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ABSTRACT
Machine learning techniques can be useful in applications such as
credit approval and college admission. However, to be classified
more favorably in such contexts, an agent may decide to strategi-
cally withhold some of her features, such as bad test scores. This is
a missing data problem with a twist: which data is missing depends

on the chosen classifier, because the specific classifier is what may
create the incentive to withhold certain feature values. We address
the problem of training classifiers that are robust to this behavior.

We design three classification methods:Mincut,Hill-Climbing
(HC) and Incentive-Compatible Logistic Regression (IC-LR). We
show that Mincut is optimal when the true distribution of data is
fully known. However, it can produce complex decision boundaries,
and hence be prone to overfitting in some cases. Based on a charac-
terization of truthful classifiers (i.e., those that give no incentive to
strategically hide features), we devise a simpler alternative called
HCwhich consists of a hierarchical ensemble of out-of-the-box clas-
sifiers, trained using a specialized hill-climbing procedure which
we show to be convergent. For several reasons, Mincut and HC
are not effective in utilizing a large number of complementarily
informative features. To this end, we present IC-LR, a modification
of Logistic Regression that removes the incentive to strategically
drop features. We also show that our algorithms perform well in
experiments on real-world data sets, and present insights into their
relative performance in different settings.
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1 INTRODUCTION
Applicants to most colleges in the US are required to submit their
scores for at least one of the SAT and the ACT. Both tests are more
or less equally popular, with close to two million taking each in
2016 [1]. Applicants usually take one of these two tests – whichever
works to their advantage.1 However, given the growing competi-
tiveness of college admissions, many applicants now take both tests
and then strategically decide whether to drop one of the scores (if
they think it will hurt their application) or report both.2 The key is-
sue here is that it is impossible to distinguish between an applicant
who takes both tests but reports only one, and an applicant that
takes only one test—for example because the applicant simply took
the one required by her school, the dates for the other test did not
work with her schedule, or for other reasons that are not strategic
in nature.3

Say a college wants to take a principled machine learning ap-
proach to making admission decisions based on the scores from
these two tests. For simplicity, assume no other information is avail-
able. Assume that the college has enough historical examples that
contain the scores of individuals (on whichever tests are taken,
truthfully reported) along with the corresponding ideal (binary)
admission decisions.4 Based on this data, the college has to choose
a decision function that determines which future applicants are
accepted. If this function is known to the applicants, they are bound
to strategize and use their knowledge of the decision function to
decide the scores they report.4 How can the classifier be trained to
handle strategic reporting of scores at prediction time?

To see the intricacies of this problem, let us consider a simple
example.

Example 1. Say the scores for each of the two tests (SAT and ACT)

take one of two values: ℎ (for high) or 𝑙 (for low). Let ∗ denote a
missing value. Then there are eight possible inputs (excluding (∗, ∗)
since at least one score is required): (ℎ,ℎ), (ℎ, 𝑙), (𝑙, ℎ), (𝑙, 𝑙), (ℎ, ∗),
(∗, ℎ), (𝑙, ∗) and (∗, 𝑙). Assume the natural distribution (without any

withholding) over these inputs is known, and so are the conditional

probabilities of the label 𝑌 ∈ {0, 1}, as shown below:

Assume 𝑌 = 1 is the more desirable "accept" decision. Then, ideally,

wewould like to predict𝑌 = 1whenever𝑋 ∈ {(ℎ,ℎ), (ℎ, 𝑙), (ℎ, ∗), (∗, ℎ)}.
However, the strategic reporting of scores at prediction time effectively

means, for example, that an input (∗, ℎ) cannot be assigned the ac-
cept decision of 𝑌 = 1 unless the same is done for (𝑙, ℎ) as well;

1https://www.princetonreview.com/college/sat-act
2https://blog.collegevine.com/should-you-submit-your-sat-act-scores/
3https://blog.prepscholar.com/do-you-need-to-take-both-the-act-and-sat
4We make these assumptions more generally throughout the paper.
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Table 1: True distribution of inputs and targets:

𝑋 (ℎ,ℎ) (ℎ, 𝑙) (𝑙, ℎ) (𝑙, 𝑙) (ℎ, ∗) (∗, ℎ) (𝑙, ∗) (∗, 𝑙)
𝑃𝑟 (𝑋 ) 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

𝑃𝑟 (𝑌 = 1 | 𝑋 ) 0.9 0.7 0.3 0.1 0.6 0.6 0.2 0.2
𝑃𝑟 (𝑌 = 0 | 𝑋 ) 0.1 0.3 0.7 0.9 0.4 0.4 0.8 0.8

otherwise, someone with (𝑙, ℎ) would simply not report the first test,

thereby misreporting (∗, ℎ) and being accepted. Taking this into ac-
count, the classifier with minimum error is given by 𝑌 = 1 whenever

𝑋 ∈ {(ℎ,ℎ), (ℎ, 𝑙), (ℎ, ∗)}.

There are many other settings where a similar problem arises.
Many law schools now allow applicants to choose between the GRE
and the traditional LSAT.5 Recently, as a result of the COVID-19
pandemic, universities have implemented optional pass/fail policies,
where students can choose to take some or all of their courses for
pass/fail credit, as opposed to a standard letter grade that influences
their GPA. They are often able to decide the status after already
knowing their performance in the course. For credit scoring, some
individuals might not report some of their information, especially
if it is not mandatory by law [15].

The ability of strategic agents to withhold some of their features
at prediction time poses a challenge only when the data used to train
the classifier has some naturally missing components to begin with.
For if not, the principal – e.g., the entity deciding on admissions
– can reject all agents that withhold any of their features, thereby
forcing them to reveal all features. We focus on how a principal can
best train classifiers that are robust even when there is strategic
withholding of data by agents. Our methods produce classifiers that
eliminate the incentive for agents to withhold data.

Our contributions. We now describe the key questions we are
facing, and how we answer them. Our model is described formally
in Section 2. All proofs are in the Supplement.

If the true input distribution is known, can we compute the optimal

classifier? (Section 3) We answer this question in the affirmative
by showing that the problem of computing the optimal classifier
(Theorem 1) in this setting reduces to the classical Min-cut problem
[6]. This analysis gives us the Mincut classifier, which can be
computed on the empirical distribution, estimated using whatever
data is available. However, since it can potentially give complex
decision boundaries, it might not generalize well.

Are there simpler classifiers that are robust to strategic withholding

of features? (Section 4) We first characterize the structure of classi-
fiers that are “truthful", i.e., give no incentive to strategically hide
features at prediction time (Theorem 2). Using this characterization,
we devise a hill-climbing procedure (HC) to train a hierarchical
ensemble of out-of-the-box classifiers and show that the procedure
converges (Theorem 4) as long as we have black-box access to
an agnostic learning oracle. We also analytically bound the gen-
eralization error of HC (Theorem 3). The ensemble of HC can be
populated with any of the commonly used classifiers such as logistic
regression, ANNs, etc.

Another truthful classifier we present is a modification of Logis-
tic Regression. This method, called IC-LR (Incentive Compatible
5https://www.ets.org/gre/revised_general/about/law/

Logistic Regression), works by encoding all features with positive
values, and using positive regression coefficients – whereby it is in
every agent’s best interest to report all features truthfully. IC-LR
uses Projected Gradient Descent for its training. The advantage of
this method is that it can be directly to a large number of features.

How do our methods perform on real data sets? (Section 6) We
conduct experiments on several real-world data sets to test the
performance of our methods, comparing them to each other, as
well as to other methods that handle missing data but ignore the
strategic aspect of the problem. We see that our methods perform
well overall, and uncover some interesting insights on their relative
performance:
(1) When the number of features is small, HC is the most reliable

across the board.
(2) When the number of features is small, and many of them are

discrete/categorical (or suitably discretized),Mincut and IC-LR
perform better.

(3) If a large number of features must be used, IC-LR gives the best
performance, althoughHC performs reasonably well with some
simple feature selection techniques.

Related work. Our work falls broadly in the area of strategic
machine learning, wherein a common assumption is that strategic
agents can modify their features (i.e., misreport) in certain ways
(normally at some cost), either to improve outcomes based on the
classifier chosen by the principal [20] or to influence which classi-
fier is chosen in the first place [9]. The main challenge in strategic
machine learning, as in this paper, is the potential misalignment be-
tween the interests of the agents and the principal. Existing results
in this line of work [4, 18, 25], often mainly theoretical, consider
classifiers of a specific form, say linear, and ways of misreporting or
modifying features in that context. Our results are different in that
we focus on a specific type of strategic misreporting, i.e., withhold-
ing parts of the data, and devise general methods that are robust to
this behavior that, in addition to having theoretical guarantees, can
be tested practically. Some experimental results [20] do exist – but
our work is quite different; for instance, we do not need to invent
a cost function (as in Hardt et al. [20]). Another major difference
is that we consider generalization in the presence of strategic be-
havior, while most previous work does not (except for a concurrent
paper [39]), which studies the sample complexity of PAC learning
in the presence of strategic behavior).

Our problem can also be viewed as an instance of automated

mechanism design with partial verification [17, 23, 24, 34] where
it is typically assumed that the feature space (usually called type
space in mechanism design) is discrete and has reasonably small
cardinality, and a prior distribution is known over the feature space.
In contrast, the feature spaces considered in this paper consist of
all possible combinations of potentially continuous feature values.
Moreover, the population distribution can only be accessed by
observing examples. Thus, common methodologies in automated
mechanism design do not suffice for our setting.

A set of closely related (in particular, to Theorem 1) theoretical
results are those of Zhang et al. [35, 36, 38] on the problem of
distinguishing “good” agents from “bad” (where each produces
a different distribution over a sample space, and the agent can
misreport the set of 𝑛 samples that she has drawn). However, our

https://www.ets.org/gre/revised_general/about/law/


work is different in that we consider the standard classification
problem, we focus more on practical aspects, and we do not rely
on the full knowledge of the input distribution.

Our work also finds a happy intersection between strategic ma-
chine learning and the literature on classification with missing data
[27]. The problem we study is also connected to adversarial classifi-
cation [7, 10]. We discuss these connections in more detail in the
Supplement.

2 PRELIMINARIES
We now describe our model and the requisite notation.

Model with strategically withheld features: We have an input
space X, a label space Y = {0, 1}, and a distribution D over X ×Y
which models the population. A classifier 𝑓 : X → Y maps a
combination of features to a label. Let 𝐹 = [𝑘] = {1, . . . , 𝑘} be the
set of features, each of which a data point may or may not have.
For 𝑥 ∈ X, let 𝑥𝑖 denote the value of its 𝑖-th feature (𝑥𝑖 = ∗ if 𝑥
does not have feature 𝑖 ∈ [𝑘]). For any 𝑆 ⊆ [𝑘], define 𝑥 |𝑆 to be the
projection of 𝑥 onto 𝑆 (i.e., retain features in 𝑆 and drop those not
in 𝑆):

(𝑥 |𝑆 )𝑖 =
{
𝑥𝑖 , if 𝑖 ∈ 𝑆
∗, otherwise.

We assume that data can be strategically manipulated at predic-
tion (test) time in the following way: an agent whose true data point
is 𝑥 can report any other data point 𝑥 ′ such that 𝑥 |𝑆 = 𝑥 ′ for some
𝑆 ⊆ [𝑘]. We use→ to denote the relation between any such pair
𝑥, 𝑥 ′ (𝑥 → 𝑥 ′ ⇐⇒ ∃𝑆 ⊆ [𝑘] : 𝑥 |𝑆 = 𝑥 ′). Note that→ is transitive,
i.e., for any 𝑥1, 𝑥2, 𝑥3 ∈ X, 𝑥1 → 𝑥2 and 𝑥2 → 𝑥3 =⇒ 𝑥1 → 𝑥3.

We assume agents prefer label 1 to 0: in response to a clas-
sifier 𝑓 , an agent with data point 𝑥 will always withhold 6 fea-
tures to receive label 1 if possible, i.e., the agent will report 𝑥 ′ ∈
argmax𝑥 ′′:𝑥→𝑥 ′′ 𝑓 (𝑥 ′′). Incorporating such strategic behavior into
the loss of a classifier 𝑓 , we get

ℓD (𝑓 ) = Pr
(𝑥,𝑦)∼D

[
𝑦 ≠ max

𝑥 ′:𝑥→𝑥 ′
𝑓 (𝑥 ′)

]
.

Truthful classifiers. We will also be interested in truthful classi-
fiers, which provably eliminate incentives for such strategic ma-
nipulation. A classifier 𝑓 is truthful if for any 𝑥, 𝑥 ′ ∈ X where
𝑥 → 𝑥 ′, 𝑓 (𝑥) ≥ 𝑓 (𝑥 ′). In other words, not withholding any fea-
tures is always an optimal way to respond to a truthful classifier.
As a result, the loss of any truthful classifier 𝑓 in the presence
of strategically withheld features has the standard form: ℓD (𝑓 ) =
Pr(𝑥,𝑦)∼D [𝑓 (𝑥) ≠ 𝑦].

Note that the so-called Revelation Principle – which states that
in the presence of strategic behavior, any classifier 𝑓 is equivalent
to a truthful classifier 𝑓 ′ – holds in this case because the reporting
structure is transitive.7 In other words, we are guaranteed that, for
any classifier 𝑓 , there exists a truthful classifier 𝑓 ′, such that for any
𝑥 ∈ X, max𝑥 ′:𝑥→𝑥 ′ 𝑓 (𝑥 ′) = 𝑓 ′(𝑥). Therefore, we focus on truthful
classifiers in our model, without loss of generality.
6In practice, 𝑓 might not be perfectly known, and agents might not be able to best respond. This
problem does not arise for our methods, since they are truthul. For other classifiers, their accuracy
may go up or down if agents fail to best-respond; but the assumption that agents best-respond is
common in many such contexts.
7More details, including a formal proof, are in the Supplement.

3 THE MINCUT CLASSIFIER
We first present a method for computing an optimal classifier when
the input distribution is fully known.8 Assuming X is finite, our goal
is to characterize a classifier 𝑓 ∗ which minimizes the loss ℓD (.), for
a known input distribution D. As shorthand, define, for all 𝑥 ∈ X,

Definition 1. D+ (𝑥) B Pr(𝑥 ′,𝑦′)∼D [𝑥 ′ = 𝑥 ∧ 𝑦′ = 1],
D− (𝑥) B Pr(𝑥 ′,𝑦′)∼D [𝑥 ′ = 𝑥 ∧ 𝑦′ = 0].

The basic idea here is simple: to partition X into two sides, one
labeled 1 and the other 0, where the error accrued for each 𝑥 ∈ X
is given by D− (𝑥) or D+ (𝑥), according as 𝑥 is labeled 1 or 0. Such
a partition should crucially respect the constraints imposed by the
strategic behavior of agents : if 𝑥 → 𝑥 ′, then either 𝑥 is labeled 1
or 𝑥 ′ is labeled 0.

Definition 2. Given X and D, let 𝐺 (D,X) be a directed capaci-
tated graph with vertices 𝑉 = X ∪ {𝑠, 𝑡}, where the edges 𝐸 and
edge capacities 𝑢 are defined as follows:
• For each 𝑥 ∈ X, there are edges (𝑠, 𝑥) and (𝑥, 𝑡) in 𝐸, with capac-
ities 𝑢 (𝑠, 𝑥) = D− (𝑥) and 𝑢 (𝑥, 𝑡) = D+ (𝑥).
• For all pairs 𝑥, 𝑥 ′ ∈ X such that 𝑥 → 𝑥 ′, there is an edge (𝑥, 𝑥 ′) ∈
𝐸 with capacity 𝑢 (𝑥, 𝑥 ′) = ∞.

In terms of the graph defined above, computing the optimal
classifier 𝑓 ∗ we seek is equivalent to finding a minimum 𝑠-𝑡 cut on
𝐺 (D,X). The intuition is that the edges from 𝑠 and to 𝑡 reflect the
value gained from labeling an example 0 or 1, respectively; one of
the edges must be cut, reflecting the loss of not assigning it to the
corresponding side. Moreover, if 𝑥 → 𝑥 ′, then the corresponding
edge with infinite capacity prevents the assigning of 0 to 𝑥 and 1
to 𝑥 ′.

Theorem 1. If (𝑆, 𝑆) is a minimum 𝑠-𝑡 cut of 𝐺 (D,X) (where 𝑆 is

on the same side as 𝑠), then for the classifier 𝑓 ∗ (𝑥) B 1(𝑥 ∈ 𝑆), we
have ℓD (𝑓 ∗) = min𝑓 ℓD (𝑓 ).

We note that, consequently, the optimal classifier can be com-
puted in poly( |X|) time. In practice, it is natural to expect that we
do not know D exactly, but have a finite number of samples from
it. A more practical option is to apply Theorem 1 to the empirical
distribution induced by the samples observed, and hope for the
classifier computed from that to generalize to the true population
distribution D.

Implementing Mincut. Given a set X̂ of𝑚 i.i.d. samples from
D, let D̂ be the corresponding empirical distribution over X̂, and
X̄ B X̂ ∪ {𝑥 ′ : 𝑥 ′ → 𝑥, ∃𝑥 ∈ X̂}. The Mincut classifier is then
obtained by applying Theorem 1 to𝐺 (D̂, X̂), and extending it to X̄
as and when required. Here, note thatMincut runs in time poly(𝑚)
(and not poly( |X|)), since 𝐺 (D̂, X̂) has𝑚 nodes, and checking if a
test point is in X̄ takes poly(𝑚) time.

In light of traditional wisdom, the smaller 𝑚 is relative to X,
the larger the generalization error of Mincut will be. We do not
attempt a theoretical analysis in this regard, but note that whenX is

8A theoretical companion paper [37] contains amore general version of themincut-based algorithm.
There, the goal is to compute an optimal classifier with possibly more than 2 outcomes given perfect
knowledge of the entire population distribution. In this paper, we investigate the special case with
only 2 outcomes (i.e., accept and reject), but do not assume prior knowledge about the population
distribution.



large, the generalization error can be extremely large (see Example
2 in the Supplement). The reason for this is two-fold:
(1) Mincut can give complicated decision boundaries.
(2) Mincut is indecisive on samples not in X̄.9

Therefore, a suitable discretization of features is sometimes useful
(see Section 6). Note thatMincut is truthful, by virtue of the infinite
capacity edges in Definition 2.

4 TRUTHFUL CLASSIFIERS AND
HILL-CLIMBING

The other drawback ofMincut, related to the issue of generaliza-
tion just discussed, is that it can be hard to interpret meaningfully
in a practical setting. In this section, we devise a simpler alterna-
tive called Hill-Climbing. To help introduce this algorithm, we
first present a characterization of truthful classifiers in our setting,
since we can limit our focus to them without loss of generality
(as discussed in Section 2). For shorthand, we use the following
definition:

Definition 3 (𝐹 ′-classifier). For a subset of features 𝐹 ′ ⊆ 𝐹 , a
classifier 𝑓 is said to be an 𝐹 ′-classifier if for all 𝑥 ∈ X, we have
𝑓 (𝑥) = 𝑓 (𝑥 |𝐹 ′), and if there exists 𝑖 ∈ 𝐹 ′ such that 𝑥𝑖 = ∗, then
𝑓 (𝑥) = 0.

