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ABSTRACT
The story of conflict and cooperation has started millions of years

ago, and now it is everywhere: In biology, computer science, eco-

nomics, political science, and psychology. Examples include wars,

airline alliances, trade, oligopolistic cartels, the evolution of species

and genes, and team sports. However, neither cooperative games

nor non-cooperative games—in which “each player acts indepen-

dently without collaboration with any of the others” (Nash, 1951)—

fully capture the competition between and across individuals and

groups, and the strategic partnerships that give rise to such groups.

Thus, one needs to extend the non-cooperative framework to study

strategic games like scientific publication, which is a rather compet-

itive game, yet (strategic) collaboration is widespread. In this paper,

I propose, to the best of my knowledge, the first solution to the

long-standing open problem of strategic cooperation first identified

by von Neumann (1928). I introduce the equilibrium system solution

in coalitional strategic games in which players are free to cooper-

ate to coordinate their actions or act independently. Coalitional

strategic games unify the study of strategic competition as well as

cooperation including logrolling and corruption which have been

studied in specific frameworks.
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1 INTRODUCTION
Cooperation and conflict are not only two of the most studied

topics in economics but they are also widely studied in biology,

computer science, philosophy, political science, psychology and

so on. Wars, transportation, airline alliances, trade, oligopolistic

cartels, corruption, the evolution of species and genes, and team

sports are examples of strategic situations that involve both con-

flict and cooperation. Sellers prefer a higher price, whereas buyers

prefer a lower price; yet, mutually beneficial trade often takes place.

Many elections are games of cooperation as well as competition.
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In a judicial process, we may have conflicting interests with the

opposing side, but we also cooperate with our lawyer and possibly

with officials. Global airplane transportation is a giant competitive

market, but alliances among airline companies are common. Many

popular team sports involve cooperation as well as competition.

Conflict and cooperation are widespread across animal species,

including humans.
1
However, neither cooperative games nor non-

cooperative games in which “each participant acts independently

without collaboration with any of the others” [25] fully capture the

competition between and across individuals and groups, and the

strategic partnerships that give rise to such groups. Thus, one needs

to extend the non-cooperative framework to study strategic games

like scientific publication, which is a rather competitive game, yet

(strategic) collaboration is widespread.

In this paper, I propose, to the best of my knowledge, the first

solution to the long-standing open problem of strategic cooperation

first identified by vonNeumann [39] and later discussed e.g. by Bern-

heim, Peleg, and Whinston [2], who proposed partial solutions.
2
I

introduce a novel framework, coalitional strategic games in exten-

sive form, and a novel solution concept, equilibrium system, which

is obtained by applying the Recursive Backward Induction (RBI) algo-
rithm, which is a novel generalization of the well-known backward

induction algorithm. I show that every coalitional strategic game

with possibly imperfect information possesses an equilibrium sys-

tem. In particular, if the game is of perfect information, then there

is an equilibrium system which includes only pure strategies.

Moreover, I apply the equilibrium system to logrolling à la Casella

and Palfrey [8] and corruption—i.e., buying someone’s cooperation

to induce them to choose a particular action, which otherwise

would not be rational to choose. I introduce a very general logrolling

model, which always possesses an equilibrium system. I show that if

there is a Condorcet winner in a logrolling game under the majority

rule, then the unique equilibrium system outcome is the Condorcet

winner, confirming the conjecture of Buchanan and Tullock [7] that

vote-trading would lead to the Condorcet winner when there is

one.

Formally, a coalitional strategic game is denoted by Γ = (𝑃,𝑋, 𝐼,
𝑢, 𝑆, 𝐻 ), which is an extensive form game with an addition of coali-

tional utility function for each feasible coalition. 𝑃 denotes the set

of players, 𝑋 the game tree, 𝐼 the player function, 𝐻 the set of all

information sets, and 𝑆 the set of all mixed strategy profiles. For

every feasible (possibly singleton) coalition 𝐶 ⊆ 𝑃 , 𝑢𝐶 denotes the

von Neumann-Morgenstern utility of player𝐶 . Note that coalitional

strategic games generalize non-cooperative extensive form games

1
For competition and cooperation among freight carriers, see, e.g., Krajewska et al.

[21]; for more examples in multi-agent systems in computer science, Doran et al. [13];

for more applications of game theory, Binmore [3].

2
For further discussion, see, subsection 2.2 and subsection 2.3.



©­­«
0

60

40

0

ª®®¬

𝐹

©­­«
10

30

60

0

ª®®¬

𝐴

𝐹

©­­«
30

40

30

0

ª®®¬

𝐴

Enter Market 1

©­­«
20

0

0

100

ª®®¬

𝐹

©­­«
60

0

0

60

ª®®¬

𝐴

Enter Market 2

Firm 1

Firm 2 Firm 4

Firm 3

Figure 1: International market entry game

in the sense that if no coalition (with two or more players) is feasi-

ble, then a coalitional strategic game would reduce to a standard

extensive form game. Unlike in non-cooperative games, the set of

players is endogenous—i.e., it may evolve throughout the game

according to the following rule: If some players, say 𝑖 and 𝑗 , form

a coalition 𝐶 = {𝑖, 𝑗}, then each of them becomes an “agent” of

player 𝐶 .3,4 Agents then choose their strategy according to player

𝐶’s utility, 𝑢𝐶 . The utility function of an agent does not become

irrelevant as it is useful in determining which coalitions are “indi-

vidually rational.” The equilibrium system rationally endogenizes

the set of players—a player joins a coalition if and only if the player

is better off by joining the coalition.

A system is a family of collection of strategy profiles and a family

of collection of coalitions. (Note that a solution concept in non-

cooperative games consists of only one strategy profile.) A subtree

of a game tree (i.e., coalitional strategic game) is like a subgame but

any information set can be the root of the subtree. A supertree of a

game is a clone of the game such that the player who acts at the

root of the game joins a coalition with some other player(s). These

notions are formally defined in section 3.

Accordingly, an equilibrium system is a system that is both sub-

tree and supertree “perfect.” Intuitively, equilibrium system is a

system such that at every subtree and supertree, independent play-

ers do not have any incentive to deviate unilaterally and the agents

that make up the coalitions prefer to be in their respective coalitions

than be an independent player or be an agent of another coalition.

To illustrate this solution concept, I next provide an example.

1.1 Illustrative example
Figure 1 presents a stylized international market entry game. Firm

1 from country X chooses to enter the market either in country

Y (small) or country Z (large). In country Y there is already a

3
A related but somewhat opposite approach called “player splitting” is studied by

Perea y Monsuwé et al. [29] and Mertens [24], and it was used in the refinement of

Nash equilibrium.

4
If coalition-forming is costly, then this can be incorporated into the coalitional as

well as individual utility functions.

leader (Firm 2) and a follower (Firm 3); in country Z, there is a

monopolist (Firm 4). Each firm in Y and Z can choose to fight (F )
or accommodate (A). If Firm 1 enters the market in the smaller

country, then the total size of the “cake” is 100 units, and if Firm

1 enters the larger economy, then the total size of the cake is 120

units, which are distributed as shown in the figure. Pre-entry profits

are normalized to zero. If Firm 1 enters an economy in a country,

then by reciprocity the existing firm(s) in that country gain access

to the market in country X. Thus, everything else being equal Firm

1’s entry is beneficial for local firms, though the distribution of

these extra gains depends on the strategic choices of the firms. If

the leader (Firm 2) chooses F, then the follower (Firm 3) prefers to

choose A. Anticipating this, the leader’s best response is to choose

A. However, if they collude by both choosing F, then they would

both be better off and essentially drive Firm 1 out of the market.

The monopolist in country Z prefers to choose A over F.
The equilibrium system solution is based on a recursive proce-

dure called Recursive Backward Induction (RBI), which is formally

provided in section 3. To illustrate the steps that lead to the equi-

librium system in a simple game, I make the following assumption

in the game presented in Figure 1. For each non-empty coalition

𝐶 ⊆ {1, 2, 3, 4}, let the coalitional utility function be defined as

𝑢𝐶 ( · ) := min𝑖∈𝐶 𝑢𝑖 ( · ).5
Figure 2 illustrates the equilibrium system of this market entry

game in four steps. The first step (A) starts from the standard non-

cooperative subgame perfect equilibrium solution, where every

player acts independently and non-cooperatively. The outcome of

this solution is (30, 40, 30, 0). Given the subgame perfect equilibrium,

step B shows that both Firm 2 and Firm 3 benefit from colluding

in which both of them choose F, which leads to the outcome (0, 60,

40, 0), where min2,3 (0, 60, 40, 0) = 40 which is strictly greater than

min2,3 (30, 40, 30, 0) = 30. (Notation “2, 3” signifies the cooperation

between Firm 2 and 3.) Anticipating this collusion, Firm 1 chooses

to enter market 2, which leads to the outcome (20, 0, 0, 100). Step C

shows that both Firm 1 and Firm 2 collude by best responding to the

solution in step B. Firm 1 enters market 1, and Firm 2 accommodates,

which leads to the outcome (30, 40, 30, 0), which is strictly better for

both than the outcome in step B. Other firms best respond to Firm

1 and Firm 2; Firm 3 chooses A and Firm 4 chooses F. Step D shows

that Firm 4 anticipates the collusion between Firm 1 and 2 and offers

Firm 1 to collude; Firm 1 and Firm 4 join a coalition𝐶 ′ = {1, 4}. The
best response of player 𝐶 ′

to the solution in step C is that agent

Firm 1 enters market 2 and agent Firm 4 accommodates, which

leads to the mutually beneficial outcome of (60, 0, 0, 60). This is the

outcome of the equilibrium system illustrated in Figure 2.

