝑎, 𝑐, ∗, 𝑏 3: 𝑏, 𝑐, ∗, 𝑎

𝑅4
: 1: 𝑎, 𝑏, ∗, 𝑐 2: 𝑐, 𝑎, ∗, 𝑏 3: 𝑐, 𝑏, ∗, 𝑎

Moreover, 𝑅1
differs from 𝑅2

only in the preference of the first

voter, from 𝑅3
in the preference of the second voter, and from

𝑅4
in the preference of the third voter. Hence, we can use 𝑢Π-

strategyproofness to derive constraints on 𝑓 (𝑅1). In particular, we

derive the following inequality from𝑢Π-strategyproofness between

𝑅1
and 𝑅2

.

𝑢 (2) ≤𝑓 (𝑅1, 𝑎)𝑢 (1) + 𝑓 (𝑅1, 𝑏)𝑢 (2) + 𝑓 (𝑅1, 𝑐)𝑢 (𝑚)

+
∑︁

𝑥 ∈𝐴\{𝑎,𝑏,𝑐 }
𝑓 (𝑅1, 𝑥)𝑢 (𝑥)

We reformulate this inequality such that it becomes more similar

to our assumption on 𝑢. Moreover, we derive symmetric conditions

from 𝑢Π-strategyproofness between 𝑅1
and 𝑅3

, and between 𝑅1

and 𝑅4
. Hence, we deduce the following three inequalities.

𝑓 (𝑅1, 𝑎) (𝑢 (1) − 𝑢 (2)) ≥𝑓 (𝑅1, 𝑐) (𝑢 (2) − 𝑢 (𝑚))

+
∑︁

𝑥 ∈𝐴\{𝑎,𝑏,𝑐 }
𝑓 (𝑅1, 𝑥) (𝑢 (2) − 𝑢 (𝑥))

𝑓 (𝑅1, 𝑐) (𝑢 (1) − 𝑢 (2)) ≥𝑓 (𝑅1, 𝑏) (𝑢 (2) − 𝑢 (𝑚))

+
∑︁

𝑥 ∈𝐴\{𝑎,𝑏,𝑐 }
𝑓 (𝑅1, 𝑥) (𝑢 (2) − 𝑢 (𝑥))

𝑓 (𝑅1, 𝑏) (𝑢 (1) − 𝑢 (2)) ≥𝑓 (𝑅1, 𝑎) (𝑢 (2) − 𝑢 (𝑚))

+
∑︁

𝑥 ∈𝐴\{𝑎,𝑏,𝑐 }
𝑓 (𝑅1, 𝑥) (𝑢 (2) − 𝑢 (𝑥))

By summing up these inequalities, we derive the following equa-

tion.∑︁
𝑥 ∈{𝑎,𝑏,𝑐 }

𝑓 (𝑅1, 𝑥) (𝑢 (1) − 𝑢 (2)) ≥
∑︁

𝑥 ∈{𝑎,𝑏,𝑐 }
𝑓 (𝑅1, 𝑥) (𝑢 (2) − 𝑢 (𝑚))

+3

∑︁
𝑥 ∈𝐴\{𝑎,𝑏,𝑐 }

𝑓 (𝑅1, 𝑥) (𝑢 (2) − 𝑢 (𝑥))

Recall that we assume that 𝑢 (1) −𝑢 (2) < 𝑢 (2) −𝑢 (𝑚), and note

that every alternative 𝑥 ∈ 𝐴 \ {𝑎, 𝑏, 𝑐} is at most the third best

alternative of a voter. Hence, our assumption on 𝑢 and the above

inequality are in conflict. Therefore, no 𝑢Π-strategyproof SDS can

satisfy Condorcet-consistency if 𝑛 = 3,𝑚 ≥ 4 and 𝑢 (1) − 𝑢 (2) <
𝑢 (2) − 𝑢 (𝑚).