In other words, an 𝐹 ′-classifier depends only on the values of
the features in 𝐹 ′, rejecting any 𝑥 where any of these is empty. We
can collect many such classifiers into an ensemble as follows:

Definition 4 (Max Ensemble). For a collection of classifiers C =

{𝑓𝑗 }, itsMax Ensemble classifier is given byMaxC (.) B max𝑗 𝑓𝑗 (.).

This is equivalent to getting each agent to pick themost favorable
classifier from among those in {𝑓𝑗 }. Now using the above definitions
we have the following characterization of truthful classifiers:

Theorem 2. A classifier 𝑓 is truthful iff 𝑓 (.) = MaxC (.) for a
collection of classifiers C = {𝑓𝑗 } such that, for some {𝐹 𝑗 } ⊆ 2𝐹 , each
𝑓𝑗 is an 𝐹 𝑗 -classifier .

Now, for any truthful classifier 𝑓 , we can bound the gap between
its population loss ℓD (𝑓 ) and its empirical loss on a set of samples
X̂ denoted by ℓX̂ (𝑓 ) B

1
𝑚

∑
𝑖∈[𝑚] |𝑓 (𝑥𝑖 ) − 𝑦𝑖 |. Before stating a

theorem to this end, we define the following entities: LetH be a
base hypothesis space over X, and 𝑛 ∈ {1, . . . , 2𝑘 } be a parameter.
Define 𝑑 B 𝑑VC (H) to be the VC dimension of H . Define H̄ as
the set of all classifiers that can be written as the Max Ensemble of
𝑛 classifiers inH .

Theorem 3. Let X̂ = {(𝑥𝑖 , 𝑦𝑖 )}𝑖∈[𝑚] be 𝑚 i.i.d. samples from D.

For any 𝑓 ∈ H̄ , for any 𝛿 > 0, with probability at least 1−𝛿 , we have

ℓD (𝑓 ) ≤ ℓX̂ (𝑓 ) +𝑂
(√

𝑑𝑛 ·log𝑑𝑛 ·log𝑚+log(1/𝛿)
𝑚

)
.

It is easy to see that for any of the commonly used hypothesis
spaces – sayH consists of linear hypotheses – if a truthful classifier
𝑓 is inH , then so are the components of theMax Ensemble version
of 𝑓 as in Theorem 2.We have, however, stated Theorem 3 in slightly
more general terms.

9This is more likely to happen when using a large number of features.

The Hill-Climbing classifier. We now present a hill-climbing
approach with provable convergence and generalization guaran-
tees. The Hill-Climbing classifier (henceforth HC) is of the same
form as given by the characterization of truthful classifiers in Theo-
rem 2.10 Intuitively, the approach works by considering a hierarchy
of classifiers, organized by the features involved. For example, con-
sider a setting with 𝑘 = 3 features. We make a choice as to what
classifiers we use — say 𝑓1 for input of the form (𝑥1, ∗, ∗), 𝑓2 for
input of the form (𝑥1, 𝑥2, ∗), and 𝑓3 for input of the form (𝑥1, 𝑥2, 𝑥3).
Any agent with features 1 and 2 (but not 3), for example, should be
able to report both features so as to be classified by 𝑓2, or feature 2
to be classified by 𝑓1 instead. So in effect, assuming full knowledge
of the classifiers, each agent can check all of the classifiers and
choose the most favorable one. Without loss of generality, we as-
sume that when a data point does not have all the features required
by a classifier, it is automatically rejected.

Algorithm 1 Hill-Climbing (HC) Classifier

Input: data set X̂ = {(𝑥𝑖 , 𝑦𝑖 )}𝑖∈[𝑚] , n subsets 𝐹1, 𝐹2, . . . , 𝐹𝑛 of F.

Initialize: 𝑡 ← 0, {𝑓 0
1 , . . . , 𝑓

0
𝑛 }.

while Δ > 0 do
for 𝑖 = 1, 2, . . . , 𝑛 do
𝑆𝑖 ← {(𝑥,𝑦) ∈ X̂ : 𝑓 𝑡

𝑗
(𝑥 |𝐹 𝑗 ) = 0,∀𝑗 ≠ 𝑖}.

𝑓 𝑡+1
𝑖

= argmin𝑓 ∈H
∑
(𝑥,𝑦) ∈𝑆𝑖 |𝑓 (𝑥 |𝐹𝑖 ) − 𝑦 |.

end for
𝑓 ∗ ← Max{𝑓 𝑡+11 ,...,𝑓 𝑡+1𝑛 } ; ℓ𝑡 = ℓX̂ (𝑓

∗)
Δ← ℓ𝑡 − ℓ𝑡−1; 𝑡 ← 𝑡 + 1

end while
Return: 𝑓 ∗.

In short, HC (defined formally in Algorithm 1) works as follows:
first choose a hypothesis spaceH , in order for Theorem 3 to apply.
Then select𝑛 subsets of 𝐹 (where𝑛 is a parameter), say 𝐹1, 𝐹2, . . . , 𝐹𝑛 .
For each 𝐹 𝑗 , we learn a 𝐹 𝑗 -classifier, say 𝑓𝑗 , from among those in
𝐻 . Start by initializing these classifiers to any suitable {𝑓 0

1 , . . . , 𝑓
0
𝑛 }.

In each iterative step, each of the subclassifiers is updated to mini-
mize the empirical loss on the samples that are rejected by all other
classifiers. We next show that such an update procedure always
converges. To do so, as far as our theoretical analysis goes, we
assume we have black-box access to an agnostic learning oracle
(Line 6 in Algorithm 1). After convergence, the HC classifier is ob-
tained as the Max Ensemble of these classifiers. The generalization
guarantee of Theorem 3 applies directly to the HC classifier.
Theorem 4. Algorithm 1 converges.

Connection with Mincut: The HC formulation given above can
be thought of as a less complicated version ofMincut: some of the
edge constraints are ignored with respect to learning the individual
classifiers, and are instead factored in via the Max function. Say
𝐹1 ⊂ 𝐹2. For some 𝑥 , it is possible that 𝑓1 (𝑥 |𝐹1 ) = 1 and 𝑓2 (𝑥 |𝐹1 ) = 0.
In other words, the individual classifiers could violate the Mincut
constraints, in order to learn classification functions that generalize
well individually, and also collectively thanks to the combined HC
training procedure.
10And, therefore, is truthful, and inherits Theorem 3.



Implementing HC:. In practice, the classifiers {𝑓1, 𝑓2, . . . , 𝑓𝑛} in
HC can be populated with any standard out-of-the-box methods
such as logistic regression or neural networks, the choice of which
can influence the performance of 𝑓 . In Section 6, we test HC with a
few such options. The assumption of having access to an agnostic
learning oracle does not play a crucial role in practice, with standard
training methods performing well enough to ensure convergence.
Also, HC will converge in at most m (number of training examples)
iterations, because in each iteration the number of correctly classi-
fied examples increases by at least one. (An iteration may need to
train n individual classifiers.) This also means there is no difference
between checking whether Δ > 0 or Δ ≥ 1/𝑚. In our experiments,
we run HC using Δ ≥ 10−4, and convergence is achieved pretty
quickly (see the Supplement for exact details).

Choosing subsets: Note thatwe are free to choose any 𝐹1, 𝐹2, . . . , 𝐹𝑛
to define HC. Its generalization (via Theorem 3), will depend on the
choice of 𝑛. As more and more subsets of features are included (and
further binning them based on their values), HC starts behaving
more and more like Mincut. In addition, using a large number of
subsets increases the computational complexity of HC. In practice,
therefore, the number of subsets must be limited somehow – we
find that some simple strategies like the following work reasonably
well: (a) selecting a few valuable features and taking all subsets of
those features, (b) taking all subsets of size smaller than a fixed
number 𝑘 , say 𝑘 = 2. In many practical situations, a few features
(possibly putting their values in just a few bins) are often enough
to get close to optimal accuracy, also improving interpretability
(e.g., see Wang and Rudin [33] or Jung et al. [22]) The question
of devising a more nuanced algorithm for selecting these subsets
merits a separate investigation, and we leave this to future work.

5 INCENTIVE-COMPATIBLE LOGISTIC
REGRESSION

As we just mentioned, it is challenging to directly apply HC and
Mincut to a large number of features. Aswewill see, we can address
this challenge in various ways to still get very strong performance
with HC. Moreover, HC enjoys remarkable generality, generaliza-
tion and convergence guarantees. Nevertheless, we would like to
have an algorithm that tries to make use of all the available fea-
tures, while still being truthful. In this section, we present such an
approach, which, as we show later in Section 6, indeed performs
comparably to – and in some cases better than –Mincut and HC.

Below we present a simple and truthful learning algorithm,
Incentive-Compatible Logistic Regression (IC-LR), which is a truth-
ful variant of classical gradient-based algorithms for logistic regres-
sion. Recall that in logistic regression, the goal is to learn a set of
coefficients {𝛽𝑖 }, one for each feature 𝑖 ∈ 𝐹 , as well as an intercept
𝛽0, such that for each data point (𝑥,𝑦), the predicted label 𝑦 given
by

𝑦 = 1

[
𝜎 (𝛽0 +

∑
𝑖∈𝐹

𝑥𝑖 · 𝛽𝑖 ) ≥ 0.5

]
fits𝑦 as well as possible, where𝜎 (𝑡) = 1/(1+𝑒−𝑡 ) is the logistic func-
tion. Roughly speaking, IC-LR. (formally defined in Algorithm 2)
works by restricting the coefficients {𝛽𝑖 } in such a way that drop-
ping a feature (i.e., setting 𝑥𝑖 to 0) can never make the predicted

label larger. If, without loss of generality, all feature values 𝑥𝑖 are
nonnegative11, then this is equivalent to: for each feature 𝑖 ∈ 𝐹 , the
coefficient 𝛽𝑖 ≥ 0. IC-LR. enforces this nonnegativity constraint
throughout the training procedure, by requiring a projection step
after each gradient step, which projects the coefficients to the fea-
sible nonnegative region by setting any negative coefficient to 0
(equivalently, an ℓ1 projection).

Algorithm 2 Incentive-Compatible Logistic Regression

Input: data set X̂ = {(𝑥,𝑦)}, learning rate {𝜂𝑡 }, 𝛿 ≥ 0.
Initialize: 𝑡 ← 0, {𝛽0, 𝛽1, . . . , 𝛽𝑘 }.
while Δ > 𝛿 do
𝑔𝑖 ← 0 for all 𝑖 ∈ {0, 1, . . . , 𝑘}
for (𝑥,𝑦) ∈ X̂ do
𝑔0 ← 𝑔0 + 𝜎 (𝛽0 +

∑
𝑖∈𝐹 𝑥𝑖 · 𝛽𝑖 ) − 𝑦

for 𝑖 ∈ 𝐹 do
𝑔𝑖 ← 𝑔𝑖 + (𝜎 (𝛽0 +

∑
𝑖∈𝐹 𝑥𝑖 · 𝛽𝑖 ) − 𝑦) · 𝑥𝑖

end for
end for
∀𝑖 ∈ {0, 1, . . . , 𝑘}, 𝛽𝑖 ← max{𝛽𝑖 − 𝜂𝑡 · 𝑔𝑖 , 0}
𝑓 ∗ (𝑥) B 1 (𝜎 (𝛽0 +

∑
𝑖∈𝐹 𝛽𝑖 · 𝑥𝑖 ) ≥ 0.5)

ℓ𝑡 = ℓX̂ (𝑓
∗); Δ← ℓ𝑡 − ℓ𝑡−1; 𝑡 ← 𝑡 + 1

end while
Return: 𝑓 ∗.

One potential issue with IC-LR. is the following: if a certain fea-
ture 𝑥𝑖 ≥ 0 is negatively correlated with the positive classification
label, then IC-LR is forced to ignore it (since it is constrained to
use positive coefficients). To make good use of this feature, we
can include an inverted copy 𝑥 ′

𝑖
= 𝜆 − 𝑥𝑖 (where 𝜆 is chosen such

that 𝑥 ′
𝑖
≥ 0). We could also choose an apt discretization of such

features (using cross-validation) and translate the discretized bins
into separate binary variables. Such a discretization can account for
more complex forms of correlation, e.g., a certain feature’s being too
high or too low me makes the positive label likelier. In practice, we
find that the latter method does better. If such transformations are
undesirable, perhaps for reasons of complexity or interpretability,
HC methods are a safer bet.

6 EVALUATION
In this section, we show that, when strategic withholding is at play,
Mincut, HC and IC-LR perform well and provide a significant
advantage over several out-of-the-box counterparts (that do not
account for strategic behavior).

Datasets. Four credit approval datasets are obtained from the
UCI repository [12], one each from Australia, Germany, Poland and
Taiwan. As is common for credit approval datasets, they are imbal-
anced to various degrees. In order to demonstrate the performance
of classifiers in a standard, controlled setting, we balance them by
random undersampling. There is a dedicated community [3] that
looks at the issue of imbalanced learning. We do not delve into
these issues in our paper, and evaluate our methods on both bal-
anced and imbalanced datasets (see the Supplement for the latter).

11If not, they can be suitably translated.



Table 2: Data set summary statistics (num. = numerical, cat.
= categorical)

Data set Size Total # of
features

Size after
balancing

Features after
restriction

Australia 690 15 614 2 num., 2 cat.
Germany 1000 20 600 1 num., 3 cat.
Poland 5910 64 820 4 num.
Taiwan 30,000 23 13,272 4 ordinal

In addition, to demonstrate the challenge of high-dimensional data
imposed on some of the classification methods, the experiments
are run on the datasets (a) restricted to 4 features,12 and (b) with
all available features. The basic characteristics of the datasets are
summarized in Table 2 – note that there is enough variation in
terms of the types of features present. We then randomly remove
a fraction 𝜖 = 0, 0.1, . . . , 0.5 of all feature values in each dataset to
simulate data that is missing “naturally” – i.e., not due to strategic
withholding.

Testing. We test all methods under two ways of reporting: “truth-
ful”, i.e., all features are reported as is, and “strategic”, i.e., some fea-
tures might be withheld if it leads to a better outcome. We measure
the test accuracy of each classifier, averaged over N=100 runs, with
randomness over the undersampling and the data that is randomly
chosen to be missing, to simulate data missing for non-strategic
reasons. Other metrics, and details about implementing and train-
ing the classifiers, are discussed in the Supplement. It is important
to note that for testing any method, we have to, in effect, compute
the best response of each data point toward the classifier. Since the
methods we propose are truthful, this is a trivial task. But for other
methods, this might not be easy, thereby limiting what baselines
can be used.

Classifiers. We evaluate our proposed methods, Mincut, HC
with logistic regression (HC (LR)) and neural networks (HC (ANN))
as subclassifiers, and incentive-compatible logistic regression (IC-
LR), against several baseline methods.

First, they will be compared against three out-of-the-box base-
line classifiers: logistic regression (LR), neural networks (ANN) and
random forest (RF). We select LR for its popularity in credit ap-
proval applications; we select ANN for it being the best-performing
individual classifier on some credit approval datasets [26]; we se-
lect RF for it being the best-performing homogeneous ensemble
on some credit approval datasets [26], as HC can be viewed as a
homogeneous ensemble method. For the sake of exposition, we
present numbers just for baselines based on LR, as they perform
relatively better.

Second, for the purposes of comparison, we includeMaj – predict
the majority label if examples with the exact same feature values
appeared in the training set, and reject if not – which can be thought
of as a non-strategic counterpart of Mincut. We also include k-
nearest neighbors (kNN) as a baseline, since it is closely related to
Maj.

12According to ANOVA F-value evaluated before dropping any feature values.

Table 3: Our methods vs. the rest: mean classifier accuracy
for 𝜖 = 0.2, balanced datasets, 4 features

Classifier
Australia Germany Poland Taiwan
Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .792 .792 .639 .639 .659 .659 .648 .648
Mincut .770 .770 .580 .580 .501 .501 .652 .652
IC-LR .788 .788 .654 .654 .639 .639 .499 .499
Imp(LR) .796 .791 .663 .580 .714 .660 .670 .618
R-F(LR) .808 .545 .631 .508 .670 .511 .665 .590

These out-of-the-box classifiers need help dealing with missing
data, whether they are missing naturally at training and test time
or strategically at test time, and to this end, we employ (a) Imp:
mean/mode imputation [26], and (b) R-F: reduced-feature modeling
[29], for each of them.

When the dataset has a large number of features,Mincut and
IC-LR can be directly applied. For HC, we assist it in two ways:
(a) by selecting 4 features based on the training data, denoted by fs
(feature selection),13 and (b) by choosing a limited number of small
subsets (30 with 1 feature and 30 with 2 features), denoted by app
(approximation). Note that since our proposed methods are truthful,
we can assume that features are reported as is. However, for all
out-of-the-box classifiers, except Imp(LR), it is infeasible to simu-
late strategic withholding of feature values, due to the enormous
number of combinations of features.

Last but not least, we test all methods with the discretization of
continuous features (into categorical ones) [14], for reasons given
in earlier sections.

6.1 Results
For want of space, we report results only for 𝜖 = 0.2. We also
limit our exposition of HC, Imp and R-F methods to those based on
logistic regression, as these perform better than their ANN/RF/kNN
counterparts. For a comprehensive compilation of all results, along
with standard deviation numbers, please refer to the Supplement.

With a small number of features (Table 3): As expected, the out-
of-the-box baselines perform well under truthful reporting, but
not with strategic reporting. Our methods are robust to strategic
withholding, and in line with the earlier discussion on the potential
issues faced by Mincut and IC-LR (in Sections 3 and 5), we see
that (a) HC(LR) performs most consistently, and (b) in some cases,
Mincut (e.g., Poland) and IC-LR (e.g., Taiwan) do not do well.

With discretization (Table 4): As expected, discretization of nu-
merical features into binary categories improves the performance
of Mincut and IC-LR, for reasons explained in Sections 3 and 5 re-
spectively. We also see some benefit from discretization for HC(LR)
when the features are mostly continuous (e.g., Poland), and less so
when they are already discrete (e.g., Taiwan).

With a large number of features (Table 5): We see broadly similar
trends here, except that in the case with discretization, IC-LR per-
forms much better than before (e.g., Poland). The reason for this

13Such a technique can be applied to other methods too – the results (see the Supplement) are not
very different from those in Tables 4.