Notice that the reason Firm 4 colludes with Firm 1 in step D is

the credible threat of collusion between Firm 1 and Firm 2 in step

C, which would lead to a very bad outcome for Firm 4. In turn, the

reason Firm 2 colludes with Firm 1 in step C is the credible threat

of Firm 1 to choose M2, in which case Firm 2’s payoff would be 0.

Everything else being equal, suppose that the outcome (20, 0, 0,

100) is changed to (40, 0, 0, 80). Then, in the unique equilibrium

system Firm 1 would enter market 2, and Firm 4 would choose

F rather than colluding with Firm 1. This is because Firm 1 now

5
Note that the coalitional strategic games introduced in section 3 allow for any type

of von Neumann-Morgenstern coalitional preferences.
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Figure 2: Equilibrium system solution of the international market entry game in four steps A–D. Assume that 𝑢𝐶 ( · ) :=

min𝑖∈𝐶 𝑢𝑖 ( · ) for every coalition𝐶 ⊆ {1, 2, 3, 4}. Step A: The standard backward induction leads to the outcome (30, 40, 30, 0). Step
B: Given the solution in step A, both Firm 2 and Firm 3 benefit from colluding in which both of them choose F, which leads to
the outcome (0, 60, 40, 0). Firm 1 anticipates this collusion, so enters Market 2, which leads to the outcome (20, 0, 0, 100). Step
C: Both Firm 1 and Firm 2 can do strictly better than the outcome in step B by colluding in which Firm 1 enters market 1, and
Firm 2 accommodates, leading to the outcome (30, 40, 30, 0). Step D: Firm 4 anticipates the collusion between Firm 1 and 2, so
proposes Firm 1 to cooperate by choosing A provided that Firm 1 enters market 2, which is mutually beneficial compared to
(30, 40, 30, 0). Accordingly, the equilibrium system outcome is (60, 0, 0, 60). A step-by-step equilibrium system solution of this
game is available at https://youtu.be/I1hIO7CrLnM.

would not benefit from cooperation with Firm 2, so such a threat

would not be credible. This variation shows that off-path credible

coalitional threats play a critical role in finding and sustaining the

equilibrium system.

1.2 Motivation: Why do we need a framework
where strategic cooperation occurs
endogenously?

One of the big questions in sciences has been how cooperation has

evolved. Somehow, evolution has furnished species with an ability

to collaborate and compete to survive and pass their genes onto the

next generations. Conflict and cooperation is widespread in animals

including humans and other living organisms. Genes, however self-

ish they may be, engage in cartels. Evolutionary biologist Richard

Dawkins coined the term “The Selfish Cooperator,” after having

noticed that the title of his earlier book, “The Selfish Gene,” might

have given a wrong impression [11, 12].
6
It has been envisaged that

“natural cooperation” could be added as a fundamental principle

6
Since the seminal work of Smith and Price [38], game theory has been developed and

extensively applied to biological sciences as well [15, 16, 23].

of evolution beside mutation and natural selection, which is based

on fierce competition [27]. Coalitional strategic games do that by

adding cooperation as a fundamental principle beside competition.

In another example, First World War was fought between a

coalition of Allied Powers and Central Powers, in whichmembers of

each coalition cooperated strategically to defeat the other coalition.

Payoffs at the end of the war differed among and across coalitions.

Russian Empire, from the victorious Allied Powers, collapsed, as

well as the three losing empires.

It is commonly believed that cooperative games require an ex-

ternal authority to enforce cooperative behavior, whereas non-

cooperative games do not require any external enforcer. However,

non-cooperative games do require an authority to induce non-

cooperative behavior—the enforcer must guarantee that all players

will choose their actions indepedently and, hence, not cooperate

and coordinate their actions in any way.
7
If a player knows that

others can collude against him or her, then this would potentially

change his or her behavior, as I have illustrated in Figure 2. With

7
For further discussion between cooperative and non-cooperative games, see, e.g.,

Serrano [37].

https://youtu.be/I1hIO7CrLnM


that in mind, I drop the assumption in non-cooperative games

that non-cooperative play can be always enforced throughout the

game.
8

In addition to encouraging competition, modern society is based

on rules that in manyways facilitate cooperation, collaboration, and

coordination among individuals. For example, citizens are free to

make contracts—a simple e-mail can count as a binding agreement—

and engage in partnerships such as marriage, employer-employee

partnerships, management teams of a company, friendships, and

other interpersonal relationships, which are based on formal or

informal institutions. To be sure, some types of cooperation such as

cartels, drugs and organ trade, and same-sexmarriage may be illegal

in some countries. However, especially when cooperation is mutu-

ally beneficial, it is often more costly to enforce non-cooperation

(if it is possible enforce at all) than cooperation.

In coalitional strategic games, players are free to act indepen-

dently or form coalitions to coordinate their actions, which could be

via formal or informal institutions. But the right to form a coalition

may certainly be restricted, and it might be impossible to coordinate

actions under certain reasonable situations. If there is an external

enforcer that can guarantee non-cooperative behavior among some

players, then this will be part of the coalitional strategic game

so that all players rationally take this into account. In that sense,

coalitional strategic games generalize non-cooperative games: Ev-

ery non-cooperative extensive form game is a coalitional strategic

game, but not vice versa.

In coalitional strategic games, I propose a novel solution concept

that is based on a unique procedure that combines backward and

some elements of forward induction reasoning in which players

rationally cooperate or act non-cooperatively.
9
Just like credible

threats play a crucial role in non-cooperative games [5, 35, 36], they

are indispensable in determining the stability of coalitions in this

framework.

2 RELATED LITERATURE
Prior research in game theory—mainly repeated games and the

lesser-known farsighted approach to cooperative games—has made

many contributions to the study of cooperation from various per-

spectives. Next, I discuss how the current paper’s contribution fits

into this existing literature.

2.1 Cooperation in repeated games and the
Nash program

The approach in this paper differs from the repeated games and

the Nash program approach to cooperation in the following ways.

The theory of repeated games mainly asks whether cooperative

outcomes in a one-shot game can be sustained as Nash equilibrium

or subgame perfect equilibrium when the game is repeated suffi-

ciently many times. Similarly, under the Nash program the main

8
Note that I do not assume that non-cooperative play can never be enforced; whenever

it can be enforced, it is part of the coalitional strategic form.

9
Backward induction reasoning is based on the assumption that at any point in the

game players make rational choices taking into account the future only, so they do

not draw any conclusions from past choices. Forward induction reasoning generally

assumes that past choices affect future behavior in a rational way. Unlike backward

induction, forward induction does not have a unique definition in the literature. For

more information, see, e.g., Perea [28].

question is whether it is possible to construct a non-cooperative

game whose equilibrium outcome coincides with a cooperative

solution. Thus, they are not concerned about cooperative behavior

of players per se, rather they study non-cooperative behavior that

gives rise to cooperative outcomes. Seminal works in this literature

include Nash [26] and Rubinstein [34].

To give an example, in repeated games to sustain mutually ben-

eficial outcomes as a subgame perfect equilibrium, players use

credible threats, but this is done completely non-cooperatively—i.e.,

players choose their actions individually and independently at each

stage. By contrast, in a coalitional strategic game credible threats

are utilized by not only individuals but also group of players who

strategically collaborate and coordinate their actions.

2.2 Cooperative approaches in non-cooperative
games

A closely related strand of literature is the study of coalition-proofness

in non-cooperative games such as strong Nash equilibrium by Au-

mann [1], strong perfect equilibrium by Rubinstein [33], subgame

perfect strong Nash equilibrium by Chander and Wooders [9], and

coalition-proof Nash equilibrium by Bernheim et al. [2].
10

Roughly

speaking, strong Nash equilibrium is a Nash equilibrium in which

there is no coalitional deviation that can benefit all of its mem-

bers. Coalition-proof Nash equilibrium is a weaker notion than

strong Nash equilibrium, and it additionally requires that coali-

tional deviations—fixing the strategies of the other players—should

be internally consistent in the sense that subcoalitions should not

have incentives to further deviate. The most obvious difference

between these solutions and the equilibrium system solution is

that they refine the set of Nash equilibria (to the extent that they

do not always exists), whereas the equilibrium system is neither

a refinement nor a coarsening of Nash equilibrium, but it always

exists (see Theorem 3.2).