Case 2: 𝑢 (1) − 𝑢 (𝑚 − 1) > 𝑢 (𝑚 − 1) − 𝑢 (𝑚)
Next, assume that 𝑓 denotes a Condorcet-consistent and 𝑢Π-

strategyproof SDS for 𝑛 = 5 voters and a utility function 𝑢 with

𝑢 (1) − 𝑢 (𝑚 − 1) > 𝑢 (𝑚 − 1) − 𝑢 (𝑚). Consider for this case the

following profiles and note that 𝑐 is the Condorcet winner in 𝑅2
,

𝑏 in 𝑅3
, and 𝑎 in 𝑅4

. Hence, Condorcet-consistency entails that

𝑓 (𝑅2, 𝑐) = 𝑓 (𝑅3, 𝑏) = 𝑓 (𝑅4, 𝑎) = 1.

𝑅1
: 1: 𝑎, ∗, 𝑏, 𝑐 2: 𝑐, ∗, 𝑎, 𝑏 3: 𝑏, ∗, 𝑐, 𝑎

4: 𝑎, 𝑏, 𝑐, ∗ 5: 𝑐, 𝑏, 𝑎, ∗
𝑅2

: 1: 𝑎, ∗, 𝑐, 𝑏 2: 𝑐, ∗, 𝑎, 𝑏 3: 𝑏, ∗, 𝑐, 𝑎
4: 𝑎, 𝑏, 𝑐, ∗ 5: 𝑐, 𝑏, 𝑎, ∗

𝑅3
: 1: 𝑎, ∗, 𝑏, 𝑐 2: 𝑐, ∗, 𝑏, 𝑎 3: 𝑏, ∗, 𝑐, 𝑎

4: 𝑎, 𝑏, 𝑐, ∗ 5: 𝑐, 𝑏, 𝑎, ∗
𝑅4

: 1: 𝑎, ∗, 𝑏, 𝑐 2: 𝑐, ∗, 𝑎, 𝑏 3: 𝑏, ∗, 𝑎, 𝑐
4: 𝑎, 𝑏, 𝑐, ∗ 5: 𝑐, 𝑏, 𝑎, ∗
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Just as in the last case, the profile 𝑅1
differs from the profile

𝑅2
only in the preference of the first voter, from the profile 𝑅3

only in the preference of the second voter, and from the profile

𝑅4
only in the preference of the third voter. Hence, we can use

𝑢Π-strategyproofness to derive conditions on 𝑓 (𝑅1). In particular,

𝑢Π-strategyproofness between 𝑅1
and 𝑅2

entails the following in-

equality. The left hand side of this inequality is voter 1’s expected

utility in 𝑅2
and the right hand side is his expected utility if he

reports his preference dishonestly as 𝑅1

1
.

𝑢 (𝑚 − 1) ≥𝑓 (𝑅1, 𝑎)𝑢 (1) + 𝑓 (𝑅1, 𝑐)𝑢 (𝑚 − 1)

+ 𝑓 (𝑅1, 𝑏)𝑢 (𝑚) +
∑︁

𝑥 ∈𝐴\{𝑎,𝑏,𝑐 }
𝑓 (𝑅1, 𝑥)𝑢 (𝑥)

Next, we reformulate again the inequality such that our assump-

tion on 𝑢 can be used in the end. Moreover, we derive symmetric

conditions from 𝑅3
and 𝑅4

resulting in the following inequalities.

𝑓 (𝑅1, 𝑏) (𝑢 (𝑚 − 1) − 𝑢 (𝑚)) ≥ 𝑓 (𝑅1, 𝑎) (𝑢 (1) − 𝑢 (𝑚 − 1))

+
∑︁

𝑥 ∈𝐴\{𝑎,𝑏,𝑐 }
𝑓 (𝑅1, 𝑥) (𝑢 (𝑥) − 𝑢 (𝑚 − 1))

𝑓 (𝑅1, 𝑎) (𝑢 (𝑚 − 1) − 𝑢 (𝑚)) ≥ 𝑓 (𝑅1, 𝑐) (𝑢 (1) − 𝑢 (𝑚 − 1))

+
∑︁

𝑥 ∈𝐴\{𝑎,𝑏,𝑐 }
𝑓 (𝑅1, 𝑥) (𝑢 (𝑥) − 𝑢 (𝑚 − 1))