Table 4: Our methods vs. the rest: mean classifier accuracy
for 𝜖 = 0.2, balanced datasets, 4 features (“w/ disc." stands for
“with discretization of features")

Classifier
Australia Germany Poland Taiwan
Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) w/ disc. .794 .794 .641 .641 .692 .692 .650 .650
Mincut w/ disc. .789 .789 .629 .629 .692 .692 .649 .649
IC-LR w/ disc. .800 .800 .651 .651 .698 .698 .646 .646
Imp(LR) w/ disc. .799 .762 .652 .577 .719 .631 .686 .541
R-F(LR) w/ disc. .796 .542 .633 .516 .708 .522 .684 .587

Table 5: Our methods vs. the rest: mean classifier accuracy
for 𝜖 = 0.2, balanced datasets, all features

Classifier
Australia Germany Poland Taiwan
Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCfs(LR) .795 .795 .625 .625 .678 .678 .648 .648
HCapp(LR) .777 .777 .617 .617 .658 .658 .638 .638
Mincut .496 .496 .499 .499 .499 .499 .499 .499
IC-LR .798 .798 .654 .654 .607 .607 .588 .588
HCfs(LR) w/ disc. .794 .794 .632 .632 .694 .694 .649 .649
HCapp(LR) w/ disc. .782 .782 .620 .620 .724 .724 .644 .644
Mincut w/ disc. .534 .534 .503 .503 .499 .499 .550 .550
IC-LR w/ disc. .805 .805 .653 .653 .773 .773 .667 .667
Imp(LR) .802 .701 .663 .523 .729 .507 .657 .501
Imp(LR) w/ disc. .809 .723 .659 .554 .783 .503 .697 .501

is that IC-LR is able to use all the available features once they are
discretized into binary categories. However, without discretization,
HC methods are more reliable (e.g., Poland and Taiwan).

On the out-of-the-box baselines: • Imputation-based methods are
sensitive vis-á-vis the mean/mode values used. There is incentive
to drop a certain feature if the imputed value is a positive signal. If
there are many such features, then these methods perform poorly,
as seen in Table 5 (cf. Table 3, Australia). If the imputed values do
not give a clear signal (e.g., when the distribution of each feature
value is not skewed), there is a high variance in the performance of
these methods (see the Supplement). In some cases, the benchmarks
perform as well as, or slightly better than, our incentive-compatible
classifiers. For example, in Table 3, for the Australia and Poland data
sets, the accuracy of Imp(LR) and that of HC(LR) are within 0.001 of
each other. This happens because the imputed values are, in these
cases (but not in most of our other cases), negative indicators of
the positive label, and therefore there is generally no incentive to
strategically drop features. • Reduced-Feature modeling, despite per-
forming well under truthful reporting, allows too many examples to
be accepted under strategic reporting, which hurts its performance.
This is true especially for smaller 𝜖 , as each subclassifier has fewer
examples to train on, giving several viable options for strategic
withholding.

We note here that the variance (in the accuracy achieved) pro-
duced by our methods, since they are robust to strategic with-
holding, is much smaller than that of the baseline methods (exact
numbers are deferred to the Supplement).

7 CONCLUSION
In this paper, we studied the problem of classification when each
agent at prediction time can strategically withhold some of its fea-
tures to obtain a more favorable outcome. We devised classification
methods (Mincut, HC and IC-LR) that are robust to this behav-
ior, and in addition, characterized the space of all possible truthful
classifiers in our setting. We tested our methods on real-world data
sets, showing that they outperform out-of-the-box methods that
do not account for the aforementioned strategic behavior.

An immediate question that follows is relaxing the assumption
of having access to truthful training data – for example, one could
ask what the best incentive-compatible classifier is given that the
training data consists of best responses to a known classifier 𝑓 ; or,
one could consider an online learning model where the goal is to
bound the overall loss over time. Amuch broader question for future
work is to develop a more general theory of robustness to missing
data that naturally includes the case of strategic withholding.
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A FURTHER RELATEDWORK
Our work can, in a way, be thought of as studying an adversarial classification [see, e.g., 32] problem – in particular, a decision-time,
white-box, targeted attack on binary classifiers, assuming that the only strategy available to the attacker is to remove feature values, and the
attacker’s goal is to maximize the number of instances classified as positive. In this regard, what we study is similar in spirit to some of the
existing literature [10, 16, 31] on adversarial classification.

For example, [16] consider a problem where, at test time, the attacker can set up to a certain number of features (say pixels in an image) to
zero for each instance individually in a way that is most harmful to the classifier chosen. To be robust to such attacks, they devise convex
programming based methods that avoid depending on small sets of features to learn the class structure. Our work is different in that we take
a more game-theoretic approach to designing classifiers (including ensemble-based ones) that are fully resistant to the strategic withholding
of features by agents (that prefer being labeled positively). Moreover, we make no assumptions on the actual structure of the feature space.

Our work is also related to the literature on classification withmissing data (Batista and Monard 2003; Marlin 2008). We devise methods
that can deal with the strategic withholding by agents of some of their features, against a backdrop of missing data caused by natural
reasons (e.g., nonstationary distributions of which features are present, or input sensor failures). The HC method can be viewed as an
ensemble method for missing data [5] that is strategy-proof against the aforementioned strategic behavior. We also study the performance of
other standard, non-strategic classification methods for missing data in the strategic setting, including predictive value imputation and
reduced-feature modeling [29].

B PROOFS
Theorem 1. If (𝑆, 𝑆) is a minimum 𝑠-𝑡 cut of 𝐺 (D,X) (where 𝑆 is on the same side as 𝑠), then for the classifier 𝑓 ∗ (𝑥) B 1(𝑥 ∈ 𝑆), we have
ℓD (𝑓 ∗) = min𝑓 ℓD (𝑓 ).

Proof. First observe that any classifier 𝑓 can be viewed equivalently as a subset of X, given by

{𝑥 ∈ X | 𝑓 (𝑥) = 1}.

Below, we use these interpretations, i.e., as a function or a subset, of a classifier interchangeably.
The loss of a truthful classifier 𝑓 can then be written as

ℓD (𝑓 ) = Pr
(𝑥,𝑦)∼D

[(𝑥 ∈ 𝑓 ∧ 𝑦 = 0) ∨ (𝑥 ∉ 𝑓 ∧ 𝑦 = 1)]

= Pr
(𝑥,𝑦)∼D

[𝑥 ∈ 𝑓 ∧ 𝑦 = 0] + Pr
(𝑥,𝑦)∼D

[𝑥 ∉ 𝑓 ∧ 𝑦 = 1]

=
∑
𝑥 ∈𝑓

Pr
(𝑥 ′,𝑦)∼D

[𝑥 ′ = 𝑥 ∧ 𝑦 = 0] +
∑
𝑥∉𝑓

Pr
(𝑥 ′,𝑦)∼D

[𝑥 ′ = 𝑥 ∧ 𝑦 = 1]

=
∑
𝑥 ∈𝑓
D− (𝑥) +

∑
𝑥∉𝑓

D+ (𝑥),

where the last line follows from Definition 1.
Therefore, our goal is to solve the following optimization problem:

min
𝑓 ⊆X

∑
𝑥 ∈𝑓
D− (𝑥) +

∑
𝑥∉𝑓

D+ (𝑥)

s.t. 𝑥 ′ ∈ 𝑓 =⇒ 𝑥 ∈ 𝑓 ∀𝑥, 𝑥 ′ ∈ X where 𝑥 → 𝑥 ′.

Consider the following min-cut formulation (using Definition 2): Let𝐺 (D,X) be a directed capacitated graph, with vertices𝑉 = X∪ {𝑠, 𝑡},
with edges 𝐸 and edge capacities 𝑢 defined as follows:
• For each 𝑥 ∈ X, there is an edge (𝑠, 𝑥) ∈ 𝐸 with capacity D− (𝑥), and an edge (𝑥, 𝑡) ∈ 𝐸 with capacity D+ (𝑥).
• For each pair 𝑥, 𝑥 ′ ∈ X where 𝑥 → 𝑥 ′, there is an edge (𝑥 ′, 𝑥) ∈ 𝐸 with capacity∞.
Observe that each finite-capacity 𝑠-𝑡 cut (𝑆, 𝑆) corresponds bijectively to a truthful classifier 𝑓 B 1(𝑥 ∈ 𝑆 \ {𝑡}). Moreover, the capacity of
the cut is given precisely by ∑

𝑥 ∈𝑆∩X
D− (𝑥) +

∑
𝑥 ∈𝑆∩X

D+ (𝑥) =
∑
𝑥 ∈𝑓

𝐷− (𝑥) +
∑
𝑥∉𝑓

𝐷+ (𝑥) = ℓD (𝑓 ) .

Therefore, any 𝑠-𝑡 min-cut corresponds to an optimal classifier 𝑓 ∗, which can be computed “efficiently” (i.e., in time poly( |X|)) using any
efficient max-flow algorithm given complete knowledge of D. □

Theorem 2. A classifier 𝑓 is truthful iff 𝑓 (.) = MaxC (.) for a collection of classifiers C = {𝑓𝑗 } such that, for some {𝐹 𝑗 } ⊆ 2𝐹 , each 𝑓𝑗 is an

𝐹 𝑗 -classifier .



Proof. Recall that the revelation principle holds in our setting (asmentioned in Section Section 2, also see Proposition 1). It therefore suffices
to characterize all direct revelation classifiers. For any (not necessarily truthful) classifier 𝑓 , consider its direct revelation implementation 𝑓 ′,
which maps feature values 𝑥 to the most desirable label the data point can get by dropping features, i.e.,

𝑓 ′(𝑥) = max
𝑥 ′:𝑥→𝑥 ′

𝑓 (𝑥 ′) .

We argue below that 𝑓 ′ has the desired form.
Observe that depending on which features a data point 𝑥 has, 𝑓 can be decomposed into 2𝑘 subclassifiers, denoted {𝑓𝐹 }𝐹 ⊆[𝑘 ] . The label of

𝑥 is then determined in the following way: let 𝐹𝑥 be the set of features possessed by 𝑥 , i.e.,

𝐹𝑥 = {𝑖 ∈ [𝑘] | 𝑥𝑖 ≠ ∗}.
Then

𝑓 (𝑥) = 𝑓𝐹𝑥 (𝑥) .
Moreover, observe that (1) 𝑓𝐹 effectively depends only on 𝑥 |𝐹 (i.e., 𝑓𝐹 (𝑥) = 𝑓𝐹 (𝑥 |𝐹 )), since 𝑓𝐹 only acts on those data points where all features
not in 𝐹 are missing, and (2) without loss of generality, 𝑓𝐹 rejects any data point with a missing feature 𝑖 ∈ 𝐹 , since 𝑓𝐹 never acts on a data
point where such a feature 𝑖 ∈ 𝐹 is missing. Now consider how 𝑓 ′ works on a data point 𝑥 . For any 𝐹 ⊆ 𝐹𝑥 , by dropping all features not in 𝐹 ,
𝑥 can report 𝑥 |𝐹 . Moreover, for any such 𝐹 ⊆ 𝐹𝑥 , 𝑓 (𝑥 |𝐹 ) = 𝑓𝐹 (𝑥 |𝐹 ). 𝑓 ′ outputs 1 for 𝑥 , iff there exists 𝐹 ⊆ 𝐹𝑥 , such that 𝑓𝐹 (𝑥 |𝐹 ) = 1. One can
therefore write 𝑓 ′ in the following way: for any 𝑥 ∈ X,

𝑓 ′(𝑥) = max
𝐹 ⊆[𝑘 ]

𝑓𝐹 (𝑥),

as desired. □

Theorem 3. Let X̂ = {(𝑥𝑖 , 𝑦𝑖 )}𝑖∈[𝑚] be𝑚 i.i.d. samples from D. For any 𝑓 ∈ H̄ , for any 𝛿 > 0, with probability at least 1 − 𝛿 , we have

ℓD (𝑓 ) ≤ ℓX̂ (𝑓 ) +𝑂
(√

𝑑𝑛 ·log𝑑𝑛 ·log𝑚+log(1/𝛿)
𝑚

)
.

Proof. Recall that H̄ is defined as the set of all classifiers that can be written as the MAX Ensemble of 𝑛 classifiers in H . Given the
classical VC inequality [e.g., 30, Theorem 6.11], we only need to bound the VC dimension of H̄ , and show that

𝑑VC (H̄ ) = 𝑂 (𝑑𝑛 · log𝑑𝑛),
where 𝑑 is the VC dimension ofH . To this end, observe that each 𝑓 ∈ H̄ is essentially a decision tree with 𝑛 + 1 leaves, where each leaf is
associated with a binary label, and each internal node corresponds to a classifier inH . To be precise, 𝑓 can be computed in the following
way: for any 𝑥 ∈ X, if 𝑓1 (𝑥) = 1, then 𝑓 (𝑥) = 1; otherwise, if 𝑓2 (𝑥) = 1, then 𝑓 (𝑥) = 1, etc. It is known [see, e.g., 8, Section 5.2] that the class
of all such decision trees with 𝑛 + 1 leaves, which is a superset of H̄ , has VC dimension 𝑂 (𝑑𝑛 log𝑑𝑛). As a result, 𝑑VC (H) = 𝑂 (𝑑𝑛 log𝑑𝑛),
and the theorem follows. □

Theorem 4. Algorithm 1 converges.

Proof. Given 𝑓 = Max{𝑓 𝑡1 ,𝑓 𝑡2 ,...,𝑓 𝑡𝑛 } , consider a single update step for, say, 𝑓 𝑡1 . As in Algorithm 1, define:

𝑆1 = {(𝑥,𝑦) ∈ X̂ : 𝑓 𝑡𝑗 (𝑥 |𝐹 𝑗 ) = 0,∀𝑗 ≠ 1},
𝑆−1 = 𝑆 \ 𝑆1 .

Then we perform the update as follows:

𝑓 𝑡+11 = argminℎ∈H
∑

(𝑥,𝑦) ∈𝑆1

|ℎ(𝑥 |𝐹1 ) − 𝑦 |.

Let 𝑓 ′ = Max{𝑓 𝑡+11 ,𝑓 𝑡2 ,...,𝑓
𝑡
𝑛 } . Now, the loss calculated for 𝑓 ′ is

ℓX̂ (𝑓
′) = 1

𝑚
( |𝑆1 | · ℓ𝑆1 (𝑓

′) + |𝑆−1 | · ℓ𝑆−1 (𝑓
′))

=
1
𝑚
( |𝑆1 | · ℓ𝑆1 (𝑓

𝑡+1
1 ) + |𝑆−1 | · ℓ𝑆−1 (𝑓

′))

=
1
𝑚
( |𝑆1 | · ℓ𝑆1 (𝑓

𝑡+1
1 ) + |𝑆−1 | · ℓ𝑆−1 (𝑓 ))

≤ 1
𝑚
( |𝑆1 | · ℓ𝑆1 (𝑓

𝑡
1 ) + |𝑆−1 | · ℓ𝑆−1 (𝑓 ))

= ℓX̂ (𝑓 ) .

The inequality in the above sequence of steps follows from the fact that 𝑓 𝑡+1
𝑗

accrues a lower loss on 𝑆1 than 𝑓 𝑡
𝑗
by definition, and that the

classification outcomes for any (𝑥,𝑦) ∈ 𝑆−1 is the same for 𝑓 and 𝑓 ′.



If we treat ℓX̂ (𝑓 ) as a potential function, we can see that it can only decrease with each step, and therefore, the algorithm has to converge
at some point. □

C REVELATION PRINCIPLE
There are many results in the literature on partial verification as to the validity of the revelation principle in various settings [17, 23, 24, 34].
For our purposes, as mentioned in Section 2, when the reporting structure is given by a partial order (i.e., it is transitive, meaning for any
𝑥1, 𝑥2, 𝑥3, 𝑥1 → 𝑥2 and 𝑥2 → 𝑥3 =⇒ 𝑥1 → 𝑥3), the revelation principle holds. Below we give a quick proof for why this is the case in our
setting.

Proposition 1. For any classifier 𝑓 : X → {0, 1}, there is a truthful classifier 𝑓 ′ such that after misreporting, 𝑓 and 𝑓 ′ output the same label

for all 𝑥 ∈ X, i.e.,

𝑓 ′(𝑥) = max
𝑥 ′:𝑥→𝑥 ′

𝑓 (𝑥 ′) .

Proof. Below we explicitly construct 𝑓 ′. Let 𝑓 ′ be such that for 𝑥 ∈ X,

𝑓 ′(𝑥) = max
𝑥 ′:𝑥→𝑥 ′

𝑓 (𝑥).

Clearly 𝑓 ′ and 𝑓 output the same label after strategic manipulation. We only need to show 𝑓 ′ is truthful, i.e., for any 𝑥1, 𝑥2 ∈ X where
𝑥1 → 𝑥2, 𝑓 ′(𝑥1) ≥ 𝑓 ′(𝑥2). Let 𝑋1 = {𝑥 ′ : 𝑥1 → 𝑥 ′} and 𝑋2 = {𝑥 ′ : 𝑥2 → 𝑥 ′}. Recall that→ is transitive and 𝑥1 → 𝑥2, so 𝑋1 ⊇ 𝑋2. Now we
have

𝑓 ′(𝑥1) = max
𝑥 ∈𝑋1

𝑓 (𝑥) ≥ max
𝑥 ∈𝑋2

𝑓 (𝑥) = 𝑓 ′(𝑥2) . □

Note that the above proof crucially depends on transitivity of the reporting structure. In fact, if the reporting structure→ is not transitive,
then the revelation principle in general does not hold. To see why this is the case, suppose→ is not transitive, and let 𝑥1, 𝑥2, 𝑥3 be such that
𝑥1 → 𝑥2, 𝑥2 → 𝑥3, and 𝑥1 ̸→ 𝑥3. Suppose we want to assign label 0 to 𝑥1, and label 1 to 𝑥2 and 𝑥3, then the only way to achieve that is to
implement a classifier 𝑓 where 𝑓 (𝑥1) = 𝑓 (𝑥2) = 0 and 𝑓 (𝑥3) = 1. However, this classifier is not truthful, since 𝑥2 always misreports as 𝑥3 in
order to be accepted.

D OTHER OBSERVATIONS
D.1 Regarding Mincut
Naturally, the test error ofMincut depends on X and𝑚. For example, If X is discrete and small, one would expect that Mincut is almost
optimal given enough samples. However, when X is large or even infinite, the generalization gap can be extremely large. To see why this is
true, consider the following example:

Example 2. Say we are given a feature space with two features, each of which can take any real value between 0 and 1. Let the marginal

distribution of D on X be the uniform distribution over X = {(𝑥,𝑦), (𝑥, ∗), (∗, 𝑦) | 𝑥,𝑦 ∈ [0, 1]}. When we see a new data point (𝑥,𝑦), unless we
already have (𝑥,𝑦), (𝑥, ∗) or (∗, 𝑦) in the set of samples (which happens with probability 0), we know absolutely nothing about the label of (𝑥,𝑦),
and therefore by no means we can expect 𝑓 ′ to predict the label of (𝑥,𝑦) correctly — in fact, 𝑓 ′ will always assign label 0 to such a data point.

D.2 On truthful classifiers and hill-climbing
Below, we make a few remarks regarding the generalization bound (Theorem 3) for HC.

• Observe that the generalization gap depends polynomially on the number of subclassifiers 𝑛. Without additional restrictions, 𝑛 can be as
large as 2𝑘 leading to a gap which is exponential in 𝑘 . This suggests that in practice, to achieve any meaningful generalization guarantee,
one has to restrict the number of subclassifiers used. In fact, we do run our algorithm on a small set of features in Section 6.
• Recall that the class of linear classifiers in the 𝑘-dimensional Euclidean space has VC dimension 𝑘 +1. So, if we restrict all subclassifiers to be
linear, and require that the number of subclassifiers 𝑛 to be constant, then Theorem 3 implies that with high probability, the generalization
gap is

𝑂

(√
𝑘

𝑚

)
,

where 𝑘 is the number of features,𝑚 is the number of samples, and 𝑂 hides a logarithmic factor. Our algorithms are practicable in this
kind of regime.