Of note, as Bernheim et al. [2, p. 7] themselves point out, coali-

tional deviations in coalition-proof Nash equilibrium is restrictive

in the sense that deviating subcoalitions do not consider forming a

coalition with non-deviating players: “This rules out the possibility

that some member of the deviating coalition might form a pact to

deviate further with someone not included in this coalition. Such

arrangements are clearly much more complex than those made en-

tirely by members of the coalition itself... Clearly, further is required

to resolve these issues in a fully satisfactory way.” Such complexi-

ties of strategic formation of coalitions is addressed in coalitional

strategic games: Every coalition structure is considered and may

potentially emerge as part of the equilibrium system solution in

coalitional strategic games.

Finally, another major difference is that the concepts in the

coalition-proofness literature predict some strategy profiles that
are coalition-proof according to some notion; whereas, the equilib-

rium system is formally a family of collection of strategy profiles

and coalitions in which the prediction includes a set of coalitions

that is “stable.”

10
Note that Rubinstein’s (1980) supergame notion refers to a repetition of a game,

which differs from the supergame/supertree notion used in this paper (see section 3).



2.3 Farsighted non-cooperative approaches to
cooperative games

The connections between non-cooperative games and cooperative

games, which abstracts away from strategic interaction, have been

studied since von Neumann [39], who came up with the maximin

solution in a three-person zero-sum game. Von Neumann noticed

that any two players might benefit from collaboration in that three-

person game, which can destablize the maximin solution. The cur-

rent paper essentially builds on this observation noted first by von

Neumann [39].

Harsanyi’s (1974) seminal work in cooperative games led to a

recently a burgeoning body of literature that incorporates elements

from non-cooperative games into cooperative games such as far-

sightedness and backward induction. This integration has greatly

improved our understanding of both frameworks and their interre-

lations. There is a vast literature on the study of coalition-formation

in different contexts; see, e.g., Bloch [4], Brams, Jones, and Kilgour

[6], Herings, Mauleon, and Vannetelbosch [18], Ray and Vohra [31],

Karos and Kasper [19], Chander and Wooders [9], Kimya [20], and

for an informative and extensive review of the literature, see, e.g.,

Ray [30] and the references therein.

The current paper differs from the farsighted coalition-formation

literature in mainly two respects: the framework and the solution

concept. First, various setups used in this literature are directly

comparable to neither standard extensive form games nor coali-

tional strategic games. This is in part due to the ‘cyclic’ behavior in

coalition-formation frameworks and the fact that more than one

player or coalition can choose an ‘action’ at a given decision node,

which cannot occur under extensive form games.
11

Second, in cases

in which a coalition-formation setup such as Kimya’s (2020) is com-

parable to an extensive form game with perfect information, the

solution concept in question generally coincides with standard non-

cooperative concepts such as the backward induction. This is not

surprising because the main idea is to incorporate non-cooperative

notions into cooperative games as first proposed by Harsanyi [17].

Starting from an extensive form game, Chander and Wooders [9]

construct a cooperative game and then introduce subgame perfec-

tion to the notion of core.

While an equilibrium system is neither a refinement nor a gen-

eralization of a non-cooperative equilibrium concept, coalitional

strategic games generalize extensive form games with possibly

imperfect information. I next compare and contrast equilibrium

system solution concept with non-cooperative concepts.

2.4 The differences between coalitional
strategic games and non-cooperative games

Coalitional strategic games differ from non-cooperative games in

three main dimensions: (i) Philosophical/conceptual dimension, (ii)

the solution concept, and (iii) the mathematical framework.

First, as Nash [25, p. 286] points out: “Our theory, in contradis-

tinction, is based on the absence of coalitions in that it is assumed

that each participant acts independently, without collaboration or

communication with any of the others.” By contrast, coalitional

strategic games assume that players can form coalitions to act

11
Note that this is not unusual because the frameworks in this literature emerged from

cooperative games.

together in an interactive strategic situation unless otherwise speci-

fied. If non-cooperation can be enforced among some of the players,

then this would be part of the coalitional strategic form. Second,

the equilibrium system concept incorporates backward induction

reasoning as well as some elements of forward induction reasoning,

and it builds on the equilibrium ideas of Cournot [10], von Neu-

mann [39], von Neumann and Morgenstern [40], Nash [25], and

Selten [36]. However, it is neither a refinement nor a coarsening

of Nash equilibrium. Third, the framework of coalitional strategic

games include extensive form games as a special case.

A natural question arises as to whether we can construct a fully

non-cooperative game that is equivalent to a coalitional strategic

game, and then apply the standard backward induction solution to

the equivalent game to get the same solution as the equilibrium

system solution. This does not seem possible without knowing

the equilibrium system ex ante, because the solution process is en-

dogenous. Moreover, coalitional strategic games are richer than the

standard extensive form games. Reducing the RBI to the backward

induction (BI) is akin to reducing backward induction solution to a

simple maximization problem on a game tree in which each player

chooses only one action. Obviously, once one finds a BI solution,

it is possible to cut off all off-path nodes and actions, reducing the

solution into a trivial one. However, it is not possible to construct

a one-action-per-player game tree that leads to the BI outcome in

every extensive form game without actually finding the BI solu-

tion ex ante, because the BI solution is endogenous unlike, e.g., the

trivial solution concept that assigns everything to be the solution.

3 THE SETUP AND THE SOLUTION CONCEPT
3.1 The setup
Let Γ = (𝑃,𝑋, 𝐼,𝑢, 𝑆, 𝐻 ) denote a coalitional strategic game with
perfect recall, which is a standard extensive form game with an

addition of coalitional utility function for each feasible coalition as

explained below. Γ will also be referred to as a coalitional extensive
form game.12

Players: Let 𝑃 be a finite set of players, which may be equal to

𝑁 = {1, 2, ..., 𝑛} or a partition of 𝑁 . Each element of 𝑃 is called a

coalition denoted by 𝐶 ∈ 𝑃 or player denoted by 𝑖 ∈ 𝑃 , and each

player 𝑖 ∈ 𝑃 has a finite set of pure actions 𝐴𝑖 . With a slight abuse

of notation singleton coalition {𝑖} is represented as 𝑖 . The set of

players may evolve throughout the game as defined next.

Forming a coalition: If, for some 𝑘 , players 𝑖1, 𝑖2, ..., 𝑖𝑘 form a

coalition 𝐶 = {𝑖1, 𝑖2, ..., 𝑖𝑘 }, then each individual 𝑖 𝑗 becomes an

“agent” of player 𝐶 . The agents of player 𝐶 choose their strategy

guided by player 𝐶’s utility function as defined next.

Utility functions: Let 𝑋 denote a game tree, 𝑥 ∈ 𝑋 a node in the

tree, |𝑋 | the cardinality of 𝑋 , 𝑥0 the root of the game tree where

Nature moves (if any), and 𝑧 ∈ 𝑍 a terminal node, which is a node

that is not a predecessor of any other node. Let 𝑢𝐶 : 𝑍 → R denote

the payoff function of coalition 𝐶 ⊆ 𝑁 where for each terminal

node 𝑧, 𝑢𝐶 (𝑧) denotes the von Neumann-Morgenstern utility of

player 𝐶 , which may be singleton, if 𝑧 is reached.

12
I refer to standard textbooks such as Fudenberg and Tirole [14], whose notation I

mostly adapt, for details about extensive form games.



Every coalition 𝐶 for which 𝑢𝐶 is given is called feasible. Each
coalition𝐶 ∈ 𝑃 is assumed to be feasible. If a coalition is not feasible,

then there is no utility function for that coalition.
13

Player 𝑖’s indi-

vidual (von Neumann-Morgenstern) utility given a player partition

𝑃 is denoted by 𝑢𝑖 ( · |𝑃). Note that 𝑢𝑖 ( · |𝑃) does not necessarily
equal to 𝑢𝑖 ( · ) because of the possibility of synergies (positive or

negative) when a player joins a coalition. For example, a player

𝑖 may personally get a different utility from an outcome when 𝑖

forms a coalition with 𝑗 compared to the case in which 𝑖 joins a

coalition with 𝑗 ′ ≠ 𝑗 . (More generally, a coalition may also affect

the utility of the players outside the coalition.) This distinction will

be useful in determining which coalitions are “individually rational.”