𝑓 (𝑅1, 𝑐) (𝑢 (𝑚 − 1) − 𝑢 (𝑚)) ≥ 𝑓 (𝑅1, 𝑏) (𝑢 (1) − 𝑢 (𝑚 − 1))

+
∑︁

𝑥 ∈𝐴\{𝑎,𝑏,𝑐 }
𝑓 (𝑅1, 𝑥) (𝑢 (𝑥) − 𝑢 (𝑚 − 1))

By summing up the last three inequalities, we derive the follow-

ing equation.∑︁
𝑥 ∈{𝑎,𝑏,𝑐 }

𝑓 (𝑅1, 𝑥) (𝑢 (𝑚 − 1) − 𝑢 (𝑚)) ≥∑︁
𝑥 ∈{𝑎,𝑏,𝑐 }

𝑓 (𝑅1, 𝑥) (𝑢 (1) − 𝑢 (𝑚 − 1))

+3

∑︁
𝑥 ∈𝐴\{𝑎,𝑏,𝑐 }

𝑓 (𝑅1, 𝑥) (𝑢 (𝑥) − 𝑢 (𝑚 − 1))

Every alternative 𝑥 ∈ 𝐴 \ {𝑎, 𝑏, 𝑐} is preferred to at least two

other alternatives, and thus, 𝑢 (𝑥) −𝑢 (𝑚−1) > 0. As a consequence,

this inequality and our assumption that 𝑢 (1) − 𝑢 (𝑚 − 1) > 𝑢 (𝑚 −
1) − 𝑢 (𝑚) cannot be simultaneously true. Thus, no SDS satisfies

both Condorcet-consistency and 𝑢Π-strategyproofness if 𝑛 = 5,

𝑚 ≥ 4, and 𝑢 (1) − 𝑢 (𝑚 − 1) > 𝑢 (𝑚 − 1) − 𝑢 (𝑚).

Case 3: Generalizing the impossibility
Finally, we explain why the impossibility also applies for larger

values of 𝑛. For the case that 𝑛 is odd, this is simple: we can just add

pairs of voters with inverse preferences to the construction of the

required case. These voters do not affect the Condorcet winner as

they cancel each other out with respect to the majority margins and

the remaining analysis only depends on 𝑢Π-strategyproofness and

therefore only on specific voters. Hence, no Condorcet-consistent

SDS can satisfy 𝑢Π-strategyproofness, regardless of the utility func-

tion 𝑢, if𝑚 ≥ 4, 𝑛 ≥ 5, and 𝑛 is odd.

For even 𝑛, we use Proposition 3: 𝑢Π-strategyproofness entails

𝑢Π-group-strategyproofness. This observation means that we can

just duplicate each voter in the profiles used to reason about odd 𝑛,

and the analysis stays intact. Hence, the impossibility also general-

izes to even 𝑛 once 𝑛 ≥ 10. □

Theorem 4. The Condorcet rule is the only Condorcet-consistent SDS
that satisfies 𝑈 -strategyproofness for 𝑈 = {𝑢 ∈ U : 𝑢 (1) − 𝑢 (2) =
𝑢 (2) − 𝑢 (3)} if𝑚 = 3 and 𝑛 is odd.

Proof. First note that the Condorcet rule is by definition

Condorcet-consistent, independently of the numbers of voters or al-

ternatives. Next, we show that it also satisfies 𝑈 -strategyproofness

for 𝑈 = {𝑢 ∈ U : 𝑢 (1) − 𝑢 (2) = 𝑢 (2) − 𝑢 (3)} if𝑚 = 3. Assume for

contradiction that this is not true, i.e., that there are preference pro-

files 𝑅 and 𝑅′
, a voter 𝑖 , and a utility function 𝑢 ∈ 𝑈 such that 𝑢 is

consistent with𝑅𝑖 ,𝑅 𝑗 = 𝑅′
𝑗
for all 𝑗 ∈ 𝑁 \{𝑖}, andE[COND(𝑅′)]𝑢 >

E[COND(𝑅)]𝑢 . We employ a case distinction with respect to the

existence of a Condorcet winner. First, assume that there is a Con-

dorcet winner 𝑎 in 𝑅, i.e., COND(𝑅, 𝑎) = 1. If another alternative 𝑏 is

the Condorcet winner in 𝑅′
, voter 𝑖 prefers 𝑎 to 𝑏 because he cannot

make 𝑏 into the Condorcet winner otherwise. As COND(𝑅′, 𝑏) = 1

in this case, this is no manipulation as 𝑢 (𝑎) > 𝑢 (𝑏). Hence, as-
sume that there is no Condorcet winner in 𝑅′