E EXPERIMENTS
E.1 Implementation details
In our implementation, we use Python’s Scikit-learn (0.22.1) package [28] of classifiers and other machine learning packages whenever
possible. The categorical features in the datasets are one-hot encoded. To help ensure the convergence of gradient-based classifiers, we then
standardize features by removing the mean and scaling to unit variance.

For imputation-based classifiers, we use mean/mode imputation: mean for numerical and ordinal features, and mode for categorical
features. For reduced-feature-based classifiers, we default to reject if the test data point’s set of available features was unseen in the
training process. For classification methods involving Fayyad and Irani’s MDLP discretization algorithm, we use a modified version of
Discretization-MDLPC, licensed under GPL-314.

The performance of each classifier under each setting is evaluated with Nx2-fold cross-validation [11]: training on 50% of the data and
testing on the remaining 50%; repeat N = 100 times. To tune the parameters for the classifiers, we perform grid search over a subset of the
parameter space considered by [26], in a 5-fold cross-validation on every training set of the (outer) Nx2-cross-validation loop.

E.2 Additional experimental results
We evaluate our methods on datasets with 1) 4 selected features, same for all runs (Table 6 to 29), 2) 4 selected features, based on the training
data at each run (Table 30 to 53), and 3) all available features (Table 54 to 77). In addition, we evaluate our methods both with and without
balancing the datasets through random undersampling. This is denoted by “balanced datasets” when we undersample before the experiment,
and “unbalanced datasets” when we do not. We vary 𝜖 from 0 to .5 and report classifier accuracy and AUC (when applicable).

Comparing Figure 1 and 3, it appears that there is no significant difference in relative accuracy across the various methods when applied to
balanced and imbalanced datasets. However, comparing, for example, Table 8 and 20, we observe that when the dataset is highly unbalanced,
classifiers based on imputation and reduced-feature modeling, when faced with strategic reporting, tend to accept everything and yield a
considerably high accuracy. Many other general issues regarding the use of accuracy as a metric on unbalanced datasets are known [2, 3, 21].
In practice, thresholding methods are sometimes used to determine a proper threshold for binary prediction in such cases [13, 26].

Therefore, in addition to accuracy, we evaluate our approach with area under the receiver operating characteristic curve (AUC). AUC
becomes a useful metric when doing imbalanced classification because often a balance of false-positive and false-negative rates is desired,
and it is invariant to the threshold used in binary classification.15 For Mincut, its receiver operating characteristic curve is undefined
because it does not output probabilistic predictions; for Hill-Climbing, we take the maximum of the probabilistic predictions across all
applicable classifiers to be the Hill-Climbing classifier’s probabilistic prediction for a data point, and obtain AUC from that. From Table 24 to
29, we observe that our three proposed methods generally yield a AUC as good as, if not higher than, imputation- and reduced-feature-based
classifiers on imbalanced datasets (also Figure 4). The same holds for balanced datasets too (Figure 2).

For completeness, we also include the performance of classifiers based on imputation and reduced-feature modeling, with discretization.
As expected, common classifiers are generally less prone to overfitting thanMincut, and discretizing the feature space only limits their
performance.

The number of iteration the training of Hill-Climbing classifiers takes to converge varies by dataset, but usually in no more than than 5
passes through all the subclassifiers. For the balanced Australia dataset, for example, HC(LR) takes an average of 4.28 iterations to converge
(median 3); HC(LR) w/ disc. takes an average of 2.45 (median 2); HC(ANN): takes an average of 3.56 (median 3); HC(ANN) w/ disc. takes an
average of 2.62 (median 2).

14Discretization-MDLPC codebase: https://github.com/navicto/Discretization-MDLPC.
15 ... although AUC’s global perspective assumes implicitly that all thresholds are equally probable. This is often criticized as not plausible in credit scoring [19]

https://github.com/navicto/Discretization-MDLPC


Figure 1: Selected classifier accuracy w/ strategic behavior, balanced datasets, pre-selected 4 features

Figure 2: Selected classifier AUC w/ strategic behavior, balanced datasets, pre-selected 4 features



Figure 3: Selected classifier accuracy w/ strategic behavior, unbalanced datasets, pre-selected 4 features

Figure 4: Selected classifier AUC w/ strategic behavior, unbalanced datasets, pre-selected 4 features



Figure 5: Selected classifier accuracy w/ strategic behavior, balanced datasets, each classifier selects 4 best features

Figure 6: Selected classifier AUC w/ strategic behavior, balanced datasets, each classifier selects 4 best features



Figure 7: Selected classifier accuracy w/ strategic behavior, unbalanced datasets, each classifier selects 4 best features

Figure 8: Selected classifier AUC w/ strategic behavior, unbalanced datasets, each classifier selects 4 best features



Figure 9: Selected classifier accuracy w/ strategic behavior, balanced datasets, all features

Figure 10: Selected classifier AUC w/ strategic behavior, balanced datasets, all features



Figure 11: Selected classifier accuracy w/ strategic behavior, unbalanced datasets, all features

Figure 12: Selected classifier AUC w/ strategic behavior, unbalanced datasets, all features



Table 6: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.0, balanced datasets, pre-selected 4 features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .859 (.016) .859 (.016) .686 (.024) .686 (.024) .739 (.022) .739 (.022) .685 (.006) .685 (.006)
HC(LR) w/ disc. .855 (.016) .855 (.016) .679 (.024) .679 (.024) .753 (.019) .753 (.019) .695 (.005) .695 (.005)
HCapp(LR) .860 (.017) .860 (.017) .685 (.028) .685 (.028) .733 (.023) .733 (.023) .649 (.018) .649 (.018)
HCapp(LR) w/ disc. .852 (.030) .852 (.030) .672 (.030) .672 (.030) .745 (.019) .745 (.019) .637 (.009) .637 (.009)
HC(ANN) .859 (.015) .859 (.015) .691 (.023) .691 (.023) .729 (.025) .729 (.025) .688 (.006) .688 (.006)
HC(ANN) w/ disc. .849 (.015) .849 (.015) .683 (.023) .683 (.023) .754 (.019) .754 (.019) .696 (.006) .696 (.006)
Mincut .743 (.021) .743 (.021) .577 (.028) .577 (.028) .501 (.018) .501 (.018) .700 (.005) .700 (.005)
Mincut w/ disc. .852 (.018) .852 (.018) .658 (.027) .658 (.027) .748 (.020) .748 (.020) .701 (.005) .701 (.005)
IC-LR .862 (.015) .862 (.015) .677 (.025) .677 (.025) .650 (.036) .650 (.036) .499 (.004) .499 (.004)
IC-LR w/ disc. .858 (.015) .858 (.015) .680 (.023) .680 (.023) .754 (.018) .754 (.018) .695 (.004) .695 (.004)
IC-LR w/ neg. .861 (.013) .861 (.013) .691 (.024) .691 (.024) .660 (.038) .660 (.038) .687 (.005) .687 (.005)
Maj .745 (.021) .745 (.021) .579 (.027) .579 (.027) .501 (.018) .501 (.018) .701 (.005) .701 (.005)
Maj w/ disc. .854 (.018) .854 (.018) .653 (.026) .653 (.026) .749 (.020) .749 (.020) .701 (.005) .701 (.005)
Imp(LR) .861 (.014) .862 (.015) .692 (.022) .601 (.097) .738 (.021) .676 (.039) .689 (.006) .637 (.051)
Imp(LR) w/ disc. .859 (.016) .855 (.025) .682 (.025) .593 (.093) .756 (.019) .742 (.034) .695 (.005) .500 (.004)
Imp(ANN) .859 (.015) .859 (.019) .693 (.022) .602 (.098) .729 (.024) .664 (.039) .699 (.005) .576 (.027)
Imp(ANN) w/ disc. .849 (.016) .828 (.038) .683 (.027) .596 (.093) .756 (.019) .739 (.036) .697 (.005) .503 (.016)
Imp(RF) .820 (.018) .698 (.108) .651 (.026) .562 (.079) .747 (.018) .736 (.023) .701 (.005) .531 (.030)
Imp(RF) w/ disc. .856 (.017) .849 (.029) .668 (.026) .591 (.090) .750 (.020) .734 (.039) .702 (.005) .520 (.032)
Imp(kNN) .852 (.017) .800 (.085) .672 (.027) .585 (.090) .726 (.023) .647 (.048) .674 (.039) .515 (.024)
Imp(kNN) w/ disc. .850 (.023) .815 (.080) .670 (.032) .581 (.086) .741 (.032) .724 (.051) .673 (.062) .497 (.048)
R-F(LR) .861 (.014) .861 (.014) .692 (.022) .692 (.022) .738 (.021) .738 (.021) .689 (.006) .689 (.006)
R-F(LR) w/ disc. .859 (.016) .859 (.016) .682 (.025) .682 (.025) .756 (.019) .756 (.019) .695 (.005) .695 (.005)
R-F(ANN) .859 (.015) .859 (.015) .693 (.022) .693 (.022) .728 (.026) .729 (.024) .699 (.005) .699 (.005)
R-F(ANN) w/ disc. .849 (.016) .849 (.016) .684 (.024) .684 (.024) .755 (.019) .756 (.019) .697 (.005) .697 (.006)
R-F(RF) .820 (.019) .820 (.018) .651 (.026) .651 (.026) .747 (.019) .747 (.018) .701 (.005) .701 (.005)
R-F(RF) w/ disc. .855 (.017) .855 (.017) .668 (.026) .668 (.026) .750 (.020) .750 (.020) .702 (.005) .702 (.005)
R-F(kNN) .852 (.017) .852 (.018) .672 (.026) .673 (.027) .727 (.023) .726 (.023) .674 (.040) .675 (.038)
R-F(kNN) w/ disc. .848 (.027) .849 (.023) .668 (.034) .669 (.033) .737 (.042) .739 (.038) .671 (.065) .674 (.061)



Table 7: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.1, balanced datasets, pre-selected 4 features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .814 (.020) .814 (.020) .659 (.027) .659 (.027) .681 (.028) .681 (.028) .664 (.005) .664 (.005)
HC(LR) w/ disc. .818 (.020) .818 (.020) .657 (.028) .657 (.028) .718 (.021) .718 (.021) .671 (.005) .671 (.005)
HCapp(LR) .817 (.020) .817 (.020) .669 (.026) .669 (.026) .694 (.027) .694 (.027) .664 (.007) .664 (.007)
HCapp(LR) w/ disc. .817 (.022) .817 (.022) .660 (.028) .660 (.028) .722 (.023) .722 (.023) .669 (.009) .669 (.009)
HC(ANN) .803 (.024) .803 (.024) .647 (.029) .647 (.029) .664 (.028) .664 (.028) .665 (.006) .665 (.006)
HC(ANN) w/ disc. .796 (.026) .796 (.026) .634 (.033) .634 (.033) .705 (.026) .705 (.026) .671 (.005) .671 (.005)
Mincut .769 (.033) .769 (.033) .584 (.030) .584 (.030) .502 (.017) .502 (.017) .672 (.005) .672 (.005)
Mincut w/ disc. .811 (.021) .811 (.021) .642 (.029) .642 (.029) .715 (.022) .715 (.022) .671 (.005) .671 (.005)
IC-LR .823 (.018) .823 (.018) .664 (.027) .664 (.027) .645 (.037) .645 (.037) .500 (.004) .500 (.004)
IC-LR w/ disc. .827 (.018) .827 (.018) .665 (.025) .665 (.025) .725 (.021) .725 (.021) .669 (.005) .669 (.005)
IC-LR w/ neg. .816 (.017) .816 (.017) .680 (.021) .680 (.021) .661 (.035) .661 (.035) .676 (.007) .676 (.007)
Maj .689 (.025) .726 (.078) .548 (.026) .536 (.048) .502 (.017) .502 (.017) .686 (.005) .565 (.033)
Maj w/ disc. .816 (.021) .682 (.096) .620 (.029) .545 (.051) .728 (.023) .604 (.059) .693 (.005) .564 (.037)
Imp(LR) .821 (.019) .821 (.026) .677 (.024) .594 (.089) .726 (.024) .668 (.037) .676 (.006) .627 (.047)
Imp(LR) w/ disc. .822 (.017) .795 (.048) .664 (.025) .594 (.085) .735 (.021) .676 (.077) .690 (.005) .549 (.030)
Imp(ANN) .821 (.019) .819 (.027) .678 (.023) .596 (.089) .718 (.026) .655 (.039) .692 (.005) .557 (.006)
Imp(ANN) w/ disc. .823 (.019) .774 (.066) .667 (.027) .596 (.086) .735 (.022) .679 (.072) .693 (.006) .559 (.019)
Imp(RF) .794 (.022) .658 (.116) .636 (.029) .560 (.068) .735 (.021) .655 (.057) .687 (.005) .541 (.031)
Imp(RF) w/ disc. .821 (.018) .779 (.062) .659 (.027) .593 (.085) .732 (.022) .666 (.078) .695 (.006) .544 (.031)
Imp(kNN) .817 (.021) .753 (.086) .653 (.029) .579 (.079) .712 (.025) .636 (.047) .662 (.029) .552 (.033)
Imp(kNN) w/ disc. .812 (.028) .755 (.098) .649 (.036) .581 (.079) .721 (.031) .656 (.084) .650 (.072) .539 (.057)
R-F(LR) .827 (.019) .543 (.073) .651 (.026) .507 (.026) .696 (.027) .506 (.024) .674 (.008) .528 (.039)
R-F(LR) w/ disc. .823 (.020) .535 (.069) .650 (.028) .511 (.032) .730 (.022) .515 (.036) .689 (.005) .528 (.040)
R-F(ANN) .825 (.020) .544 (.072) .649 (.028) .507 (.026) .696 (.027) .505 (.021) .680 (.006) .520 (.035)
R-F(ANN) w/ disc. .813 (.022) .542 (.075) .642 (.041) .513 (.033) .727 (.024) .515 (.031) .689 (.006) .523 (.038)
R-F(RF) .793 (.021) .537 (.060) .624 (.028) .506 (.024) .719 (.020) .510 (.027) .687 (.005) .527 (.034)
R-F(RF) w/ disc. .821 (.019) .543 (.074) .642 (.030) .513 (.031) .724 (.025) .516 (.032) .693 (.006) .523 (.033)
R-F(kNN) .810 (.021) .528 (.060) .624 (.030) .505 (.026) .683 (.025) .505 (.024) .661 (.030) .523 (.035)
R-F(kNN) w/ disc. .808 (.024) .526 (.060) .631 (.034) .511 (.032) .710 (.030) .513 (.035) .659 (.047) .520 (.033)



Table 8: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.2, balanced datasets, pre-selected 4 features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .792 (.022) .792 (.022) .639 (.029) .639 (.029) .660 (.029) .660 (.029) .648 (.006) .648 (.006)
HC(LR) w/ disc. .795 (.023) .795 (.023) .641 (.027) .641 (.027) .692 (.025) .692 (.025) .650 (.005) .650 (.005)
HCapp(LR) .794 (.021) .794 (.021) .652 (.027) .652 (.027) .670 (.027) .670 (.027) .646 (.005) .646 (.005)
HCapp(LR) w/ disc. .795 (.024) .795 (.024) .649 (.027) .649 (.027) .694 (.024) .694 (.024) .648 (.005) .648 (.005)
HC(ANN) .775 (.028) .775 (.028) .624 (.029) .624 (.029) .640 (.035) .640 (.035) .647 (.006) .647 (.006)
HC(ANN) w/ disc. .770 (.032) .770 (.032) .614 (.036) .614 (.036) .680 (.027) .680 (.027) .648 (.006) .648 (.006)
Mincut .770 (.031) .770 (.031) .580 (.031) .580 (.031) .501 (.016) .501 (.016) .651 (.005) .651 (.005)
Mincut w/ disc. .790 (.024) .790 (.024) .630 (.030) .630 (.030) .692 (.025) .692 (.025) .649 (.006) .649 (.006)
IC-LR .788 (.019) .788 (.019) .653 (.028) .653 (.028) .639 (.039) .639 (.039) .499 (.004) .499 (.004)
IC-LR w/ disc. .800 (.021) .800 (.021) .651 (.029) .651 (.029) .698 (.025) .698 (.025) .646 (.006) .646 (.006)
IC-LR w/ neg. .793 (.024) .793 (.024) .661 (.027) .661 (.027) .652 (.035) .652 (.035) .671 (.009) .671 (.009)
Maj .664 (.025) .674 (.099) .536 (.028) .526 (.043) .501 (.017) .501 (.018) .678 (.005) .560 (.034)
Maj w/ disc. .795 (.023) .625 (.094) .603 (.031) .532 (.049) .714 (.024) .564 (.052) .688 (.005) .566 (.034)
Imp(LR) .797 (.021) .791 (.034) .663 (.026) .582 (.082) .714 (.027) .660 (.036) .670 (.008) .618 (.047)
Imp(LR) w/ disc. .800 (.021) .763 (.066) .652 (.025) .580 (.083) .720 (.024) .630 (.088) .686 (.006) .536 (.026)
Imp(ANN) .799 (.021) .789 (.037) .665 (.025) .583 (.083) .705 (.031) .644 (.043) .686 (.005) .536 (.005)
Imp(ANN) w/ disc. .800 (.021) .747 (.085) .652 (.029) .580 (.084) .719 (.024) .636 (.084) .688 (.005) .543 (.024)
Imp(RF) .772 (.023) .630 (.101) .623 (.031) .560 (.065) .721 (.021) .601 (.065) .679 (.005) .549 (.031)
Imp(RF) w/ disc. .797 (.023) .745 (.088) .643 (.028) .578 (.080) .716 (.025) .622 (.086) .689 (.005) .542 (.027)
Imp(kNN) .789 (.023) .722 (.085) .636 (.029) .570 (.070) .695 (.026) .623 (.047) .659 (.021) .559 (.036)
Imp(kNN) w/ disc. .786 (.028) .705 (.119) .628 (.041) .574 (.072) .696 (.047) .608 (.087) .656 (.044) .563 (.050)
R-F(LR) .808 (.020) .545 (.063) .630 (.028) .508 (.026) .670 (.030) .511 (.026) .665 (.009) .590 (.038)
R-F(LR) w/ disc. .797 (.021) .541 (.067) .633 (.027) .516 (.037) .709 (.022) .522 (.041) .684 (.005) .588 (.029)
R-F(ANN) .805 (.022) .542 (.061) .628 (.028) .509 (.026) .664 (.037) .509 (.026) .668 (.008) .548 (.047)
R-F(ANN) w/ disc. .793 (.021) .542 (.062) .630 (.031) .514 (.035) .708 (.025) .520 (.039) .683 (.006) .542 (.041)
R-F(RF) .777 (.024) .537 (.050) .608 (.031) .508 (.025) .699 (.022) .519 (.029) .679 (.005) .575 (.027)
R-F(RF) w/ disc. .799 (.022) .545 (.063) .626 (.028) .515 (.036) .707 (.024) .525 (.043) .687 (.005) .586 (.026)
R-F(kNN) .780 (.024) .535 (.055) .602 (.031) .505 (.025) .658 (.027) .512 (.027) .659 (.018) .585 (.029)
R-F(kNN) w/ disc. .775 (.024) .537 (.063) .617 (.032) .513 (.036) .685 (.033) .519 (.036) .650 (.037) .587 (.027)