When a player joins a coalition 𝐶 , the strategic decisions are made

based on the utility function 𝑢𝐶 of the coalition 𝐶 , whereas player

𝑖 makes the decision to join a coalition based on the individual

utility function 𝑢𝑖 given this coalition. Finally, the psychological

and monetary costs, if any, incurred due to coalition-forming can

be incorporated into the utility functions.

Let𝑢 denote the profile of utility functions for each feasible coali-

tion including each singleton player. Clearly, a coalitional strategic

game is a generalization of the non-cooperative extensive form

game. If no coalition (with two or more person) is feasible, then

a coalitional strategic game would reduce to a non-cooperative

extensive form game.

Strategies: Let 𝐼 : 𝑋 → N denote the player function, where 𝐼 (𝑥)
gives the “active” player who moves at node 𝑥 , and 𝐴(𝑥) the set
of pure actions at node 𝑥 . Let ℎ ∈ 𝐻 denote an information set,

ℎ(𝑥) the information set at node 𝑥 where there is possibly another

node 𝑥 ′ ≠ 𝑥 such that 𝑥 ′ ∈ ℎ(𝑥), and the active player at ℎ(𝑥) does
not know whether she is at 𝑥 or at 𝑥 ′. If ℎ(𝑥) is a singleton, then,
with a slight abuse of notation, ℎ(𝑥) = 𝑥 . Moreover, if 𝑥 ∈ ℎ(𝑥),
then𝐴(𝑥) = 𝐴(𝑥 ′). Let𝐴(ℎ) denote the set of pure actions at ℎ. Let
𝐴𝑖 =

⋃
ℎ𝑖 ∈𝐻𝑖

𝐴(ℎ𝑖 ) denote player 𝑖’s set of all pure actions where
𝐻𝑖 is player 𝑖’s set of all information sets. Let 𝑆 ′

𝑖
=
>

ℎ𝑖 ∈𝐻𝑖
𝐴(ℎ𝑖 )

denote the set of all pure strategies of 𝑖 where a pure strategy

𝑠 ′
𝑖
∈ 𝑆 ′

𝑖
is a function 𝑠 ′

𝑖
: 𝐻𝑖 → 𝐴𝑖 satisfying 𝑠

′
𝑖
(ℎ𝑖 ) ∈ 𝐴(ℎ𝑖 ) for

all ℎ𝑖 ∈ 𝐻𝑖 . Let 𝑠
′ ∈ 𝑆 ′ denote a pure strategy profile and 𝑢𝐶 (𝑠 ′)

its von Neumann-Morgenstern (expected) utility for player 𝐶 . Let

Δ(𝐴(ℎ𝑖 )) denote the set of probability distributions over 𝐴(ℎ𝑖 ),
𝑏𝑖 ∈

>
ℎ𝑖 ∈𝐻𝑖

Δ(𝐴(ℎ𝑖 )) a behavior strategy of 𝑖 , and 𝑏 a profile of

behavior strategies. Let 𝑠 ∈ 𝑆 denote the mixed strategy profile that

is equivalent to behavior strategy profile 𝑏 in the sense of Kuhn

[22]. I assume that Γ is common knowledge.

Subgames and subtrees: A subgame 𝐺 of a game Γ is the game Γ
restricted to an information set with a singleton node and all of its

successors in Γ. The largest subgame at a node 𝑥 is the subgame

that is not a subgame (except itself) of any other subgame starting

at 𝑥 . At the root of a game, the largest subgame is the game itself.

Let 𝐺 be a subgame and 𝐻 ′
𝑖
be the set of 𝑖’s information sets in the

subgame. Then, for every ℎ𝑖 ∈ 𝐻 ′
𝑖
function 𝑠𝑖 ( · |ℎ𝑖 ) denotes the

restriction of strategy 𝑠𝑖 to the subgame 𝐺 . If all information sets

are singletons, then Γ is called a game of perfect information.

13
Alternatively, the individual utility from that coalition could be defined as minus

infinity.

Let 𝑥 = |𝑋 | denote the number of nodes in 𝑋 , and 𝑠𝑢𝑐𝑐 (𝑥) and
𝑆𝑢𝑐𝑐 (𝑥) be the set of immediate successors and all successors of a

node 𝑥 (excluding 𝑥 ), respectively. Let 𝑟𝑜𝑜𝑡 (ℎ) denote the node that
is the root of the subgame containing information set ℎ such that

there is no other subgame starting at an information set between

𝑟𝑜𝑜𝑡 (ℎ) and ℎ—i.e., 𝑟𝑜𝑜𝑡 (ℎ) is the closest singleton “ancestor” of ℎ.

Note that in perfect information games 𝑥 = 𝑟𝑜𝑜𝑡 (𝑥) for all nodes
𝑥 ∈ 𝑋 . 𝑆𝑢𝑐𝑐 (ℎ) denotes the set of all successor information sets of

information set ℎ. A subtree 𝑇 of a game Γ is the game tree of Γ
restricted to an information set (not necessarily singleton) and all of

its successors in Γ. So the root of a subtree may be a non-singleton

information set.
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For an information setℎ,𝑇 (ℎ) denotes the largest
subtree whose root is ℎ. A subgame is a subtree whoose root is

singleton.

Supergames and supertrees: Let Γ(𝑥) be the largest subgame

starting at 𝑥 with |𝑁 | players. For a coalition𝐶 , define 𝑃𝐶 = {{ 𝑗} ⊆
𝑁 | 𝑗 ∈ 𝑁, 𝑗 ∉ 𝐶} ∪𝐶—the partition of 𝑁 in which only the agents

in 𝐶 form a coalition. For a player 𝑖 , define 𝐹𝑖 = {𝐶 ′ ∈ 2
𝑁 |𝑖 ∈

𝐶 ′
where 𝐶 ′

is feasible}—the set of all feasible coalitions in 𝑁 that

include 𝑖 .

A supergame of Γ(ℎ), denoted by Γ𝑃𝐶 , is the game Γ in which

the set of players 𝑁 is replaced with the set of players given by the

partition 𝑃𝐶 where 𝐶 ∈ 𝐹𝑖 and 𝑖 ∈ 𝐼 (ℎ). The set of all supergames

is defined as follows:

𝑠𝑢𝑝𝑒𝑟 (Γ(ℎ)) = {Γ𝑃𝐶 |𝐶 ∈ 𝐹𝑖 , 𝑖 ∈ 𝐼 (ℎ)}.
Note that if the original game is an 𝑛-player game, then its su-

pergame Γ𝑃𝐶 is an (𝑛 − |𝐶 | + 1)-player game. Note that each 𝑗 ∈ 𝐶
acts as an agent of a single player 𝐶 in Γ𝑃𝐶 . For example, if Γ is

a six-player game where 𝑁 = {1, 2, 3, 4, 5, 6}, then Γ{1,2,4} is the
game in which the players are {1, 2, 4}, 3, 5, and 6. 1, 2, and 4 are the

agents of coalitional player {1, 2, 4}.
Let Γ(ℎ) be the largest subgame starting at 𝑟𝑜𝑜𝑡 (ℎ) and 𝑇 (ℎ) be

a subtree of game Γ(ℎ). A supertree of 𝑇 (ℎ), denoted by 𝑇𝑃𝐶 , is the

subtree of Γ(ℎ) in which the set of players 𝑁 is replaced with the

set of players given by the partition 𝑃𝐶 where 𝐶 ∈ 𝐹𝑖 and 𝑖 ∈ 𝐼 (ℎ).
The set of all supertrees is defined as follows:

𝑠𝑢𝑝𝑒𝑟 (𝑇 (ℎ)) = {Γ𝑃𝐶 |𝐶 ∈ 𝐹𝑖 , 𝑖 ∈ 𝐼 (ℎ)}.

Systems: A system or a “solution profile” is a pair (𝜎, 𝜋) which is

defined as follows. Let𝐺 (ℎ) be the set of subgames of the largest

subgame starting at 𝑟𝑜𝑜𝑡 (ℎ) for some information set ℎ. Let 𝜎 (ℎ,𝑔)
denote a strategy profile in the subgame 𝑔 ∈ 𝐺 (ℎ). Note that func-
tion 𝜎 (ℎ, · ) gives for each information set a collection of strat-

egy profiles one for each successor subgame: 𝜎 (ℎ) := (𝑠𝑔)𝑔∈𝐺 (ℎ) .
Moreover, 𝜎 := (𝑠ℎ,𝑔)ℎ∈𝐻,𝑔∈𝐺 (ℎ)—i.e., 𝜎 is a family of collection

of strategy profiles. Suppose that 𝑔′ is a subgame of 𝑔. In gen-

eral 𝜎 (ℎ,𝑔|𝑔′) ≠ 𝜎 (ℎ,𝑔′)—i.e., 𝜎 (ℎ,𝑔′) is not necessarily equal

to the restriction of the strategy profile 𝜎 (ℎ,𝑔) to the subgame

starting at node 𝑔′. Similarly, let 𝜋 (ℎ,𝑔) denote a feasible parti-

tion of players in subgame 𝑔 ∈ 𝐺 (ℎ). Let 𝜋 (ℎ) := (𝜋𝑔)𝑔∈𝐺 (ℎ) and
𝜋 := (𝜋ℎ,𝑔)ℎ∈𝐻,𝑔∈𝐺 (ℎ) . The interpretation of a pair (𝜎 (ℎ,𝑔), 𝜋 (ℎ,𝑔))
is as follows. Let 𝐶 be some coalition in 𝜋 (ℎ,𝑔). Each agent 𝑖

of player 𝐶 chooses their actions based on the strategy profile

14
Note that the root of an information set ℎ is different than the root of a subtree

𝑇 (ℎ) .