. Then, we have that

COND(𝑅′, 𝑎) = COND(𝑅′, 𝑏) = COND(𝑅′, 𝑐) = 1

3
, which means

that voter 𝑖’s expected utility is 𝑢 (2) since 𝑢 (1) = 2𝑢 (2) − 𝑢 (3).
This is only a manipulation if the Condorcet winner 𝑎 is voter 𝑖’s

least preferred alternative, i.e., if 𝑢 (𝑎) = 𝑢 (3). However, then voter

𝑖 cannot change that 𝑎 is the Condorcet winner, and therefore no

manipulation is possible in this case. Finally, assume that there

is no Condorcet winner in 𝑅. Hence, voter 𝑖’s expected utility of

COND(𝑅) is again 𝑢 (2), which means that he can only manipulate

by making his best alternative into the Condorcet winner. This is

again not possible and consequently, COND is𝑈 -strategyproof for

𝑈 = {𝑢 ∈ U : 𝑢 (1) − 𝑢 (2) = 𝑢 (2) − 𝑢 (3)}.
Next, we show that no other Condorcet-consistent SDS is 𝑈 -

strategyproof for𝑈 = {𝑢 ∈ U : 𝑢 (1) −𝑢 (2) = 𝑢 (2) −𝑢 (3)} if𝑚 = 3

and 𝑛 is odd. Note that we assume in the sequel that 𝑛 ≥ 3 as

the claim is trivial if 𝑛 = 1 due to Condorcet-consistency. Assume

for contradiction that there is another SDS 𝑓 that satisfies these

axioms and note that 𝑓 coincides with COND on profiles with a

Condorcet winner because of Condorcet-consistency. Since 𝑛 is odd,

𝑓 differs from COND in a profile 𝑅 with a majority cycle, i.e., the

alternatives in 𝑅 can be relabeled such that 𝑛𝑥𝑦 (𝑅) > 0, 𝑛𝑦𝑧 (𝑅) > 0,

and 𝑛𝑧𝑥 (𝑅) > 0.

First, we show that there must be voters with specific preferences

in 𝑅. In particular, for each of 𝑅1 = 𝑥,𝑦, 𝑧, 𝑅2 = 𝑦, 𝑧, 𝑥 , and 𝑅3 =

𝑧, 𝑥,𝑦, there is at least one voter who reports the preference relation.

Assume for contradiction that this is not true, i.e., we have𝑛𝑥𝑦 (𝑅) >
0, 𝑛𝑦𝑧 (𝑅) > 0, and 𝑛𝑧𝑥 (𝑅) > 0 and one of the above preferences is

not reported by any voter. Let 𝑛1, 𝑛2, and 𝑛3 denote variables that

correspond to the numbers of voters in 𝑅 who submit preference 𝑅1,

𝑅2, and𝑅3, respectively.Moreover, let𝑛4,𝑛5, and𝑛6 denote variables

with the same meaning for the preferences 𝑅4 = 𝑥, 𝑧,𝑦, 𝑅5 = 𝑦, 𝑥, 𝑧,

and 𝑅6 = 𝑧,𝑦, 𝑥 . Our contradiction assumption entails that one of

𝑛1, 𝑛2, or 𝑛3 is zero, and due to symmetry, we suppose without loss
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of generality that 𝑛1 = 0. Since we need the majority cycle in the

preference of the voters, we derive the following inequalities.