Table 9: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.3, balanced datasets, pre-selected 4 features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .771 (.023) .771 (.023) .625 (.029) .625 (.029) .642 (.029) .642 (.029) .636 (.006) .636 (.006)
HC(LR) w/ disc. .769 (.024) .769 (.024) .629 (.030) .629 (.030) .670 (.027) .670 (.027) .639 (.006) .639 (.006)
HCapp(LR) .773 (.019) .773 (.019) .634 (.028) .634 (.028) .645 (.027) .645 (.027) .636 (.006) .636 (.006)
HCapp(LR) w/ disc. .772 (.021) .772 (.021) .631 (.031) .631 (.031) .672 (.027) .672 (.027) .638 (.006) .638 (.006)
HC(ANN) .753 (.028) .753 (.028) .610 (.030) .610 (.030) .621 (.034) .621 (.034) .636 (.005) .636 (.005)
HC(ANN) w/ disc. .748 (.031) .748 (.031) .598 (.035) .598 (.035) .659 (.028) .659 (.028) .638 (.006) .638 (.006)
Mincut .752 (.028) .752 (.028) .580 (.032) .580 (.032) .500 (.018) .500 (.018) .638 (.006) .638 (.006)
Mincut w/ disc. .770 (.024) .770 (.024) .620 (.031) .620 (.031) .670 (.027) .670 (.027) .638 (.006) .638 (.006)
IC-LR .759 (.023) .759 (.023) .636 (.035) .636 (.035) .624 (.041) .624 (.041) .497 (.004) .497 (.004)
IC-LR w/ disc. .775 (.021) .775 (.021) .638 (.031) .638 (.031) .673 (.030) .673 (.030) .634 (.007) .634 (.007)
IC-LR w/ neg. .771 (.022) .771 (.022) .640 (.029) .640 (.029) .645 (.041) .645 (.041) .660 (.013) .660 (.013)
Maj .650 (.027) .653 (.099) .532 (.027) .524 (.035) .500 (.019) .498 (.019) .668 (.006) .559 (.041)
Maj w/ disc. .775 (.026) .615 (.094) .592 (.033) .534 (.047) .701 (.024) .559 (.057) .680 (.005) .561 (.041)
Imp(LR) .774 (.023) .758 (.048) .651 (.027) .580 (.076) .701 (.026) .654 (.038) .659 (.011) .603 (.054)
Imp(LR) w/ disc. .770 (.025) .721 (.087) .636 (.030) .587 (.074) .707 (.027) .604 (.087) .681 (.005) .519 (.021)
Imp(ANN) .775 (.023) .752 (.050) .652 (.027) .582 (.077) .692 (.032) .640 (.048) .677 (.005) .521 (.005)
Imp(ANN) w/ disc. .770 (.023) .708 (.098) .635 (.034) .586 (.076) .705 (.027) .612 (.086) .682 (.005) .527 (.023)
Imp(RF) .749 (.025) .625 (.098) .609 (.031) .556 (.063) .706 (.022) .567 (.060) .669 (.006) .554 (.039)
Imp(RF) w/ disc. .771 (.024) .709 (.097) .628 (.032) .582 (.073) .705 (.025) .599 (.089) .681 (.005) .538 (.038)
Imp(kNN) .766 (.025) .663 (.106) .623 (.032) .565 (.066) .681 (.025) .614 (.052) .650 (.015) .559 (.042)
Imp(kNN) w/ disc. .760 (.032) .666 (.119) .608 (.041) .567 (.065) .685 (.046) .587 (.081) .640 (.039) .560 (.049)
R-F(LR) .788 (.023) .584 (.072) .608 (.028) .512 (.029) .651 (.027) .524 (.031) .654 (.010) .613 (.017)
R-F(LR) w/ disc. .777 (.028) .577 (.077) .615 (.030) .520 (.038) .697 (.024) .550 (.051) .678 (.005) .601 (.010)
R-F(ANN) .784 (.024) .578 (.070) .606 (.029) .512 (.028) .646 (.033) .515 (.026) .656 (.009) .570 (.044)
R-F(ANN) w/ disc. .776 (.027) .595 (.081) .611 (.032) .516 (.036) .695 (.025) .547 (.051) .676 (.006) .558 (.044)
R-F(RF) .760 (.024) .580 (.059) .592 (.028) .512 (.028) .683 (.020) .543 (.035) .669 (.006) .592 (.011)
R-F(RF) w/ disc. .783 (.028) .610 (.083) .609 (.031) .522 (.038) .701 (.024) .558 (.052) .680 (.005) .599 (.010)
R-F(kNN) .768 (.026) .575 (.069) .582 (.031) .509 (.029) .647 (.025) .532 (.032) .652 (.013) .598 (.020)
R-F(kNN) w/ disc. .759 (.032) .586 (.079) .598 (.032) .519 (.039) .681 (.027) .547 (.048) .653 (.019) .600 (.017)



Table 10: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.4, balanced datasets, pre-selected 4 features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .751 (.024) .751 (.024) .610 (.030) .610 (.030) .626 (.030) .626 (.030) .628 (.006) .628 (.006)
HC(LR) w/ disc. .748 (.025) .748 (.025) .617 (.030) .617 (.030) .650 (.026) .650 (.026) .628 (.006) .628 (.006)
HCapp(LR) .752 (.023) .752 (.023) .618 (.029) .618 (.029) .629 (.029) .629 (.029) .627 (.006) .627 (.006)
HCapp(LR) w/ disc. .746 (.023) .746 (.023) .620 (.032) .620 (.032) .657 (.024) .657 (.024) .628 (.006) .628 (.006)
HC(ANN) .731 (.028) .731 (.028) .593 (.031) .593 (.031) .601 (.035) .601 (.035) .628 (.007) .628 (.007)
HC(ANN) w/ disc. .726 (.030) .726 (.030) .586 (.037) .586 (.037) .640 (.029) .640 (.029) .627 (.006) .627 (.006)
Mincut .727 (.028) .727 (.028) .575 (.033) .575 (.033) .499 (.017) .499 (.017) .626 (.007) .626 (.007)
Mincut w/ disc. .746 (.027) .746 (.027) .610 (.033) .610 (.033) .648 (.028) .648 (.028) .626 (.007) .626 (.007)
IC-LR .731 (.027) .731 (.027) .623 (.035) .623 (.035) .614 (.037) .614 (.037) .497 (.003) .497 (.003)
IC-LR w/ disc. .747 (.022) .747 (.022) .621 (.036) .621 (.036) .651 (.027) .651 (.027) .617 (.006) .617 (.006)
IC-LR w/ neg. .753 (.026) .753 (.026) .620 (.040) .620 (.040) .632 (.046) .632 (.046) .649 (.013) .649 (.013)
Maj .651 (.027) .634 (.104) .532 (.028) .524 (.037) .499 (.018) .500 (.020) .659 (.006) .555 (.045)
Maj w/ disc. .760 (.026) .612 (.097) .582 (.033) .534 (.049) .689 (.025) .563 (.060) .671 (.005) .557 (.046)
Imp(LR) .757 (.024) .733 (.052) .635 (.028) .579 (.071) .688 (.025) .645 (.036) .648 (.012) .602 (.049)
Imp(LR) w/ disc. .741 (.025) .690 (.094) .622 (.031) .577 (.070) .679 (.029) .576 (.079) .671 (.006) .512 (.021)
Imp(ANN) .759 (.025) .728 (.055) .635 (.028) .581 (.073) .676 (.036) .625 (.052) .668 (.005) .512 (.004)
Imp(ANN) w/ disc. .742 (.026) .679 (.103) .623 (.033) .578 (.070) .677 (.031) .584 (.078) .672 (.005) .518 (.026)
Imp(RF) .729 (.027) .636 (.095) .603 (.032) .561 (.061) .685 (.021) .560 (.055) .660 (.006) .553 (.045)
Imp(RF) w/ disc. .742 (.024) .675 (.105) .614 (.032) .574 (.069) .678 (.028) .573 (.080) .671 (.006) .518 (.026)
Imp(kNN) .744 (.026) .633 (.108) .606 (.033) .559 (.061) .662 (.025) .578 (.062) .641 (.012) .555 (.045)
Imp(kNN) w/ disc. .726 (.034) .637 (.115) .591 (.042) .561 (.060) .657 (.048) .572 (.076) .641 (.026) .550 (.048)
R-F(LR) .771 (.025) .631 (.069) .590 (.032) .523 (.032) .627 (.034) .540 (.037) .642 (.010) .615 (.011)
R-F(LR) w/ disc. .761 (.026) .645 (.077) .599 (.032) .527 (.042) .683 (.025) .580 (.055) .669 (.006) .602 (.006)
R-F(ANN) .766 (.025) .619 (.074) .587 (.031) .522 (.030) .619 (.038) .523 (.033) .643 (.010) .603 (.027)
R-F(ANN) w/ disc. .758 (.030) .637 (.075) .587 (.033) .520 (.037) .677 (.028) .561 (.055) .668 (.007) .596 (.028)
R-F(RF) .747 (.026) .625 (.056) .582 (.031) .523 (.030) .661 (.023) .560 (.031) .660 (.006) .598 (.007)
R-F(RF) w/ disc. .767 (.025) .670 (.070) .593 (.032) .527 (.042) .685 (.024) .581 (.054) .670 (.006) .602 (.006)
R-F(kNN) .754 (.027) .628 (.063) .570 (.034) .518 (.032) .629 (.028) .559 (.035) .640 (.012) .601 (.016)
R-F(kNN) w/ disc. .747 (.029) .646 (.075) .585 (.033) .526 (.038) .666 (.028) .577 (.055) .637 (.020) .601 (.016)



Table 11: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.5, balanced datasets, pre-selected 4 features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .726 (.025) .726 (.025) .596 (.029) .596 (.029) .612 (.030) .612 (.030) .616 (.006) .616 (.006)
HC(LR) w/ disc. .719 (.025) .719 (.025) .601 (.030) .601 (.030) .638 (.028) .638 (.028) .616 (.005) .616 (.005)
HCapp(LR) .727 (.026) .727 (.026) .600 (.028) .600 (.028) .617 (.029) .617 (.029) .616 (.007) .616 (.007)
HCapp(LR) w/ disc. .720 (.027) .720 (.027) .603 (.032) .603 (.032) .636 (.026) .636 (.026) .617 (.005) .617 (.005)
HC(ANN) .709 (.028) .709 (.028) .578 (.032) .578 (.032) .588 (.036) .588 (.036) .615 (.006) .615 (.006)
HC(ANN) w/ disc. .701 (.032) .701 (.032) .570 (.036) .570 (.036) .626 (.030) .626 (.030) .615 (.006) .615 (.006)
Mincut .706 (.028) .706 (.028) .572 (.033) .572 (.033) .500 (.018) .500 (.018) .613 (.008) .613 (.008)
Mincut w/ disc. .719 (.024) .719 (.024) .596 (.031) .596 (.031) .632 (.029) .632 (.029) .613 (.008) .613 (.008)
IC-LR .708 (.031) .708 (.031) .603 (.038) .603 (.038) .604 (.039) .604 (.039) .497 (.003) .497 (.003)
IC-LR w/ disc. .717 (.028) .717 (.028) .603 (.038) .603 (.038) .625 (.028) .625 (.028) .606 (.008) .606 (.008)
IC-LR w/ neg. .716 (.028) .716 (.028) .600 (.034) .600 (.034) .619 (.045) .619 (.045) .640 (.014) .640 (.014)
Maj .649 (.028) .618 (.106) .534 (.029) .526 (.040) .500 (.018) .497 (.019) .646 (.006) .551 (.049)
Maj w/ disc. .734 (.027) .607 (.102) .571 (.030) .534 (.047) .667 (.025) .567 (.068) .657 (.005) .552 (.050)
Imp(LR) .733 (.025) .705 (.051) .616 (.029) .571 (.064) .670 (.026) .631 (.037) .636 (.014) .581 (.054)
Imp(LR) w/ disc. .707 (.030) .643 (.099) .603 (.033) .564 (.065) .647 (.036) .560 (.069) .658 (.005) .505 (.015)
Imp(ANN) .734 (.025) .699 (.062) .617 (.029) .571 (.065) .660 (.035) .606 (.060) .655 (.005) .505 (.004)
Imp(ANN) w/ disc. .708 (.030) .633 (.104) .600 (.040) .563 (.066) .645 (.036) .563 (.070) .659 (.005) .511 (.026)
Imp(RF) .705 (.026) .635 (.090) .588 (.032) .555 (.055) .660 (.023) .551 (.055) .647 (.006) .549 (.049)
Imp(RF) w/ disc. .707 (.030) .633 (.105) .595 (.034) .562 (.063) .648 (.034) .558 (.070) .658 (.005) .509 (.022)
Imp(kNN) .719 (.028) .626 (.102) .588 (.032) .552 (.054) .646 (.026) .568 (.061) .626 (.013) .546 (.047)
Imp(kNN) w/ disc. .692 (.036) .609 (.103) .573 (.043) .544 (.056) .624 (.050) .547 (.066) .622 (.027) .548 (.050)
R-F(LR) .744 (.026) .660 (.050) .572 (.030) .532 (.034) .613 (.033) .559 (.035) .627 (.010) .611 (.008)
R-F(LR) w/ disc. .737 (.028) .668 (.069) .584 (.032) .525 (.041) .665 (.025) .587 (.057) .657 (.005) .604 (.005)
R-F(ANN) .735 (.028) .641 (.060) .569 (.031) .530 (.034) .598 (.036) .531 (.037) .625 (.011) .605 (.015)
R-F(ANN) w/ disc. .730 (.029) .650 (.071) .569 (.032) .515 (.035) .656 (.028) .566 (.054) .654 (.009) .595 (.021)
R-F(RF) .722 (.026) .650 (.041) .566 (.030) .533 (.035) .636 (.025) .569 (.028) .647 (.006) .600 (.006)
R-F(RF) w/ disc. .743 (.025) .683 (.062) .583 (.031) .524 (.041) .666 (.025) .584 (.056) .657 (.005) .604 (.005)
R-F(kNN) .731 (.029) .659 (.051) .555 (.033) .528 (.034) .618 (.028) .577 (.031) .627 (.012) .599 (.014)
R-F(kNN) w/ disc. .722 (.029) .668 (.064) .572 (.033) .526 (.040) .651 (.028) .585 (.048) .626 (.015) .599 (.014)



Table 12: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.0, balanced datasets, pre-selected 4 features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .906 (.013) .906 (.013) .739 (.026) .739 (.026) .807 (.022) .807 (.022) .696 (.007) .696 (.007)
HC(LR) w/ disc. .911 (.013) .911 (.013) .732 (.024) .732 (.024) .813 (.019) .813 (.019) .729 (.006) .729 (.006)
HCapp(LR) .910 (.013) .910 (.013) .732 (.027) .732 (.027) .795 (.023) .795 (.023) .649 (.014) .649 (.014)
HCapp(LR) w/ disc. .911 (.019) .911 (.019) .720 (.027) .720 (.027) .786 (.021) .786 (.021) .646 (.010) .646 (.010)
HC(ANN) .908 (.013) .908 (.013) .753 (.023) .753 (.023) .800 (.023) .800 (.023) .701 (.010) .701 (.010)
HC(ANN) w/ disc. .909 (.013) .909 (.013) .736 (.024) .736 (.024) .815 (.018) .815 (.018) .731 (.005) .731 (.005)
IC-LR .901 (.013) .901 (.013) .739 (.023) .739 (.023) .714 (.040) .714 (.040) .500 (.000) .500 (.000)
IC-LR w/ disc. .911 (.013) .911 (.013) .739 (.022) .739 (.022) .818 (.019) .818 (.019) .731 (.004) .731 (.004)
IC-LR w/ neg. .904 (.012) .904 (.012) .762 (.020) .762 (.020) .728 (.044) .728 (.044) .704 (.005) .704 (.005)
Imp(LR) .906 (.013) .905 (.014) .756 (.022) .717 (.042) .806 (.022) .776 (.028) .704 (.006) .667 (.009)
Imp(LR) w/ disc. .910 (.013) .897 (.016) .739 (.024) .688 (.053) .819 (.020) .794 (.031) .731 (.005) .579 (.025)
Imp(ANN) .907 (.013) .905 (.014) .757 (.022) .717 (.041) .801 (.022) .771 (.024) .732 (.009) .683 (.013)
Imp(ANN) w/ disc. .910 (.013) .898 (.016) .742 (.023) .692 (.052) .818 (.019) .793 (.030) .731 (.005) .587 (.003)
Imp(RF) .885 (.015) .875 (.024) .709 (.025) .660 (.084) .819 (.017) .810 (.018) .734 (.005) .582 (.022)
Imp(RF) w/ disc. .911 (.014) .899 (.017) .712 (.025) .667 (.063) .811 (.020) .789 (.031) .731 (.005) .527 (.075)
Imp(kNN) .904 (.015) .874 (.018) .717 (.026) .663 (.078) .794 (.021) .771 (.027) .716 (.017) .636 (.041)
Imp(kNN) w/ disc. .901 (.019) .885 (.023) .715 (.029) .651 (.075) .800 (.026) .778 (.038) .712 (.024) .520 (.082)
R-F(LR) .906 (.013) .906 (.013) .756 (.022) .756 (.022) .806 (.022) .806 (.022) .704 (.006) .704 (.006)
R-F(LR) w/ disc. .910 (.013) .910 (.013) .739 (.024) .739 (.024) .819 (.020) .819 (.020) .731 (.005) .731 (.005)
R-F(ANN) .907 (.013) .907 (.013) .757 (.022) .757 (.022) .801 (.023) .801 (.022) .731 (.009) .732 (.009)
R-F(ANN) w/ disc. .910 (.013) .910 (.013) .742 (.023) .742 (.023) .818 (.019) .818 (.019) .731 (.005) .731 (.005)
R-F(RF) .885 (.015) .885 (.015) .709 (.025) .709 (.025) .819 (.017) .819 (.017) .734 (.005) .734 (.005)
R-F(RF) w/ disc. .910 (.014) .911 (.014) .712 (.026) .712 (.026) .811 (.020) .811 (.021) .731 (.005) .731 (.005)
R-F(kNN) .904 (.015) .904 (.015) .717 (.026) .717 (.026) .794 (.021) .794 (.021) .716 (.017) .715 (.017)
R-F(kNN) w/ disc. .902 (.017) .901 (.019) .714 (.031) .714 (.030) .802 (.024) .802 (.024) .712 (.024) .713 (.025)