𝜎 (ℎ,𝑔). Their actions are guided by the coalitional utility function

𝑢𝐶 ( · |𝜋 (ℎ,𝑔)) in the subgame 𝑔.

Non-cooperative solution concepts: Let Γ = (𝑃,𝑋, 𝐼,𝑢, 𝑆, 𝐻 ) be
a coalitional strategic game. A mixed strategy profile 𝑠 is called

a Nash equilibrium if for every player 𝑗 ∈ 𝑃 , 𝑠 𝑗 ∈ arg max𝑠′
𝑗
∈𝑆′

𝑗

𝑢 𝑗 (𝑠 ′𝑗 , 𝑠−𝑗 ). A mixed strategy profile 𝑠 is a called a subgame-perfect

Nash equilibrium (SPNE) if for every subgame𝐺 of Γ the restriction

of 𝑠 to subgame 𝐺 is a Nash equilibrium in 𝐺 .

3.2 The Recursive Backward Induction
algorithm: Perfect information games

Let Γ be a coalitional strategic game with perfect information with-

out a chance move. I define Recursive Backward Induction (RBI)

algorithm by a recursive induction procedure. RBI algorithm out-

puts a system on each subgame 𝐺 (𝑥) starting at some node 𝑥 by

inducting on the number of players (𝑛) and number of nodes (𝑥 ) in

the successor nodes of 𝑥 including 𝑥 itself. For example, if 𝑥 is a

terminal node, then (𝑛, 𝑥) = (1, 1). Let 𝑖 = 𝐼 (𝑥) be the active player
at 𝑥 . The solution of the game in which Nature moves at the root

of the game is simply the profile of the solutions of the subgames

starting at every immediate successor of the root.

(1) Base case: Let (𝑛, 𝑥) = (1, 1). Equilibrium system at𝐺 (𝑥) is
defined by the pair (𝜎∗, 𝜋∗) such that𝜎∗ (𝑥) ∈ arg max𝑠∈𝑆 𝑢1 (𝑠)
and 𝜋∗ = {1}.

(2) Induction step: Assume that equilibrium system is defined

for all subgames with parameters (𝑚,𝑦) satisfying 1 ≤ 𝑚 ≤
𝑛, 1 ≤ 𝑦 ≤ 𝑥 such that (𝑛, 𝑥) ≠ (1, 1) and (𝑚,𝑦) ≠ (𝑛, 𝑥).
By assumption, [𝜎∗ (𝑥 ′), 𝜋∗ (𝑥 ′)] is defined for all𝑥 ′ ∈ 𝑆𝑢𝑐𝑐 (𝑥)
where 𝑥 is the root of subgame 𝐺 (𝑥). The solution is ex-

tended to subgame𝐺 (𝑥) with parameters (𝑛, 𝑥) as follows. I
first define “reference points” to compare the solutions of all

supergames with the non-cooperative choice of 𝑖 at 𝑥 .

(a) The “autarky” reference point at 𝑥 , 𝑟0 (𝑥): Let 𝑏∗𝑖 (𝑥) be
a utility-maximizing behavior strategy of 𝑖 at 𝑥 given

[𝜎∗ (𝑥 ′), 𝜋∗ (𝑥 ′)]:

𝑏∗𝑖 (𝑥) ∈ arg max

𝑏′
𝑖
(𝑥) ∈Δ𝐴𝑖 (𝑥)

𝑢𝑖 (𝑏 ′𝑖 (𝑥) |𝜎
∗ (𝑥 ′), 𝜋∗ (𝑥 ′)).

Let 𝑟0 (𝑥) := [𝜏 {𝑖 } (𝑥), 𝜋 {𝑖 } (𝑥)] which is defined as the

extension of [𝜎∗ (𝑥 ′), 𝜋∗ (𝑥 ′)] with 𝑥 ′ ∈ 𝑠𝑢𝑐𝑐 (𝑥) to the

largest subgame starting at node 𝑥 where 𝑖 chooses the

behavior strategy 𝑏∗
𝑖
(𝑥), and 𝜋 {𝑖 } (𝑥) is defined as the

partition in which 𝑖 and other players in the subgame at 𝑥

act non-cooperatively.
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(b) Reference points: For any (𝑛, 𝑥) consider supergame Γ𝑃𝐶
where 𝐶 ∋ 𝑖 is a feasible non-singleton coalition. Because

Γ𝑃𝐶 is an (𝑛 − |𝐶 | + 1)-person subgame with 𝑥 nodes, its

equilibrium system, [𝜏𝐶 (𝑥), 𝜋𝐶 (𝑥)], is defined by assump-

tion.
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Put differently, 𝜏 {𝑖} (𝑥, 𝑥) is defined as the strategy profile in which 𝑖 chooses behav-

ior action 𝑏∗𝑖 (𝑥) , and 𝜋 {𝑖} (𝑥) is defined as the partition in which 𝑖 and other players

in the subgame at 𝑥 act non-cooperatively. And, the rest follows the strategy profile

and partitions given in system [𝜎∗ (𝑥 ′), 𝜋∗ (𝑥 ′) ] for all successors 𝑥 ′ ∈ 𝑆𝑢𝑐𝑐 (𝑥) .
Note that 𝜏 {𝑖} (𝑥) = 𝜏 {𝑖} (𝑥, 𝑥 ′) for all 𝑥 ′ ∈ 𝑆𝑢𝑐𝑐 (𝑥)—i.e., it gives a strategy profile

for every subgame.

Let (𝑟 𝑗 (𝑥)) 𝑗𝑗=1
be a sequence for 𝑖 where 𝑟 𝑗 (𝑥) := [𝜏𝐶 𝑗 (𝑥),

𝜋𝐶 𝑗 (𝑥)] that satisfies (i) for every two indices 𝑗 and 𝑗 ′with
𝑗 < 𝑗 ′, we have𝑢𝑖 (𝜏𝐶 𝑗 (𝑥) |𝜋𝐶 𝑗 (𝑥)) ≤ 𝑢𝑖 (𝜏𝐶 𝑗′ (𝑥) |𝜋𝐶 𝑗′ (𝑥))
(i.e., nondecreasing sequence for 𝑖), and (ii) if 𝑢𝑖 (𝜏𝐶 𝑗 (𝑥) |
𝜋𝐶 𝑗 (𝑥)) = 𝑢𝑖 (𝜏𝐶 𝑗′ (𝑥) |𝜋𝐶 𝑗′ (𝑥)) and 𝐶 𝑗 ⊂ 𝐶 𝑗 ′ , then 𝑟 𝑗 pre-

cedes 𝑟 𝑗 ′ for supergame coalitions 𝐶 𝑗 and 𝐶 𝑗 ′ containing

𝑖 .16

(c) Individually rational reference points: Given the autarky

reference point 𝑟∗
0
(𝑥), the following individually rational

(IR) reference points are defined inductively as follows.

Assume that 𝑟 𝑗 (𝑥) is IR, denoted as 𝑟∗
𝑗
(𝑥), for some 𝑗 ≥

0. Let 𝑗 ′ > 𝑗 be the smallest number such that 𝑟 𝑗 ′ (𝑥)
is IR with respect to 𝑟∗

𝑗
(𝑥)—i.e., 𝑢𝑖′ (𝜏𝐶 𝑗′ (𝑥) |𝜋𝐶 𝑗′ (𝑥)) >

𝑢𝑖′ (𝜏𝐶 𝑗 (𝑥) |𝜋𝐶 𝑗 (𝑥)) for every agent 𝑖 ′ ∈ 𝐶 𝑗 ′ where 𝐶 𝑗 ′ ⊆
𝐶 𝑗 ′ and 𝐶 𝑗 ′ ∈ 𝜋𝐶 𝑗′ (𝑥).17
Let 𝑟∗

¯𝑙
(𝑥) be the greatest IR reference point that maximizes

𝑖’s utility, and call it supergame perfect at 𝑥 . Note that

𝑟∗
¯𝑙
(𝑥) = [𝜏𝐶¯𝑙 (𝑥), 𝜋𝐶¯𝑙 (𝑥)]. It may be that 𝑟∗

0
(𝑥) where ¯𝑙 = 0

is the only IR reference point.