𝑛𝑥𝑦 (𝑅) = 𝑛3 + 𝑛4 − 𝑛2 − 𝑛5 − 𝑛6 > 0

𝑛𝑦𝑧 (𝑅) = 𝑛2 + 𝑛5 − 𝑛3 − 𝑛4 − 𝑛6 > 0

𝑛𝑧𝑥 (𝑅) = 𝑛2 + 𝑛3 + 𝑛6 − 𝑛4 − 𝑛5 > 0

Summing up the first two inequalities results in 𝑛𝑥𝑦 (𝑅) +
𝑛𝑦𝑧 (𝑅) = −2𝑛6 > 0, which cannot be true since 𝑛6 ≥ 0 by defini-

tion. Hence, the assumption that 𝑛1 = 0 is wrong and by applying

symmetric arguments, it follows that 𝑛1 > 0, 𝑛2 > 0, and 𝑛3 > 0.

We use this observation to prove that 𝑓 (𝑅, 𝑥) = 𝑓 (𝑅,𝑦) =

𝑓 (𝑅, 𝑧) = 1

3
for all profiles 𝑅 that induce a majority cycle, i.e, that

have 𝑛𝑥𝑦 (𝑅) > 0, 𝑛𝑦𝑧 (𝑅) > 0, and 𝑛𝑧𝑥 (𝑅) > 0. We therefore intro-

duce the cycle weight 𝑐 (𝑅) = 𝑛𝑥𝑦 (𝑅) + 𝑛𝑦𝑧 (𝑅) + 𝑛𝑧𝑥 (𝑅) = 3 + 2𝑘

for some 𝑘 ≥ 0 and let 𝑅 denote a profile with 𝑓 (𝑅) ≠ COND(𝑅)
that minimizes 𝑐 (𝑅). As 𝑓 (𝑅) ≠ COND(𝑅), one of the following
inequalities is true: either 𝑓 (𝑅, 𝑥) > 𝑓 (𝑅,𝑦), 𝑓 (𝑅,𝑦) > 𝑓 (𝑅, 𝑧), or
𝑓 (𝑅, 𝑧) > 𝑓 (𝑅, 𝑥); otherwise, we have that 𝑓 (𝑅, 𝑥) ≤ 𝑓 (𝑅,𝑦) ≤

𝑓 (𝑅, 𝑧) ≤ 𝑓 (𝑅, 𝑥), which implies that all alternatives receive proba-

bility
1

3
. We focus in the sequel on the case that 𝑓 (𝑅, 𝑥) > 𝑓 (𝑅,𝑦)

as the remaining cases are symmetric. By our previous observation,

there is a voter 𝑖 with preference 𝑦, 𝑧, 𝑥 in 𝑅. Moreover, let 𝑢 ∈ 𝑈

denote an arbitrary utility function that is consistent with 𝑅𝑖 . Since

𝑢 is equi-distant and 𝑓 (𝑅, 𝑥) > 𝑓 (𝑅,𝑦), it follows that the expected
utility of this voter is less than 𝑢 (2). Next, consider the profile

𝑅′
in which voter 𝑖 reports his preference non-truthfully as 𝑧,𝑦, 𝑥 .

This manipulation either results in the fact that 𝑧 is the Condorcet

winner, or it results in a profile 𝑅′
with 𝑐 (𝑅′) = 𝑐 (𝑅) − 2. In both

cases, the expected utility of voter 𝑖 is 𝑢 (2) because 𝑓 (𝑅′, 𝑧) = 1 if

𝑧 is the Condorcet winner and 𝑓 (𝑅′, 𝑥) = 𝑓 (𝑅′, 𝑦) = 𝑓 (𝑅′, 𝑧) = 1

3

otherwise. The latter observation is true as 𝑅 minimizes the cir-

cle weights among all profiles in which 𝑓 differs from COND and

𝑐 (𝑅′) < 𝑐 (𝑅). Hence, voter 𝑖 can {𝑢}-manipulate, contradicting the

𝑈 -strategyproofness of 𝑓 . This means that COND is indeed the only

Condorcet-consistent SDS that satisfies 𝑈 -strategyproofness for

𝑈 = {𝑢 ∈ U : 𝑢 (1) −𝑢 (2) = 𝑢 (2) −𝑢 (3)} if𝑚 = 3 and 𝑛 is odd. □
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