Table 13: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.1, balanced datasets, pre-selected 4 features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .889 (.018) .889 (.018) .704 (.028) .704 (.028) .751 (.029) .751 (.029) .674 (.006) .674 (.006)
HC(LR) w/ disc. .888 (.018) .888 (.018) .702 (.027) .702 (.027) .774 (.022) .774 (.022) .704 (.006) .704 (.006)
HCapp(LR) .893 (.016) .893 (.016) .713 (.030) .713 (.030) .753 (.028) .753 (.028) .674 (.007) .674 (.007)
HCapp(LR) w/ disc. .891 (.017) .891 (.017) .703 (.028) .703 (.028) .771 (.023) .771 (.023) .703 (.006) .703 (.006)
HC(ANN) .886 (.018) .886 (.018) .707 (.028) .707 (.028) .730 (.032) .730 (.032) .682 (.008) .682 (.008)
HC(ANN) w/ disc. .876 (.019) .876 (.019) .681 (.032) .681 (.032) .765 (.023) .765 (.023) .706 (.006) .706 (.006)
IC-LR .878 (.016) .878 (.016) .718 (.025) .718 (.025) .709 (.040) .709 (.040) .500 (.000) .500 (.000)
IC-LR w/ disc. .893 (.015) .893 (.015) .720 (.025) .720 (.025) .790 (.020) .790 (.020) .710 (.005) .710 (.005)
IC-LR w/ neg. .891 (.014) .891 (.014) .740 (.021) .740 (.021) .725 (.040) .725 (.040) .691 (.007) .691 (.007)
Imp(LR) .893 (.015) .888 (.017) .738 (.025) .701 (.042) .792 (.025) .760 (.029) .694 (.007) .661 (.007)
Imp(LR) w/ disc. .894 (.016) .859 (.029) .720 (.026) .676 (.050) .800 (.020) .757 (.038) .725 (.005) .677 (.027)
Imp(ANN) .893 (.015) .888 (.016) .739 (.025) .702 (.041) .786 (.026) .753 (.026) .721 (.008) .678 (.011)
Imp(ANN) w/ disc. .892 (.016) .859 (.029) .724 (.026) .679 (.050) .799 (.020) .758 (.038) .726 (.005) .677 (.026)
Imp(RF) .866 (.018) .850 (.031) .688 (.028) .657 (.064) .805 (.020) .773 (.024) .717 (.005) .634 (.039)
Imp(RF) w/ disc. .894 (.016) .857 (.044) .695 (.029) .660 (.057) .791 (.021) .741 (.051) .725 (.005) .662 (.044)
Imp(kNN) .885 (.018) .860 (.027) .699 (.029) .658 (.065) .776 (.024) .747 (.025) .708 (.012) .663 (.028)
Imp(kNN) w/ disc. .884 (.021) .845 (.042) .691 (.033) .638 (.070) .779 (.026) .722 (.063) .700 (.027) .596 (.083)
R-F(LR) .880 (.018) .798 (.067) .697 (.028) .609 (.055) .758 (.029) .591 (.099) .693 (.006) .546 (.101)
R-F(LR) w/ disc. .884 (.019) .789 (.070) .701 (.028) .617 (.061) .790 (.021) .654 (.100) .723 (.006) .570 (.121)
R-F(ANN) .878 (.019) .817 (.056) .688 (.030) .624 (.051) .758 (.029) .632 (.084) .706 (.008) .588 (.088)
R-F(ANN) w/ disc. .876 (.021) .815 (.043) .687 (.036) .626 (.059) .786 (.021) .695 (.061) .724 (.006) .633 (.076)
R-F(RF) .860 (.019) .799 (.056) .674 (.029) .611 (.055) .788 (.021) .664 (.085) .717 (.005) .592 (.072)
R-F(RF) w/ disc. .880 (.019) .803 (.057) .681 (.029) .629 (.055) .777 (.023) .681 (.068) .722 (.005) .574 (.094)
R-F(kNN) .871 (.019) .787 (.056) .664 (.031) .598 (.044) .742 (.026) .640 (.056) .706 (.013) .644 (.037)
R-F(kNN) w/ disc. .869 (.022) .772 (.070) .676 (.033) .610 (.047) .767 (.027) .671 (.064) .701 (.022) .636 (.057)



Table 14: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.2, balanced datasets, pre-selected 4 features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .875 (.018) .875 (.018) .678 (.031) .678 (.031) .727 (.028) .727 (.028) .662 (.007) .662 (.007)
HC(LR) w/ disc. .870 (.019) .870 (.019) .679 (.030) .679 (.030) .748 (.025) .748 (.025) .693 (.007) .693 (.007)
HCapp(LR) .876 (.018) .876 (.018) .691 (.029) .691 (.029) .731 (.027) .731 (.027) .661 (.007) .661 (.007)
HCapp(LR) w/ disc. .871 (.020) .871 (.020) .684 (.028) .684 (.028) .746 (.024) .746 (.024) .691 (.006) .691 (.006)
HC(ANN) .865 (.021) .865 (.021) .675 (.032) .675 (.032) .702 (.036) .702 (.036) .670 (.008) .670 (.008)
HC(ANN) w/ disc. .850 (.026) .850 (.026) .655 (.035) .655 (.035) .735 (.027) .735 (.027) .691 (.007) .691 (.007)
IC-LR .853 (.019) .853 (.019) .700 (.027) .700 (.027) .706 (.040) .706 (.040) .500 (.000) .500 (.000)
IC-LR w/ disc. .875 (.018) .875 (.018) .700 (.027) .700 (.027) .764 (.023) .764 (.023) .694 (.006) .694 (.006)
IC-LR w/ neg. .884 (.011) .884 (.011) .726 (.024) .726 (.024) .718 (.042) .718 (.042) .688 (.005) .688 (.005)
Imp(LR) .879 (.017) .868 (.019) .720 (.026) .681 (.042) .782 (.026) .746 (.026) .690 (.006) .657 (.006)
Imp(LR) w/ disc. .877 (.014) .832 (.029) .701 (.026) .658 (.047) .780 (.024) .710 (.059) .721 (.005) .682 (.011)
Imp(ANN) .880 (.016) .868 (.019) .722 (.026) .683 (.042) .775 (.027) .739 (.024) .714 (.007) .673 (.009)
Imp(ANN) w/ disc. .875 (.014) .832 (.029) .705 (.027) .659 (.048) .778 (.024) .711 (.059) .721 (.005) .682 (.011)
Imp(RF) .850 (.019) .821 (.040) .668 (.033) .641 (.053) .789 (.022) .733 (.031) .709 (.006) .638 (.033)
Imp(RF) w/ disc. .876 (.016) .831 (.031) .679 (.028) .645 (.051) .772 (.024) .701 (.061) .720 (.005) .671 (.024)
Imp(kNN) .868 (.019) .842 (.031) .681 (.030) .640 (.057) .757 (.026) .725 (.028) .702 (.010) .655 (.025)
Imp(kNN) w/ disc. .861 (.024) .815 (.036) .669 (.038) .628 (.060) .754 (.033) .673 (.076) .698 (.018) .618 (.057)
R-F(LR) .866 (.019) .778 (.066) .668 (.032) .599 (.051) .726 (.032) .589 (.091) .687 (.007) .629 (.031)
R-F(LR) w/ disc. .864 (.018) .746 (.078) .678 (.028) .613 (.058) .766 (.023) .633 (.089) .717 (.005) .666 (.031)
R-F(ANN) .863 (.020) .801 (.050) .662 (.032) .607 (.050) .724 (.035) .638 (.071) .694 (.007) .635 (.028)
R-F(ANN) w/ disc. .858 (.018) .793 (.048) .669 (.030) .621 (.053) .761 (.024) .676 (.048) .716 (.005) .666 (.023)
R-F(RF) .846 (.021) .775 (.057) .650 (.034) .593 (.055) .762 (.023) .647 (.070) .708 (.006) .645 (.020)
R-F(RF) w/ disc. .858 (.019) .785 (.049) .661 (.029) .627 (.057) .756 (.024) .661 (.065) .716 (.005) .658 (.033)
R-F(kNN) .845 (.020) .742 (.055) .635 (.033) .567 (.042) .707 (.029) .620 (.044) .700 (.009) .658 (.023)
R-F(kNN) w/ disc. .839 (.022) .724 (.068) .655 (.033) .593 (.052) .739 (.031) .647 (.053) .695 (.018) .659 (.023)



Table 15: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.3, balanced datasets, pre-selected 4 features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .855 (.020) .855 (.020) .658 (.032) .658 (.032) .704 (.027) .704 (.027) .653 (.006) .653 (.006)
HC(LR) w/ disc. .848 (.021) .848 (.021) .659 (.032) .659 (.032) .724 (.029) .724 (.029) .676 (.008) .676 (.008)
HCapp(LR) .854 (.018) .854 (.018) .667 (.031) .667 (.031) .702 (.030) .702 (.030) .653 (.006) .653 (.006)
HCapp(LR) w/ disc. .847 (.018) .847 (.018) .661 (.030) .661 (.030) .721 (.027) .721 (.027) .677 (.006) .677 (.006)
HC(ANN) .843 (.023) .843 (.023) .651 (.032) .651 (.032) .674 (.039) .674 (.039) .656 (.006) .656 (.006)
HC(ANN) w/ disc. .826 (.031) .826 (.031) .628 (.037) .628 (.037) .709 (.030) .709 (.030) .679 (.006) .679 (.006)
IC-LR .822 (.019) .822 (.019) .676 (.028) .676 (.028) .697 (.038) .697 (.038) .500 (.000) .500 (.000)
IC-LR w/ disc. .853 (.017) .853 (.017) .677 (.029) .677 (.029) .737 (.027) .737 (.027) .681 (.006) .681 (.006)
IC-LR w/ neg. .865 (.017) .865 (.017) .700 (.029) .700 (.029) .716 (.041) .716 (.041) .685 (.005) .685 (.005)
Imp(LR) .862 (.019) .842 (.027) .703 (.029) .667 (.041) .769 (.025) .728 (.026) .685 (.005) .649 (.005)
Imp(LR) w/ disc. .855 (.017) .792 (.049) .682 (.030) .646 (.045) .764 (.026) .681 (.055) .716 (.006) .674 (.009)
Imp(ANN) .862 (.019) .842 (.026) .706 (.028) .668 (.040) .761 (.027) .721 (.024) .705 (.006) .663 (.009)
Imp(ANN) w/ disc. .853 (.017) .792 (.048) .684 (.031) .647 (.045) .761 (.025) .681 (.055) .716 (.006) .675 (.008)
Imp(RF) .829 (.021) .794 (.040) .650 (.033) .629 (.049) .770 (.022) .695 (.044) .700 (.006) .652 (.012)
Imp(RF) w/ disc. .854 (.018) .791 (.048) .662 (.032) .635 (.048) .759 (.024) .678 (.054) .714 (.006) .671 (.011)
Imp(kNN) .848 (.023) .806 (.047) .663 (.033) .623 (.057) .740 (.026) .701 (.031) .692 (.008) .641 (.026)
Imp(kNN) w/ disc. .838 (.027) .769 (.067) .646 (.040) .615 (.056) .735 (.041) .649 (.067) .685 (.017) .616 (.044)
R-F(LR) .848 (.020) .775 (.068) .643 (.030) .595 (.047) .704 (.030) .611 (.072) .679 (.005) .636 (.013)
R-F(LR) w/ disc. .843 (.023) .751 (.074) .658 (.032) .609 (.051) .752 (.023) .653 (.075) .709 (.006) .672 (.012)
R-F(ANN) .844 (.021) .790 (.050) .640 (.032) .599 (.046) .705 (.035) .636 (.053) .681 (.006) .634 (.022)
R-F(ANN) w/ disc. .839 (.024) .785 (.045) .650 (.033) .611 (.046) .748 (.024) .673 (.043) .709 (.006) .668 (.011)
R-F(RF) .828 (.021) .757 (.063) .629 (.030) .588 (.053) .738 (.023) .648 (.060) .697 (.006) .652 (.012)
R-F(RF) w/ disc. .842 (.023) .779 (.048) .647 (.032) .621 (.046) .745 (.023) .665 (.057) .709 (.006) .671 (.012)
R-F(kNN) .825 (.023) .740 (.049) .610 (.032) .562 (.043) .691 (.026) .627 (.043) .690 (.008) .649 (.016)
R-F(kNN) w/ disc. .819 (.026) .729 (.057) .632 (.034) .594 (.050) .726 (.027) .650 (.045) .689 (.009) .651 (.017)



Table 16: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.4, balanced datasets, pre-selected 4 features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .828 (.023) .828 (.023) .639 (.034) .639 (.034) .681 (.030) .681 (.030) .644 (.007) .644 (.007)
HC(LR) w/ disc. .820 (.024) .820 (.024) .641 (.032) .641 (.032) .695 (.027) .695 (.027) .663 (.006) .663 (.006)
HCapp(LR) .827 (.021) .827 (.021) .645 (.033) .645 (.033) .682 (.030) .682 (.030) .644 (.006) .644 (.006)
HCapp(LR) w/ disc. .817 (.022) .817 (.022) .642 (.032) .642 (.032) .699 (.026) .699 (.026) .663 (.006) .663 (.006)
HC(ANN) .810 (.028) .810 (.028) .626 (.037) .626 (.037) .646 (.040) .646 (.040) .647 (.007) .647 (.007)
HC(ANN) w/ disc. .794 (.034) .794 (.034) .604 (.037) .604 (.037) .683 (.028) .683 (.028) .664 (.007) .664 (.007)
IC-LR .788 (.021) .788 (.021) .654 (.029) .654 (.029) .690 (.033) .690 (.033) .500 (.000) .500 (.000)
IC-LR w/ disc. .825 (.020) .825 (.020) .656 (.028) .656 (.028) .712 (.025) .712 (.025) .668 (.006) .668 (.006)
IC-LR w/ neg. .848 (.017) .848 (.017) .689 (.030) .689 (.030) .700 (.039) .700 (.039) .678 (.007) .678 (.007)
Imp(LR) .844 (.019) .814 (.028) .686 (.029) .652 (.040) .753 (.027) .709 (.026) .679 (.005) .641 (.006)
Imp(LR) w/ disc. .829 (.020) .762 (.038) .665 (.032) .629 (.042) .736 (.028) .644 (.058) .707 (.006) .660 (.009)
Imp(ANN) .845 (.019) .814 (.028) .688 (.029) .653 (.040) .745 (.030) .704 (.026) .696 (.007) .652 (.009)
Imp(ANN) w/ disc. .828 (.020) .762 (.038) .666 (.032) .629 (.042) .733 (.028) .644 (.057) .707 (.006) .660 (.009)
Imp(RF) .809 (.024) .768 (.040) .640 (.033) .619 (.044) .746 (.022) .679 (.028) .692 (.007) .650 (.009)
Imp(RF) w/ disc. .829 (.020) .762 (.038) .646 (.034) .619 (.043) .731 (.028) .642 (.057) .705 (.006) .657 (.011)
Imp(kNN) .826 (.022) .775 (.045) .642 (.035) .609 (.050) .718 (.027) .675 (.033) .682 (.008) .625 (.026)
Imp(kNN) w/ disc. .812 (.033) .738 (.059) .623 (.044) .598 (.053) .717 (.033) .622 (.065) .678 (.015) .607 (.045)
R-F(LR) .826 (.023) .782 (.051) .622 (.034) .595 (.041) .676 (.038) .623 (.053) .667 (.006) .631 (.009)
R-F(LR) w/ disc. .821 (.024) .768 (.052) .638 (.036) .611 (.038) .731 (.026) .669 (.048) .694 (.007) .662 (.008)
R-F(ANN) .821 (.024) .781 (.040) .618 (.034) .594 (.039) .675 (.040) .623 (.047) .667 (.007) .633 (.012)
R-F(ANN) w/ disc. .818 (.024) .779 (.035) .630 (.037) .602 (.039) .728 (.026) .668 (.040) .693 (.007) .661 (.009)
R-F(RF) .805 (.025) .753 (.049) .612 (.034) .592 (.044) .705 (.026) .646 (.040) .684 (.007) .648 (.009)
R-F(RF) w/ disc. .821 (.023) .784 (.034) .629 (.035) .616 (.038) .728 (.027) .673 (.044) .693 (.007) .661 (.008)
R-F(kNN) .805 (.024) .746 (.043) .591 (.037) .570 (.041) .666 (.030) .633 (.036) .676 (.008) .639 (.015)
R-F(kNN) w/ disc. .802 (.027) .746 (.040) .616 (.036) .590 (.043) .708 (.028) .656 (.039) .674 (.009) .637 (.016)



Table 17: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.5, balanced datasets, pre-selected 4 features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .788 (.023) .788 (.023) .616 (.033) .616 (.033) .657 (.030) .657 (.030) .630 (.006) .630 (.006)
HC(LR) w/ disc. .779 (.024) .779 (.024) .618 (.031) .618 (.031) .670 (.029) .670 (.029) .645 (.006) .645 (.006)
HCapp(LR) .787 (.025) .787 (.025) .620 (.032) .620 (.032) .661 (.031) .661 (.031) .631 (.007) .631 (.007)
HCapp(LR) w/ disc. .777 (.027) .777 (.027) .620 (.031) .620 (.031) .670 (.027) .670 (.027) .646 (.006) .646 (.006)
HC(ANN) .773 (.029) .773 (.029) .600 (.035) .600 (.035) .624 (.041) .624 (.041) .632 (.006) .632 (.006)
HC(ANN) w/ disc. .761 (.031) .761 (.031) .581 (.036) .581 (.036) .661 (.032) .661 (.032) .646 (.006) .646 (.006)
IC-LR .747 (.023) .747 (.023) .629 (.029) .629 (.029) .686 (.032) .686 (.032) .500 (.000) .500 (.000)
IC-LR w/ disc. .790 (.024) .790 (.024) .631 (.029) .631 (.029) .686 (.027) .686 (.027) .653 (.006) .653 (.006)
IC-LR w/ neg. .816 (.022) .816 (.022) .660 (.028) .660 (.028) .708 (.035) .708 (.035) .672 (.006) .672 (.006)
Imp(LR) .819 (.021) .778 (.030) .663 (.032) .628 (.040) .736 (.027) .688 (.026) .672 (.006) .630 (.006)
Imp(LR) w/ disc. .791 (.021) .710 (.052) .641 (.032) .607 (.039) .698 (.036) .611 (.052) .695 (.005) .642 (.011)
Imp(ANN) .818 (.021) .778 (.030) .665 (.032) .629 (.040) .729 (.030) .683 (.028) .684 (.007) .637 (.008)
Imp(ANN) w/ disc. .790 (.021) .710 (.052) .639 (.035) .605 (.041) .694 (.036) .610 (.053) .695 (.005) .643 (.011)
Imp(RF) .782 (.024) .735 (.037) .622 (.034) .602 (.040) .720 (.025) .655 (.027) .681 (.006) .640 (.008)
Imp(RF) w/ disc. .791 (.021) .710 (.052) .627 (.033) .600 (.040) .696 (.036) .610 (.051) .693 (.005) .642 (.011)
Imp(kNN) .796 (.026) .741 (.045) .620 (.036) .592 (.047) .703 (.029) .650 (.043) .668 (.010) .607 (.028)
Imp(kNN) w/ disc. .772 (.035) .691 (.067) .604 (.046) .576 (.049) .674 (.041) .584 (.061) .662 (.020) .591 (.043)
R-F(LR) .787 (.025) .765 (.032) .594 (.034) .585 (.037) .652 (.037) .621 (.039) .649 (.006) .621 (.007)
R-F(LR) w/ disc. .779 (.031) .750 (.036) .622 (.036) .597 (.037) .706 (.028) .658 (.031) .672 (.006) .644 (.008)
R-F(ANN) .781 (.025) .754 (.034) .590 (.034) .580 (.036) .646 (.040) .607 (.043) .647 (.006) .622 (.011)
R-F(ANN) w/ disc. .778 (.031) .751 (.036) .606 (.037) .578 (.037) .702 (.028) .652 (.032) .670 (.007) .642 (.008)
R-F(RF) .768 (.024) .730 (.035) .588 (.033) .581 (.038) .670 (.027) .635 (.032) .663 (.006) .636 (.008)
R-F(RF) w/ disc. .787 (.029) .758 (.033) .618 (.035) .598 (.036) .706 (.028) .660 (.031) .672 (.007) .644 (.008)
R-F(kNN) .770 (.026) .737 (.035) .570 (.036) .567 (.042) .646 (.031) .631 (.031) .656 (.008) .624 (.012)
R-F(kNN) w/ disc. .766 (.029) .736 (.039) .597 (.037) .580 (.040) .687 (.031) .636 (.043) .654 (.009) .623 (.014)