Equilibrium system of Γ(𝑥) is defined as the system [𝜎∗, 𝜋∗]
where [𝜎∗ (𝑥), 𝜋∗ (𝑥)] = 𝑟∗

¯𝑙
(𝑥), which extends [𝜎∗ (𝑥 ′), 𝜋∗ (𝑥 ′)]

where 𝑥 ′ ∈ 𝑆𝑢𝑐𝑐 (𝑥). When 𝑥 is the root of the game tree of

Γ, [𝜎∗, 𝜋∗] is said to be equilibrium system of Γ.

To summarize, an equilibrium system is the one that is both

subgame and supergame “perfect” at every subgame and supergame.

Notice that the RBI procedure incorporates backward induction

reasoning as well as some elements of forward induction reasoning

in the sense that the coalitions formed in the ‘past’ rationally affect

the behavior of players in the future. The next theorem shows that

an equilibrium system always exists.

Theorem 3.1. There exists an equilibrium system in pure strate-
gies in every finite 𝑛-person coalitional strategic game with perfect
information.

Proof. The RBI algorithm is well-defined because the game is

finite—there are finitely many players and finitely many pure strate-

gies. Base case is the standard utility maximization over finitely

many actions, so a pure utility-maximizing action exists. Induction

step needs some elaboration. Note that this step is recursive in that

it assumes that equilibrium system of “smaller” games has been

defined. Then, at every node the procedure compares the solution

of each supergame and calculates the greatest individually rational

solution of a supergame inductively. This procedure will also end

after finitely many steps because there are finitely many players

and actions in each supergame. This is because, by definition, a

supergame of a subgame has fewer players than the players in

the subgame due to forming coalitions. Therefore, the algorithm is

guaranteed to terminate. The outcome of this algorithm gives the

equilibrium system of the coalitional strategic game. □

Theorem 1 shows that in finite coalitional strategic games with

perfect information, there is always an equilibrium system where

16
Ties are broken arbitrarily.

17
In other words,𝐶 𝑗′ contains coalition𝐶 𝑗′ such that𝐶 𝑗′ is part of the solution of

the supergame Γ𝑃𝐶𝑗′
.



all the strategies that make up the solution are pure strategies. I call

coalitions stable if they survive the RBI and players dynamically
rational if they utilize the RBI in coalitional strategic games.

3.3 Imperfect information games
Let Γ be an extensive form game with imperfect information. I

next define Recursive Induction (RBI) algorithm which outputs a

system on each subtree 𝑇 (ℎ) starting at some information set ℎ by

inducting on the number of players (𝑛) and number of information

sets (
¯ℎ) in the successor information sets of ℎ including ℎ itself. For

example, if ℎ is a terminal information set, then (𝑛, ¯ℎ) = (1, 1). Let
𝑖 = 𝐼 (ℎ) be the active player at information set ℎ.

(1) Base case: Let (𝑛, ¯ℎ) = (1, 1) and 𝑔𝑃 ′ be the largest sub-

game at 𝑟𝑜𝑜𝑡 (ℎ) where 𝑃 ′ is the set of players in the sub-

game.
18

Equilibrium system at 𝑇 (ℎ) is defined by the pair

(𝜎∗ (ℎ), 𝜋∗ (ℎ)) := (𝜎∗, 𝜋∗) such that 𝜎∗ (ℎ) is a subgame-

perfect equilibrium in 𝑔𝑃 ′ and 𝜋∗ = 𝑃 ′ in which no player

forms a coalition.
19

(2) Induction step:
Assume that equilibrium system is defined for all subtrees

with parameters (𝑚,𝑦) satisfying 1 ≤ 𝑚 ≤ 𝑛, 1 ≤ 𝑦 ≤ ¯ℎ

such that (𝑛, ¯ℎ) ≠ (1, 1) and (𝑚,𝑦) ≠ (𝑛, ¯ℎ). By assumption,

[𝜎∗ (ℎ′), 𝜋∗ (ℎ′)] is defined for all ℎ′ ∈ 𝑆𝑢𝑐𝑐 (ℎ) where ℎ is

the root of subtree 𝑇 (ℎ). The solution is extended to subtree

𝑇 (ℎ) with parameters (𝑛, ¯ℎ) as follows. I first define reference
points to iteratively compare the solutions of all supertrees

with the non-cooperative choice of 𝑖 at ℎ.

(a) The autarky reference point atℎ, 𝑟0 (ℎ): Let 𝑟0 (ℎ) := [𝜏 {𝑖 } (ℎ),
𝜋 {𝑖 } (ℎ)] which is defined as the extension of [𝜎∗ (ℎ′), 𝜋∗ (ℎ′)]
with ℎ′ ∈ 𝑠𝑢𝑐𝑐 (ℎ) to the largest subgame starting at node

𝑟𝑜𝑜𝑡 (ℎ) such that [𝜏 {𝑖 } (ℎ), 𝜋 {𝑖 } (ℎ)] is an SPNE in this

subgame where all players acting between 𝑟𝑜𝑜𝑡 (ℎ) and ℎ
inclusive choose their strategies non-cooperatively.

20

(b) Reference points: For any (𝑛, ¯ℎ) consider supertree𝑇𝑃𝐶 (ℎ)
where 𝐶 ∋ 𝑖 is a feasible non-singleton coalition. Because

𝑇𝑃𝐶 (ℎ) is an (𝑛−|𝐶 |+1)-person subtree with ¯ℎ information

sets, its equilibrium system, [𝜏𝐶 (ℎ), 𝜋𝐶 (ℎ)], is defined by

assumption.

Let (𝑟 𝑗 (ℎ)) 𝑗𝑗=1
be a sequence for 𝑖 where 𝑟 𝑗 (ℎ) := [𝜏𝐶 𝑗 (ℎ),

𝜋𝐶 𝑗 (ℎ)] that satisfies (i) for every two indices 𝑗 and 𝑗 ′with
𝑗 < 𝑗 ′, we have 𝑢𝑖 (𝜏𝐶 𝑗 (ℎ) |𝜋𝐶 𝑗 (ℎ)) ≤ 𝑢𝑖 (𝜏𝐶 𝑗′ (ℎ) |𝜋𝐶 𝑗′ (ℎ))
(i.e., nondecreasing sequence for 𝑖), and (ii) if 𝑢𝑖 (𝜏𝐶 𝑗 (ℎ) |
𝜋𝐶 𝑗 (ℎ)) = 𝑢𝑖 (𝜏𝐶 𝑗′ (ℎ) |𝜋𝐶 𝑗′ (ℎ)) and 𝐶 𝑗 ⊂ 𝐶 𝑗 ′ , then 𝑟 𝑗 pre-

cedes 𝑟 𝑗 ′ for supertree coalitions 𝐶 𝑗 and 𝐶 𝑗 ′ containing

𝑖 .21

(c) IR reference points: The autarky reference point 𝑟0 (ℎ)
is individually rational by definition. The following IR

reference points are defined inductively as follows.

Assume that 𝑟 𝑗 (ℎ) is IR, denoted as 𝑟∗
𝑗
(ℎ), for some 𝑗 ≥

0. Let 𝑗 ′ > 𝑗 be the smallest number such that 𝑟 𝑗 ′ (ℎ)
is IR with respect to 𝑟∗

𝑗
(ℎ)—i.e., 𝑢𝑖′ (𝜏𝐶 𝑗′ (ℎ) |𝜋𝐶 𝑗′ (ℎ)) >

18
Note that 𝑔𝑃′ is the only element in𝐺 (ℎ) .

19
Note that 𝜎∗ (ℎ) is a strategy profile in 𝑔𝑃′ .

20
Note that SPNE is defined with respect to players, which may be coalitions, which

are given by partition 𝜋∗ (ℎ′) .
21
Ties are broken arbitrarily.

𝑢𝑖′ (𝜏𝐶 𝑗 (ℎ) |𝜋𝐶 𝑗 (ℎ)) for every 𝑖 ′ ∈ 𝐶 𝑗 ′ where 𝐶 𝑗 ′ ⊆ 𝐶 𝑗 ′

and 𝐶 𝑗 ′ ∈ 𝜋𝐶 𝑗′ (ℎ).
Let 𝑟∗

¯𝑙
(ℎ) be the greatest IR reference point, which max-

imizes 𝑖’s utility. Note that 𝑟∗
¯𝑙
(ℎ) = [𝜏𝐶¯𝑙 (ℎ), 𝜋𝐶¯𝑙 (ℎ)]. It

may be that 𝑟∗
0
(ℎ) where ¯𝑙 = 0 is the only IR reference

point.

Equilibrium system of 𝑇 (ℎ) is defined as [𝜎∗, 𝜋∗] where

[𝜎∗ (ℎ), 𝜋∗ (ℎ)] = 𝑟∗
¯𝑙
(ℎ), which extends [𝜎∗ (ℎ′), 𝜋∗ (ℎ′)] where

ℎ′ ∈ 𝑆𝑢𝑐𝑐 (ℎ). When ℎ is the root of the game tree of Γ,
[𝜎∗, 𝜋∗] is said to be equilibrium system of Γ.

In imperfect information games, an equilibrium system is the one

that is both subtree and supertree “perfect” for every subtree and

supertree. In addition, if the extensive form structure of a normal

form game is not given, then the equilibrium system of the game is

defined as the combination of the solutions of the extensive form

games whose reduced normal form is the given normal form game.

Next theorem shows the existence of the equilibrium system in

imperfect information games.

Theorem 3.2. There exists an equilibrium system in possibly
mixed strategies in every finite 𝑛-person coalitional strategic game.

Proof. The RBI procedure for imperfect information games is

also well-defined because the game is finite. In the base case, an

equilibrium system exists because a subgame-perfect equilibrium

exists. The induction step assumes that an equilibrium system of the

smaller subtrees has been defined. Then it defines the equilibrium

system of the larger subtree at an information set ℎ as the greatest

individually rational equilibrium system among the equilibrium

systems of the supertrees starting at ℎ. The greatest individually ra-

tional referene point exists because (i) by induction hypothesis the

equilibrium system of a supertree exists, and (ii) there are finitely

many supertrees because there are finitely many coalition-forming

possibilities. The whole process ends after finitely many steps be-

cause there are finitely many information sets. The outcome of the

algorithm gives the equilibrium system of the game. □
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SUPPLEMENTAL MATERIAL: FURTHER
APPLICATIONS
3.4 Logrolling
Early literature on logrolling includes seminal works of Buchanan

and Tullock [7], and Riker and Brams [32], whose vote-trading

paradox shows that individually advantageous vote-trading may

lead to Pareto inferior outcomes for everyone including the traders.

More recently, Casella and Palfrey [8] propose a vote-trading model

in which voters have separable preferences over proposals and each

proposal is decided bymajority voting. Their finding is quite general

and striking. They show that for any finite number of voters (who

are assumed to bemyopic), proposals, and any separable preferences

and initial vote profile there exists a sequence of strictly payoff-

improving trades that leads to a stable vote profile in the sense that

no further strictly payoff-improving trade is possible.

Let 𝐿(𝐾, 𝑣, 𝑟 ) denote a logrolling game, which is defined as a

coalitional strategic game Γ = (𝑃,𝑋, 𝐼,𝑢, Σ, 𝐻 ) with the following

parameters and interpretation. Each player 𝑖 ∈ 𝑃 is called a voter,

𝐾 = {1, 2, ..., ¯𝑘} denotes the number of proposals to vote, and 𝑟

denotes the rule to determine the acceptance or rejection of a pro-

posal such as the majority rule. Each voter 𝑖 has 𝑣𝑖 (𝑘) votes to vote

for or against proposal 𝑘 . Let 𝑣 = (𝑣1, ..., 𝑣𝑛) denote the initial vote
profile. Forming a coalition can be interpreted as the agents that

make up the coalition trade votes à la Casella and Palfrey [8].

Next, I give an existence result for this very general logrolling

game. The following corollary directly follows from Theorem 3.2.

Corollary 3.3. Every logrolling game possesses an equilibrium
system.

In other words, for any finite number of voters and proposals, any

initial vote profiles, any voting rule, any type of preferences (seper-

able or not), there exists an equilibrium system in every logrolling

game. Corollary 3.3 extends Casella and Palfrey’s (2019) existence

result to logrolling games with (i) dynamically rational voters, (ii)

any type of voting rule, and (iii) any type of preferences. In the

logrolling game, the dynamic rationality of the voters is arguably

an important extension in part because otherwise some voters

might engage in myopically payoff-improving trade, which may

eventually decrease their utility.

Figure 4 illustrates a vote-trading example by Casella and Pal-

frey [8] in which the Condorcet winner, (𝐴, 𝐵,𝐶), exists. However,
myopic payoff-improving trades may lead to a stable outcome that

differs from the Condorcet winner. Consider the following sequence

of trades: (i) voters 2 and 3 vote against A and B (i.e., 2 trades with
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1 2 3 4 5

A 4 −7 1 −1 4

B 1 1 −4 4 −1

C −3 4 2 2 2

Figure 3: A logrolling game by Casella and Palfrey [8] in
which the unique equilibrium system chooses the Con-
dorcet winner. Assume that the initial vote profile is such
that for every 𝑖 ∈ {1, 2, 3, 4, 5} and every 𝑘 ∈ {𝐴, 𝐵,𝐶}, 𝑣𝑖 (𝑘) = 1.
The table shows each voter’s utility from the accepted pro-
posals. The utility of a rejected proposal is normalized to 0.

3 a B vote for an A vote), (ii) 4 and 5 vote for A and B, and then (iii)

1 and 3 vote against B and C. The final outcome is that only A is

implemented. As Casella and Palfrey [8] show, voters at each step

myopically benefit from these trades and that the final vote profile

is stable. However, note that the utility of voter 2 at outcome A is

−7. Thus, if voter 2 were dynamically rational she would not trade

votes with voter 3 in the first place.

A logrolling game 𝐿(𝐾, 𝑣, 𝑟 ) with the majority rule is said to have

a Condorcet winner if (i) 𝑢𝐶 (𝑠) > 𝑢𝐶 (𝑠 ′) whenever 𝑢𝑖 (𝑠) > 𝑢𝑖 (𝑠 ′)
for every 𝑖 ∈ 𝐶 , and (ii) there is an outcome that is preferred

to any other outcome by a majority of the voters. The following

proposition shows that, as a coalitional extensive form game, the

unique equilibrium system outcome of the logrolling game is the

Condorcet winner.

Proposition 3.4. Suppose that a logrolling game with the major-
ity rule has a Condorcet winner. Then, the unique equilibrium system
outcome of the logrolling game is the Condorcet winner.

Proof. To reach a contradiction, suppose that the logrolling

game has an equilibrium system outcome 𝑠 ′ that differs from the

Condorcet winner 𝑠 . Then, by definition the majority of the voters

(say, 𝐶) strictly prefer 𝑠 to 𝑠 ′. In the relevant supergame, forming 𝐶

would be individually rational and 𝐶 can profitably deviate from

𝑠 ′, which implies that 𝑠 ′ cannot be an outcome of an equilibrium

system. □

Note that Proposition 3.4 shows that the equilibrium system out-

come of the logrolling game is Condorcet-consistent. Although the

equilibrium system depends on the structure of the coalitional exten-

sive form game, its outcome is always the Condorcet winner, when-

ever it exists. Casella and Palfrey [8] showed that payoff-improving

myopic vote-trading may lead to a stable outcome that is not the

Condorcet winner, which contrasts the conjecture of Buchanan and

Tullock [7] that vote-trading would lead to the Condorcet winner,

if there is one. Proposition 3.4 shows that this conjecture holds if

the voters are dynamically rational.

To illustrate an equilibrium system of a logrolling game, consider

Figure 4 [8]. The coalitional strategic game form of this vote-trading

game is too big to illustrate here due to the number of players and

strategies. Thus, I next solve this game without explicitly showing

the game tree. Suppose that the order inwhich players choose strate-

gies is 1, 2, ..., 7, and that 𝑢𝐶 ( · ) :=
∑
𝑖∈𝐶 𝑢𝑖 ( · ) for any coalition

𝐶 ⊆ {1, 2, ..., 7}.

1 2 3 4 5 6 7

A 2 −1 −1 −1 1 1 1

B −1 2 −1 −1 1 1 1

C −1 −1 2 −1 1 1 1

D −1 −1 −1 2 1 1 1

Figure 4: A 7-voter logrolling example [8] and its equilib-
rium system

It is clear that it is a dominant strategy for voters 5, 6, and 7 to

vote for each proposal. First, notice that the following strategy pro-

file forms a subgame perfect equilibrium when considered with the

dominant strategies of 5, 6, and 7: Each of the voters in {1, 2, 3, 4}
votes for their preferred proposal and against the other proposals.