Table 18: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.0, unbalanced datasets, pre-selected 4 features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .848 (.015) .848 (.015) .736 (.017) .736 (.017) .931 (.003) .931 (.003) .808 (.003) .808 (.003)
HC(LR) w/ disc. .848 (.013) .848 (.013) .730 (.015) .730 (.015) .931 (.004) .931 (.004) .819 (.002) .819 (.002)
HCapp(LR) .849 (.014) .849 (.014) .720 (.017) .720 (.017) .931 (.003) .931 (.003) .808 (.013) .808 (.013)
HCapp(LR) w/ disc. .834 (.036) .834 (.036) .718 (.015) .718 (.015) .932 (.003) .932 (.003) .819 (.002) .819 (.002)
HC(ANN) .850 (.013) .850 (.013) .740 (.018) .740 (.018) .931 (.003) .931 (.003) .819 (.002) .819 (.002)
HC(ANN) w/ disc. .848 (.014) .848 (.014) .730 (.017) .730 (.017) .931 (.003) .931 (.003) .819 (.002) .819 (.002)
Mincut .739 (.020) .739 (.020) .568 (.018) .568 (.018) .085 (.004) .085 (.004) .818 (.002) .818 (.002)
Mincut w/ disc. .845 (.014) .845 (.014) .696 (.019) .696 (.019) .929 (.004) .929 (.004) .819 (.002) .819 (.002)
IC-LR .855 (.012) .855 (.012) .725 (.015) .725 (.015) .931 (.003) .931 (.003) .779 (.002) .779 (.002)
IC-LR w/ disc. .848 (.012) .848 (.012) .727 (.015) .727 (.015) .931 (.003) .931 (.003) .819 (.002) .819 (.002)
IC-LR w/ neg. .855 (.012) .855 (.012) .740 (.015) .740 (.015) .931 (.003) .931 (.003) .807 (.003) .807 (.003)
Maj .738 (.020) .738 (.020) .553 (.019) .553 (.019) .085 (.004) .085 (.004) .818 (.002) .818 (.002)
Maj w/ disc. .847 (.014) .847 (.014) .686 (.020) .686 (.020) .928 (.004) .928 (.004) .819 (.002) .819 (.002)
Imp(LR) .853 (.013) .822 (.097) .744 (.017) .700 (.014) .930 (.003) .931 (.003) .808 (.003) .779 (.002)
Imp(LR) w/ disc. .850 (.013) .798 (.102) .731 (.015) .700 (.014) .932 (.003) .931 (.003) .820 (.002) .779 (.002)
Imp(ANN) .849 (.013) .816 (.096) .744 (.016) .700 (.014) .930 (.003) .931 (.003) .819 (.002) .779 (.002)
Imp(ANN) w/ disc. .848 (.014) .776 (.096) .729 (.016) .700 (.014) .932 (.004) .931 (.003) .819 (.002) .779 (.002)
Imp(RF) .818 (.015) .637 (.095) .705 (.017) .700 (.014) .929 (.003) .931 (.003) .818 (.002) .779 (.002)
Imp(RF) w/ disc. .847 (.015) .792 (.103) .719 (.016) .700 (.014) .930 (.004) .931 (.003) .819 (.002) .779 (.002)
Imp(kNN) .845 (.016) .747 (.111) .727 (.018) .700 (.014) .931 (.003) .931 (.003) .811 (.007) .774 (.036)
Imp(kNN) w/ disc. .841 (.022) .749 (.120) .717 (.020) .699 (.016) .929 (.004) .926 (.057) .811 (.010) .771 (.061)
R-F(LR) .853 (.013) .853 (.013) .744 (.017) .744 (.017) .930 (.003) .930 (.003) .808 (.003) .808 (.003)
R-F(LR) w/ disc. .850 (.013) .850 (.013) .731 (.015) .731 (.015) .932 (.003) .932 (.003) .820 (.002) .820 (.002)
R-F(ANN) .849 (.013) .849 (.013) .745 (.016) .744 (.017) .930 (.003) .930 (.003) .819 (.002) .819 (.002)
R-F(ANN) w/ disc. .848 (.014) .848 (.014) .729 (.015) .730 (.015) .931 (.004) .931 (.003) .820 (.002) .819 (.002)
R-F(RF) .818 (.015) .818 (.016) .705 (.016) .706 (.016) .929 (.003) .929 (.003) .818 (.002) .818 (.002)
R-F(RF) w/ disc. .846 (.015) .847 (.015) .719 (.016) .719 (.016) .930 (.004) .930 (.004) .819 (.002) .819 (.002)
R-F(kNN) .845 (.016) .845 (.017) .727 (.018) .728 (.018) .931 (.003) .931 (.003) .811 (.007) .810 (.007)
R-F(kNN) w/ disc. .842 (.019) .841 (.023) .717 (.020) .717 (.021) .929 (.005) .929 (.004) .810 (.012) .807 (.042)



Table 19: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.1, unbalanced datasets, pre-selected 4 features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .814 (.019) .814 (.019) .708 (.017) .708 (.017) .930 (.004) .930 (.004) .803 (.003) .803 (.003)
HC(LR) w/ disc. .818 (.020) .818 (.020) .701 (.018) .701 (.018) .929 (.004) .929 (.004) .804 (.003) .804 (.003)
HCapp(LR) .807 (.014) .807 (.014) .710 (.013) .710 (.013) .930 (.003) .930 (.003) .795 (.010) .795 (.010)
HCapp(LR) w/ disc. .815 (.020) .815 (.020) .702 (.018) .702 (.018) .930 (.003) .930 (.003) .804 (.003) .804 (.003)
HC(ANN) .799 (.022) .799 (.022) .700 (.020) .700 (.020) .930 (.004) .930 (.004) .803 (.003) .803 (.003)
HC(ANN) w/ disc. .797 (.025) .797 (.025) .693 (.017) .693 (.017) .930 (.004) .930 (.004) .802 (.003) .802 (.003)
Mincut .770 (.032) .770 (.032) .606 (.028) .606 (.028) .080 (.004) .080 (.004) .802 (.003) .802 (.003)
Mincut w/ disc. .811 (.021) .811 (.021) .686 (.021) .686 (.021) .928 (.004) .928 (.004) .804 (.002) .804 (.002)
IC-LR .809 (.018) .809 (.018) .706 (.013) .706 (.013) .931 (.003) .931 (.003) .778 (.002) .778 (.002)
IC-LR w/ disc. .819 (.019) .819 (.019) .710 (.014) .710 (.014) .930 (.003) .930 (.003) .804 (.002) .804 (.002)
IC-LR w/ neg. .814 (.020) .814 (.020) .728 (.015) .728 (.015) .931 (.003) .931 (.003) .804 (.003) .804 (.003)
Maj .677 (.024) .734 (.073) .489 (.021) .637 (.030) .077 (.004) .142 (.120) .811 (.003) .782 (.006)
Maj w/ disc. .814 (.019) .703 (.080) .643 (.028) .686 (.019) .922 (.005) .929 (.004) .815 (.003) .782 (.007)
Imp(LR) .818 (.019) .775 (.098) .735 (.016) .700 (.014) .930 (.004) .930 (.004) .805 (.003) .779 (.002)
Imp(LR) w/ disc. .825 (.018) .744 (.105) .723 (.016) .699 (.015) .931 (.003) .930 (.003) .816 (.003) .779 (.002)
Imp(ANN) .821 (.018) .768 (.099) .735 (.016) .700 (.014) .930 (.004) .930 (.004) .815 (.003) .779 (.002)
Imp(ANN) w/ disc. .826 (.016) .735 (.107) .722 (.016) .699 (.015) .930 (.003) .930 (.003) .817 (.003) .779 (.002)
Imp(RF) .794 (.020) .638 (.094) .696 (.019) .700 (.014) .928 (.004) .930 (.004) .813 (.003) .779 (.003)
Imp(RF) w/ disc. .822 (.019) .732 (.108) .708 (.018) .699 (.015) .929 (.004) .930 (.003) .817 (.002) .779 (.002)
Imp(kNN) .813 (.019) .703 (.100) .719 (.019) .700 (.014) .930 (.004) .930 (.004) .808 (.007) .779 (.002)
Imp(kNN) w/ disc. .813 (.023) .698 (.122) .707 (.023) .695 (.022) .927 (.006) .930 (.003) .807 (.010) .776 (.018)
R-F(LR) .825 (.017) .570 (.037) .715 (.017) .697 (.014) .930 (.004) .930 (.004) .806 (.003) .779 (.002)
R-F(LR) w/ disc. .818 (.019) .571 (.046) .713 (.018) .696 (.015) .930 (.004) .930 (.003) .817 (.002) .779 (.002)
R-F(ANN) .823 (.017) .572 (.039) .715 (.017) .697 (.014) .930 (.004) .930 (.004) .811 (.003) .779 (.002)
R-F(ANN) w/ disc. .817 (.018) .576 (.053) .711 (.018) .697 (.015) .930 (.003) .930 (.003) .814 (.002) .779 (.002)
R-F(RF) .795 (.019) .570 (.037) .687 (.019) .697 (.014) .927 (.004) .930 (.004) .813 (.003) .779 (.003)
R-F(RF) w/ disc. .817 (.018) .576 (.052) .698 (.019) .696 (.015) .927 (.004) .930 (.003) .816 (.002) .779 (.003)
R-F(kNN) .807 (.020) .563 (.034) .701 (.018) .696 (.015) .930 (.004) .930 (.004) .808 (.006) .779 (.002)
R-F(kNN) w/ disc. .805 (.024) .565 (.035) .699 (.021) .696 (.015) .928 (.004) .930 (.003) .809 (.006) .779 (.003)



Table 20: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.2, unbalanced datasets, pre-selected 4 features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .796 (.019) .796 (.019) .694 (.019) .694 (.019) .929 (.003) .929 (.003) .800 (.002) .800 (.002)
HC(LR) w/ disc. .794 (.020) .794 (.020) .688 (.020) .688 (.020) .929 (.003) .929 (.003) .800 (.002) .800 (.002)
HCapp(LR) .795 (.019) .795 (.019) .692 (.016) .692 (.016) .929 (.004) .929 (.004) .789 (.011) .789 (.011)
HCapp(LR) w/ disc. .789 (.022) .789 (.022) .690 (.019) .690 (.019) .928 (.003) .928 (.003) .800 (.002) .800 (.002)
HC(ANN) .780 (.026) .780 (.026) .682 (.021) .682 (.021) .929 (.003) .929 (.003) .800 (.003) .800 (.003)
HC(ANN) w/ disc. .771 (.027) .771 (.027) .686 (.021) .686 (.021) .929 (.003) .929 (.003) .800 (.002) .800 (.002)
Mincut .769 (.026) .769 (.026) .621 (.028) .621 (.028) .078 (.004) .078 (.004) .798 (.004) .798 (.004)
Mincut w/ disc. .794 (.020) .794 (.020) .678 (.022) .678 (.022) .929 (.004) .929 (.004) .800 (.002) .800 (.002)
IC-LR .788 (.021) .788 (.021) .696 (.019) .696 (.019) .931 (.004) .931 (.004) .779 (.002) .779 (.002)
IC-LR w/ disc. .796 (.017) .796 (.017) .701 (.018) .701 (.018) .931 (.004) .931 (.004) .800 (.002) .800 (.002)
IC-LR w/ neg. .797 (.018) .797 (.018) .717 (.017) .717 (.017) .931 (.004) .931 (.004) .800 (.003) .800 (.003)
Maj .652 (.024) .698 (.086) .471 (.022) .678 (.026) .074 (.003) .568 (.091) .809 (.003) .780 (.003)
Maj w/ disc. .798 (.022) .647 (.076) .632 (.035) .694 (.017) .922 (.005) .931 (.003) .814 (.002) .781 (.004)
Imp(LR) .803 (.020) .740 (.095) .728 (.016) .700 (.014) .930 (.003) .931 (.003) .802 (.003) .779 (.002)
Imp(LR) w/ disc. .799 (.019) .709 (.105) .718 (.017) .700 (.015) .930 (.004) .930 (.003) .813 (.003) .779 (.002)
Imp(ANN) .806 (.018) .729 (.093) .727 (.016) .700 (.014) .931 (.003) .931 (.003) .813 (.003) .779 (.002)
Imp(ANN) w/ disc. .798 (.019) .700 (.107) .716 (.017) .700 (.015) .930 (.004) .930 (.003) .813 (.002) .779 (.002)
Imp(RF) .775 (.021) .623 (.081) .690 (.019) .700 (.014) .928 (.003) .931 (.003) .811 (.003) .780 (.003)
Imp(RF) w/ disc. .797 (.019) .691 (.109) .706 (.018) .700 (.015) .929 (.003) .930 (.003) .814 (.003) .779 (.003)
Imp(kNN) .792 (.020) .675 (.095) .711 (.020) .698 (.016) .930 (.004) .931 (.003) .807 (.005) .779 (.003)
Imp(kNN) w/ disc. .789 (.023) .670 (.112) .698 (.028) .694 (.029) .928 (.004) .930 (.003) .803 (.027) .778 (.005)
R-F(LR) .807 (.019) .577 (.039) .700 (.019) .696 (.014) .929 (.003) .929 (.003) .803 (.003) .779 (.003)
R-F(LR) w/ disc. .798 (.020) .568 (.032) .704 (.018) .697 (.015) .928 (.004) .929 (.003) .813 (.003) .780 (.003)
R-F(ANN) .804 (.019) .576 (.039) .698 (.020) .696 (.014) .929 (.003) .929 (.003) .805 (.003) .778 (.002)
R-F(ANN) w/ disc. .795 (.020) .576 (.045) .701 (.019) .698 (.015) .929 (.003) .929 (.003) .809 (.003) .778 (.002)
R-F(RF) .780 (.020) .577 (.040) .675 (.019) .696 (.015) .924 (.003) .928 (.003) .810 (.003) .782 (.005)
R-F(RF) w/ disc. .799 (.020) .576 (.043) .689 (.019) .698 (.015) .925 (.004) .929 (.003) .813 (.003) .784 (.007)
R-F(kNN) .781 (.024) .567 (.032) .691 (.020) .695 (.014) .929 (.004) .929 (.003) .806 (.004) .781 (.004)
R-F(kNN) w/ disc. .780 (.024) .567 (.036) .692 (.020) .697 (.015) .927 (.005) .929 (.003) .806 (.004) .782 (.005)



Table 21: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.3, unbalanced datasets, pre-selected 4 features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .775 (.021) .775 (.021) .685 (.019) .685 (.019) .923 (.004) .923 (.004) .796 (.003) .796 (.003)
HC(LR) w/ disc. .771 (.023) .771 (.023) .682 (.021) .682 (.021) .923 (.004) .923 (.004) .796 (.003) .796 (.003)
HCapp(LR) .776 (.021) .776 (.021) .690 (.017) .690 (.017) .923 (.003) .923 (.003) .789 (.010) .789 (.010)
HCapp(LR) w/ disc. .771 (.026) .771 (.026) .694 (.018) .694 (.018) .922 (.003) .922 (.003) .796 (.003) .796 (.003)
HC(ANN) .755 (.026) .755 (.026) .673 (.022) .673 (.022) .923 (.004) .923 (.004) .796 (.003) .796 (.003)
HC(ANN) w/ disc. .747 (.031) .747 (.031) .692 (.020) .692 (.020) .923 (.004) .923 (.004) .796 (.003) .796 (.003)
Mincut .746 (.024) .746 (.024) .634 (.027) .634 (.027) .079 (.004) .079 (.004) .792 (.006) .792 (.006)
Mincut w/ disc. .772 (.023) .772 (.023) .677 (.022) .677 (.022) .930 (.003) .930 (.003) .796 (.003) .796 (.003)
IC-LR .762 (.030) .762 (.030) .699 (.014) .699 (.014) .930 (.003) .930 (.003) .778 (.003) .778 (.003)
IC-LR w/ disc. .773 (.020) .773 (.020) .700 (.014) .700 (.014) .930 (.003) .930 (.003) .782 (.007) .782 (.007)
IC-LR w/ neg. .770 (.024) .770 (.024) .717 (.016) .717 (.016) .930 (.003) .930 (.003) .797 (.003) .797 (.003)
Maj .642 (.026) .659 (.084) .477 (.023) .693 (.020) .079 (.004) .729 (.008) .807 (.003) .780 (.003)
Maj w/ disc. .783 (.022) .630 (.076) .631 (.036) .698 (.015) .923 (.005) .930 (.003) .811 (.002) .781 (.004)
Imp(LR) .783 (.021) .709 (.090) .723 (.017) .701 (.014) .930 (.003) .930 (.003) .799 (.003) .779 (.003)
Imp(LR) w/ disc. .773 (.022) .668 (.104) .711 (.018) .699 (.015) .930 (.003) .930 (.003) .808 (.003) .779 (.003)
Imp(ANN) .784 (.021) .695 (.093) .723 (.017) .701 (.014) .930 (.003) .930 (.003) .808 (.003) .779 (.003)
Imp(ANN) w/ disc. .772 (.021) .657 (.105) .710 (.017) .699 (.015) .930 (.003) .930 (.003) .812 (.002) .779 (.003)
Imp(RF) .755 (.024) .615 (.078) .688 (.021) .701 (.014) .926 (.004) .930 (.003) .809 (.003) .780 (.003)
Imp(RF) w/ disc. .773 (.020) .655 (.105) .702 (.018) .699 (.015) .928 (.003) .930 (.003) .811 (.003) .779 (.003)
Imp(kNN) .770 (.024) .635 (.090) .704 (.022) .697 (.019) .930 (.004) .930 (.003) .803 (.005) .779 (.003)
Imp(kNN) w/ disc. .763 (.030) .644 (.102) .693 (.030) .689 (.038) .928 (.005) .928 (.021) .802 (.009) .775 (.020)
R-F(LR) .791 (.022) .604 (.050) .688 (.020) .693 (.015) .923 (.004) .923 (.004) .797 (.003) .776 (.003)
R-F(LR) w/ disc. .783 (.022) .596 (.057) .697 (.019) .696 (.016) .922 (.004) .923 (.004) .807 (.002) .781 (.007)
R-F(ANN) .788 (.023) .601 (.051) .689 (.020) .693 (.015) .923 (.004) .923 (.004) .797 (.003) .774 (.003)
R-F(ANN) w/ disc. .780 (.024) .613 (.061) .696 (.019) .696 (.016) .923 (.004) .923 (.004) .802 (.003) .774 (.003)
R-F(RF) .765 (.023) .609 (.048) .666 (.021) .692 (.015) .915 (.004) .920 (.004) .804 (.003) .782 (.007)
R-F(RF) w/ disc. .785 (.023) .631 (.068) .683 (.022) .696 (.016) .919 (.004) .923 (.004) .807 (.003) .783 (.008)
R-F(kNN) .770 (.025) .597 (.049) .686 (.020) .693 (.015) .923 (.004) .923 (.004) .800 (.004) .780 (.005)
R-F(kNN) w/ disc. .767 (.026) .600 (.057) .686 (.022) .696 (.016) .921 (.004) .923 (.004) .798 (.010) .779 (.006)