As a result, all proposals are accepted. Each player in {1, 2, 3, 4}
receives a utility of −1, whereas other players each receive a utility

of 4. Second, consider the supergame coalition of {1, 2, 3, 4} where
each agent votes against all proposals. As a result, all proposals

are rejected. Thus, every player’s payoff would be 0. Clearly, this

outcome is preferable to the voters 1 − 4. Another supergame coali-

tion is {1, 2}. Suppose that both 1 and 2 chooses to vote for their

preferred proposal and vote against all other proposals with the

hope that voters 3 and 4 may reject all proposals, in which case

the utility of both 1 and 2 would inrease to 1. Voters 3 and 4 would

each receive −2. But then in the supergame Γ{1,2} and its subgame

starting with voter 3, voters 3 and 4 would form a coalition against

{1, 2} and vote for their preferred proposal so that they each strictly

benefit. The coalition of {3, 4} is then a credible threat to the coali-

tion of {1, 2}. Therefore, player 1 would prefer the outcome of the

supergame Γ{1,2,3,4} in which each voter in {1, 2, 3, 4} votes against
all proposals. In summary, the equilibrium system I have just de-

scribed includes the coalition {1, 2, 3, 4} where every voter votes

against all proposals, and players 5, 6, 7 each vote for all proposals.

As a result, all proposals are rejected in the equilibrium system of

this game.
22

3.5 Corruption
In this subsection, I show how to study “corruption” by incor-

porating wealth into coalitonal extensive form games. Let Γ =

(𝑃,𝑋, 𝐼,𝑢, Σ, 𝐻,𝑊 ) be a coalitonal extensive form game with wealth

in which 𝑊 = (𝑊1,𝑊2, ...,𝑊𝑛) denotes a wealth profile where

𝑊𝑖 ∈ R+ denotes the wealth of each player 𝑖 . Each player starts

with an initial wealth and side payments are allowed. Player 𝑖 can

make non-IR supertree coalitions individually rational by transfer-

ring wealth to some agents who otherwise would not rationally

accept to cooperate at an information set. Obviously, wealth goes

into the utility function, and there is a trade-off between transfer-

ring wealth and obtaining a more desirable solution. Via this way,

one could capture the payments that are made to individuals in

order to “buy” their cooperation in strategic situations. As a result,

coalitonal extensive form games with wealth would enable social

scientists to study the strategic effects of corruption (e.g., buying

someone’s cooperation to induce them to choose a particular action,

22
Note that if individual or coalitional utility functions change in a way that makes it

attractive for a voter in {1, 2, 3, 4} to join a coalition with the voters 5, 6, or 7, then

the equilibrium system might change.
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Figure 5: International market entry game with an initial
wealth distribution𝑊 = (0, 100, 0, 0)

which otherwise would not be chosen). Mutatis mutandis, the ex-

istence results (Theorem 3.1 and Theorem 3.2) would analogously

remain valid under this extension.

To given an example, consider Figure 5, which is a slight modified

version of the market entry game presented in Figure 1. Note that

in the equilibrium system of the original game Firm 1 and Firm 4

colludes, so Firm 1 enters the market 2 and Firm 4 chooses A. The

equilibrium system outcome is (60, 0, 0, 60). Suppose that the initial

wealth profile is𝑊 = (0, 100, 0, 0) and that the utility is linear in

money for the sake of simplicity. Notice that Firm 2 would now

be willing to transfer 31 units of money to Firm 1 to incentivize

cooperation.
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This transfer of money would make Firm 2 better off

because otherwise Firm 2 receives a utility of 0 at the equilibrium

system outcome, and it clearly makes Firm 1 better off. As a result,

Firm 1 would choose to enter market 1 and Firm 2 would choose A

under the RBI with the given initial wealth structure. The outcome

of the new equilibrium system would be (30, 40, 30, 0) and the final

wealth distribution would be𝑊 = (31, 69, 0, 0).
Figure 5 presents a simple game that illustrates howmoney trans-

fers from one player to another can affect the equilibrium system

of a game. One can think of more complex coalitonal extensive

form games with a different initial wealth distribution. Clearly,

the possibility of money transfer between two players may trigger

other players to offer “counter-bribes.” For example, if Firm 4 had an

initial wealth of say𝑊4 = 40, then Firm 4 would be able to “match”

Firm 2’s offer, hence incentivize Firm 1 to enter market 2.

3.6 Banning policy
Consider the Banning Policy game presented in Figure 6 in which

the government (Player 1) chooses between the policy of banning

or not banning a market such as drugs, organ trade, abortion etc.

A buyer (Player 2), who is considering buying the relevant prod-

uct/service, chooses between having buying (𝑌 ) or not (𝑁 ); and,

and the seller (Player 3) chooses between charging a high (𝐻 ) or low

23
For simplicity, I assume that only integer unit transfers are possible.
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Figure 6: A stylized banning policy game in which govern-
ment moves first, the buyer who considers buying an illegal
good/service moves second, and the seller moves last.

(𝐿) price. Figure 1 illustrates players’ actions and preferences over

the outcomes. I assume the following preferences in this stylized

example:

(1) The government prefers 𝑁 to 𝑌 , and ‘Legal’ to ‘Illegal’ in

any situation.

(2) The buyer’s worst outcome is when the choices are ‘Illegal,

𝑌 , and 𝐻 ’, whereas her best outcome is when the choices are

‘Legal, 𝑌 , and 𝐿’. Her second most preferred outcomes are

when the choices are ‘Illegal, 𝑌 , and 𝐿’ and ‘Legal, 𝑌 , and

𝐻 ’, in which case I assume that she goes to an alternative

seller with a lower price as the product is legal. She receives

a utility of 2 when she chooses 𝑁 .

(3) The seller’s worst outcome is when the buyer does not buy

the product from this seller, whereas the seller’s best outcome

is when the choices are ‘Illegal, 𝑌 , and 𝐻 ’. When the buyer

chooses 𝑌 , and the price is 𝐿, the seller prefers ‘Legal’ to

‘Illegal’, so the seller’s utility is 3 and 2, respectively.

First, the subgame perfect equilibrium in this game can be found

by following the backward induction procedure: The seller would

choose 𝐻 on the left node (4 vs. 2) and 𝐿 on the right node (1 vs.

3). Given the seller’s choice, the buyer would choose 𝑁 and 𝑌 on

the left and right nodes, respectively. Anticipating these choices,

the government would choose to ban the product. So, the outcome

of this solution would be (3, 2, 1). By banning the product, the

government relies on the assumption that the seller and the buyer

will act independently and will not cooperate and coordinate their

actions.

However, after the government plays ‘Illegal’, the buyer and

the seller have an incentive to cooperate because they each would

prefer outcome (1, 3, 2) to (3, 2, 1), as is illustrated in Figure 7.

For simplicity assume that coalitional utility function is defined as

follows: 𝑢𝐶 ( · ) := min𝑖∈𝐶 𝑢𝑖 ( · ) where 𝐶 ⊆ {1, 2, 3}. For example,

coalitional player {2, 3}’s payoff from (1, 3, 2) is given 𝑢 {2,3} =

𝑚𝑖𝑛(3, 2) = 2 and from (3, 2, 1) is given by 𝑢 {2,3} = 𝑚𝑖𝑛(2, 1) = 1.

Thus, the best response of coalition {2, 3} is to choose 𝑌 and 𝐿 after
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Figure 7: Equilibrium system solution of the banning policy
game. Assume that 𝑢𝐶 ( · ) := min𝑖∈𝐶 𝑢𝑖 ( · ) for any coalition
𝐶 ⊆ {1, 2, 3}. The lines with arrows represent best responses,
which could be non-cooperative or coalitional. A step-by-
step equilibrium system solution of this game is available
at https://youtu.be/AzH7WfRu7oY.

the choice of Illegal. So, banning the product would not necessarily

prevent it from happening because there is a mutually beneficial

opportunity to cooperate. If the government is forward-looking

and anticipates that the buyer and the seller will cooperate and

coordinate their actions (as shown by solid arrows in Figure 7), then

it would prefer to legalize the product, in which case the outcome

would be (2, 4, 3).
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Note that the cooperation between Player 2 and

Player 3 is a credible threat—if the government chooses ‘Illegal’,

then the threat will be carried out because it is mutually beneficial

for the buyer and the seller.

To give more examples, in some countries, it is illegal to cooper-

ate under certain circumstances: oligopolistic cartels, selling/buying

drugs, organ trade, forming partnerships—such as dating and same-

sex couple marriage or partnership—just to name a few. In these

games and other games played outside of restricted lab conditions,

it is difficult and costly, if not impossible, to enforce that players

will not exercise their free will to cooperate. Under such strategic

interactive decision-making situations, I assume that players ra-

tionally take into account strategic partnership opportunities and

threats as long as they are “credible.”

24
Note that in the right subgame Player 2 and Player 3 choose their actions indepen-

dently as they would not benefit from cooperation, which is illustrated by the lines

with arrows in Figure 7 .

https://youtu.be/AzH7WfRu7oY
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