Table 22: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.4, unbalanced datasets, pre-selected 4 features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .756 (.023) .756 (.023) .673 (.021) .673 (.021) .908 (.005) .908 (.005) .786 (.002) .786 (.002)
HC(LR) w/ disc. .749 (.025) .749 (.025) .686 (.023) .686 (.023) .908 (.005) .908 (.005) .786 (.002) .786 (.002)
HCapp(LR) .759 (.023) .759 (.023) .675 (.018) .675 (.018) .908 (.004) .908 (.004) .779 (.010) .779 (.010)
HCapp(LR) w/ disc. .749 (.025) .749 (.025) .692 (.017) .692 (.017) .908 (.004) .908 (.004) .786 (.002) .786 (.002)
HC(ANN) .733 (.027) .733 (.027) .669 (.022) .669 (.022) .908 (.004) .908 (.004) .786 (.002) .786 (.002)
HC(ANN) w/ disc. .724 (.033) .724 (.033) .694 (.019) .694 (.019) .909 (.005) .909 (.005) .786 (.003) .786 (.003)
Mincut .725 (.029) .725 (.029) .633 (.028) .633 (.028) .079 (.004) .079 (.004) .777 (.013) .777 (.013)
Mincut w/ disc. .749 (.025) .749 (.025) .685 (.024) .685 (.024) .931 (.004) .931 (.004) .785 (.006) .785 (.006)
IC-LR .740 (.027) .740 (.027) .700 (.013) .700 (.013) .931 (.003) .931 (.003) .779 (.002) .779 (.002)
IC-LR w/ disc. .744 (.023) .744 (.023) .699 (.014) .699 (.014) .930 (.003) .930 (.003) .779 (.002) .779 (.002)
IC-LR w/ neg. .746 (.026) .746 (.026) .708 (.014) .708 (.014) .931 (.003) .931 (.003) .795 (.002) .795 (.002)
Maj .644 (.027) .634 (.083) .501 (.024) .697 (.018) .093 (.004) .823 (.007) .804 (.003) .779 (.002)
Maj w/ disc. .767 (.026) .620 (.077) .640 (.032) .699 (.015) .924 (.004) .931 (.003) .808 (.002) .780 (.003)
Imp(LR) .763 (.023) .678 (.089) .716 (.017) .700 (.014) .931 (.003) .931 (.003) .796 (.003) .779 (.002)
Imp(LR) w/ disc. .748 (.025) .637 (.093) .708 (.016) .701 (.014) .929 (.004) .930 (.003) .806 (.003) .779 (.002)
Imp(ANN) .763 (.022) .659 (.093) .715 (.017) .700 (.014) .931 (.003) .931 (.003) .805 (.002) .779 (.002)
Imp(ANN) w/ disc. .748 (.024) .627 (.093) .706 (.016) .701 (.014) .930 (.003) .930 (.003) .809 (.002) .779 (.002)
Imp(RF) .736 (.024) .604 (.074) .685 (.020) .700 (.014) .924 (.004) .931 (.003) .805 (.002) .779 (.002)
Imp(RF) w/ disc. .749 (.023) .627 (.093) .700 (.018) .701 (.014) .929 (.004) .930 (.003) .808 (.002) .779 (.002)
Imp(kNN) .748 (.025) .615 (.080) .696 (.026) .692 (.028) .930 (.004) .931 (.004) .801 (.006) .778 (.003)
Imp(kNN) w/ disc. .734 (.038) .626 (.089) .686 (.040) .682 (.054) .927 (.007) .927 (.030) .800 (.013) .764 (.064)
R-F(LR) .775 (.024) .645 (.055) .675 (.021) .686 (.016) .908 (.004) .908 (.005) .784 (.003) .767 (.003)
R-F(LR) w/ disc. .764 (.024) .634 (.064) .694 (.018) .697 (.015) .907 (.005) .908 (.004) .795 (.003) .776 (.007)
R-F(ANN) .769 (.025) .630 (.056) .675 (.021) .686 (.016) .908 (.004) .908 (.004) .782 (.003) .765 (.002)
R-F(ANN) w/ disc. .762 (.025) .640 (.063) .694 (.018) .697 (.015) .908 (.005) .908 (.004) .790 (.003) .766 (.003)
R-F(RF) .749 (.025) .649 (.047) .654 (.022) .682 (.016) .896 (.005) .901 (.005) .791 (.003) .775 (.005)
R-F(RF) w/ disc. .771 (.024) .670 (.065) .682 (.021) .696 (.015) .905 (.005) .908 (.004) .794 (.003) .777 (.008)
R-F(kNN) .755 (.027) .649 (.056) .674 (.020) .684 (.017) .908 (.004) .908 (.004) .787 (.006) .771 (.006)
R-F(kNN) w/ disc. .755 (.029) .652 (.064) .681 (.023) .695 (.016) .907 (.005) .908 (.005) .787 (.008) .772 (.008)



Table 23: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.5, unbalanced datasets, pre-selected 4 features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .729 (.026) .729 (.026) .660 (.021) .660 (.021) .877 (.005) .877 (.005) .764 (.003) .764 (.003)
HC(LR) w/ disc. .724 (.025) .724 (.025) .692 (.023) .692 (.023) .880 (.013) .880 (.013) .765 (.003) .765 (.003)
HCapp(LR) .734 (.021) .734 (.021) .666 (.021) .666 (.021) .877 (.005) .877 (.005) .759 (.008) .759 (.008)
HCapp(LR) w/ disc. .730 (.023) .730 (.023) .692 (.023) .692 (.023) .881 (.014) .881 (.014) .764 (.002) .764 (.002)
HC(ANN) .714 (.030) .714 (.030) .663 (.021) .663 (.021) .877 (.005) .877 (.005) .765 (.003) .765 (.003)
HC(ANN) w/ disc. .706 (.032) .706 (.032) .694 (.019) .694 (.019) .880 (.013) .880 (.013) .765 (.003) .765 (.003)
Mincut .714 (.031) .714 (.031) .647 (.039) .647 (.039) .101 (.130) .101 (.130) .752 (.025) .752 (.025)
Mincut w/ disc. .724 (.025) .724 (.025) .696 (.020) .696 (.020) .930 (.006) .930 (.006) .771 (.021) .771 (.021)
IC-LR .709 (.026) .709 (.026) .700 (.015) .700 (.015) .931 (.003) .931 (.003) .779 (.002) .779 (.002)
IC-LR w/ disc. .715 (.022) .715 (.022) .700 (.015) .700 (.015) .931 (.003) .931 (.003) .779 (.002) .779 (.002)
IC-LR w/ neg. .714 (.029) .714 (.029) .706 (.017) .706 (.017) .931 (.003) .931 (.003) .792 (.002) .792 (.002)
Maj .643 (.027) .615 (.079) .532 (.023) .699 (.015) .125 (.005) .878 (.005) .800 (.003) .779 (.002)
Maj w/ disc. .745 (.026) .608 (.076) .649 (.028) .699 (.014) .924 (.005) .931 (.003) .805 (.003) .780 (.002)
Imp(LR) .736 (.023) .628 (.084) .710 (.016) .700 (.014) .930 (.003) .931 (.003) .793 (.003) .779 (.002)
Imp(LR) w/ disc. .719 (.029) .600 (.073) .704 (.017) .701 (.014) .930 (.004) .931 (.003) .804 (.003) .779 (.002)
Imp(ANN) .734 (.022) .613 (.081) .709 (.016) .700 (.014) .930 (.003) .931 (.003) .801 (.003) .779 (.002)
Imp(ANN) w/ disc. .720 (.028) .594 (.071) .703 (.016) .701 (.014) .931 (.003) .931 (.003) .803 (.003) .779 (.002)
Imp(RF) .711 (.024) .593 (.064) .684 (.019) .700 (.014) .920 (.004) .931 (.003) .802 (.003) .779 (.002)
Imp(RF) w/ disc. .721 (.027) .596 (.071) .698 (.017) .701 (.014) .930 (.004) .931 (.003) .804 (.003) .779 (.002)
Imp(kNN) .723 (.029) .602 (.071) .688 (.030) .689 (.035) .929 (.004) .930 (.008) .798 (.007) .777 (.007)
Imp(kNN) w/ disc. .702 (.040) .595 (.071) .677 (.052) .680 (.060) .928 (.005) .931 (.003) .795 (.021) .774 (.026)
R-F(LR) .749 (.024) .667 (.042) .657 (.020) .670 (.018) .876 (.005) .877 (.005) .761 (.003) .747 (.003)
R-F(LR) w/ disc. .744 (.027) .667 (.061) .689 (.021) .696 (.019) .878 (.011) .879 (.011) .770 (.003) .758 (.006)
R-F(ANN) .740 (.026) .647 (.047) .657 (.020) .670 (.018) .877 (.005) .877 (.005) .756 (.004) .745 (.003)
R-F(ANN) w/ disc. .735 (.029) .649 (.060) .691 (.022) .696 (.019) .879 (.011) .879 (.011) .765 (.003) .748 (.004)
R-F(RF) .729 (.024) .668 (.035) .639 (.021) .665 (.018) .861 (.006) .865 (.006) .767 (.003) .757 (.005)
R-F(RF) w/ disc. .748 (.025) .688 (.057) .679 (.024) .695 (.020) .876 (.011) .878 (.011) .769 (.003) .759 (.006)
R-F(kNN) .732 (.027) .669 (.043) .654 (.021) .666 (.019) .876 (.005) .877 (.005) .764 (.005) .751 (.007)
R-F(kNN) w/ disc. .730 (.029) .677 (.058) .673 (.026) .689 (.025) .877 (.011) .878 (.011) .764 (.007) .751 (.011)



Table 24: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.0, unbalanced datasets, pre-selected 4 features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .907 (.012) .907 (.012) .723 (.033) .723 (.033) .729 (.087) .729 (.087) .705 (.004) .705 (.004)
HC(LR) w/ disc. .911 (.012) .911 (.012) .738 (.020) .738 (.020) .797 (.048) .797 (.048) .730 (.007) .730 (.007)
HCapp(LR) .910 (.012) .910 (.012) .694 (.034) .694 (.034) .729 (.067) .729 (.067) .674 (.026) .674 (.026)
HCapp(LR) w/ disc. .904 (.030) .904 (.030) .685 (.031) .685 (.031) .781 (.019) .781 (.019) .717 (.004) .717 (.004)
HC(ANN) .908 (.012) .908 (.012) .745 (.026) .745 (.026) .795 (.050) .795 (.050) .729 (.014) .729 (.014)
HC(ANN) w/ disc. .910 (.012) .910 (.012) .747 (.019) .747 (.019) .818 (.040) .818 (.040) .730 (.007) .730 (.007)
IC-LR .901 (.011) .901 (.011) .744 (.015) .744 (.015) .693 (.027) .693 (.027) .500 (.000) .500 (.000)
IC-LR w/ disc. .910 (.011) .910 (.011) .746 (.015) .746 (.015) .824 (.013) .824 (.013) .730 (.004) .730 (.004)
IC-LR w/ neg. .905 (.012) .905 (.012) .765 (.014) .765 (.014) .697 (.033) .697 (.033) .704 (.004) .704 (.004)
Imp(LR) .907 (.012) .895 (.036) .761 (.017) .680 (.020) .766 (.026) .579 (.062) .705 (.004) .625 (.027)
Imp(LR) w/ disc. .910 (.012) .868 (.070) .744 (.016) .644 (.019) .825 (.013) .608 (.070) .731 (.004) .573 (.032)
Imp(ANN) .908 (.012) .895 (.035) .762 (.017) .681 (.020) .809 (.016) .728 (.014) .735 (.009) .653 (.018)
Imp(ANN) w/ disc. .910 (.012) .868 (.070) .747 (.016) .647 (.019) .827 (.014) .625 (.062) .732 (.004) .587 (.003)
Imp(RF) .886 (.013) .841 (.106) .711 (.017) .578 (.037) .813 (.012) .689 (.055) .736 (.004) .542 (.041)
Imp(RF) w/ disc. .911 (.013) .826 (.189) .717 (.018) .604 (.034) .808 (.019) .556 (.085) .731 (.004) .521 (.077)
Imp(kNN) .906 (.013) .833 (.122) .724 (.020) .562 (.051) .755 (.020) .523 (.017) .709 (.020) .528 (.056)
Imp(kNN) w/ disc. .903 (.016) .827 (.136) .709 (.026) .562 (.048) .752 (.042) .495 (.031) .706 (.026) .487 (.078)
R-F(LR) .907 (.012) .907 (.012) .761 (.017) .761 (.017) .766 (.026) .766 (.026) .705 (.004) .705 (.004)
R-F(LR) w/ disc. .910 (.012) .910 (.012) .744 (.016) .744 (.016) .825 (.013) .825 (.013) .731 (.004) .731 (.004)
R-F(ANN) .908 (.012) .908 (.012) .763 (.017) .762 (.017) .809 (.016) .809 (.016) .735 (.008) .734 (.009)
R-F(ANN) w/ disc. .910 (.012) .910 (.012) .747 (.016) .747 (.016) .827 (.014) .827 (.014) .732 (.004) .732 (.004)
R-F(RF) .886 (.013) .886 (.013) .711 (.017) .711 (.017) .813 (.012) .813 (.012) .736 (.004) .736 (.004)
R-F(RF) w/ disc. .911 (.013) .911 (.013) .717 (.018) .717 (.018) .808 (.019) .809 (.019) .732 (.004) .732 (.004)
R-F(kNN) .905 (.013) .905 (.013) .724 (.021) .724 (.020) .756 (.020) .755 (.020) .709 (.020) .710 (.020)
R-F(kNN) w/ disc. .903 (.018) .903 (.016) .707 (.027) .709 (.025) .758 (.038) .754 (.039) .705 (.028) .707 (.026)



Table 25: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.1, unbalanced datasets, pre-selected 4 features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .890 (.018) .890 (.018) .682 (.033) .682 (.033) .653 (.072) .653 (.072) .655 (.013) .655 (.013)
HC(LR) w/ disc. .890 (.016) .890 (.016) .687 (.031) .687 (.031) .715 (.041) .715 (.041) .681 (.020) .681 (.020)
HCapp(LR) .887 (.014) .887 (.014) .684 (.039) .684 (.039) .646 (.081) .646 (.081) .637 (.025) .637 (.025)
HCapp(LR) w/ disc. .886 (.014) .886 (.014) .665 (.039) .665 (.039) .685 (.093) .685 (.093) .682 (.016) .682 (.016)
HC(ANN) .886 (.016) .886 (.016) .690 (.031) .690 (.031) .682 (.063) .682 (.063) .673 (.010) .673 (.010)
HC(ANN) w/ disc. .876 (.018) .876 (.018) .670 (.046) .670 (.046) .738 (.028) .738 (.028) .688 (.017) .688 (.017)
IC-LR .874 (.015) .874 (.015) .723 (.016) .723 (.016) .687 (.028) .687 (.028) .500 (.000) .500 (.000)
IC-LR w/ disc. .891 (.013) .891 (.013) .724 (.015) .724 (.015) .790 (.013) .790 (.013) .709 (.004) .709 (.004)
IC-LR w/ neg. .893 (.012) .893 (.012) .746 (.015) .746 (.015) .699 (.033) .699 (.033) .690 (.003) .690 (.003)
Imp(LR) .892 (.015) .873 (.043) .741 (.018) .666 (.020) .760 (.028) .658 (.065) .694 (.006) .593 (.014)
Imp(LR) w/ disc. .893 (.015) .832 (.075) .723 (.019) .633 (.019) .807 (.014) .634 (.070) .732 (.004) .675 (.022)
Imp(ANN) .893 (.014) .873 (.041) .743 (.018) .667 (.020) .801 (.017) .722 (.015) .724 (.006) .599 (.013)
Imp(ANN) w/ disc. .892 (.015) .833 (.075) .726 (.019) .635 (.018) .810 (.014) .640 (.064) .733 (.004) .677 (.020)
Imp(RF) .865 (.016) .826 (.073) .685 (.021) .592 (.048) .799 (.014) .646 (.059) .720 (.005) .624 (.041)
Imp(RF) w/ disc. .892 (.016) .817 (.112) .696 (.022) .605 (.030) .795 (.017) .595 (.075) .733 (.004) .672 (.028)
Imp(kNN) .885 (.016) .824 (.103) .703 (.022) .582 (.047) .740 (.021) .532 (.024) .704 (.014) .624 (.042)
Imp(kNN) w/ disc. .881 (.021) .798 (.124) .682 (.030) .571 (.045) .743 (.043) .506 (.045) .702 (.018) .565 (.065)
R-F(LR) .884 (.014) .798 (.069) .709 (.021) .616 (.049) .748 (.024) .587 (.090) .696 (.005) .538 (.101)
R-F(LR) w/ disc. .886 (.016) .787 (.070) .711 (.020) .638 (.048) .799 (.015) .703 (.045) .725 (.004) .560 (.135)
R-F(ANN) .883 (.015) .822 (.059) .707 (.022) .627 (.046) .770 (.019) .683 (.060) .714 (.006) .603 (.087)
R-F(ANN) w/ disc. .883 (.016) .822 (.045) .704 (.020) .637 (.050) .788 (.015) .728 (.039) .725 (.004) .667 (.051)
R-F(RF) .863 (.015) .795 (.061) .679 (.022) .621 (.049) .782 (.013) .551 (.053) .720 (.005) .561 (.077)
R-F(RF) w/ disc. .880 (.017) .801 (.060) .685 (.023) .637 (.050) .758 (.021) .599 (.043) .724 (.004) .533 (.117)
R-F(kNN) .873 (.017) .785 (.060) .678 (.024) .611 (.043) .725 (.021) .524 (.030) .703 (.013) .624 (.054)
R-F(kNN) w/ disc. .871 (.021) .774 (.077) .681 (.026) .618 (.049) .734 (.031) .523 (.035) .701 (.018) .610 (.063)



Table 26: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.2, unbalanced datasets, pre-selected 4 features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .876 (.017) .876 (.017) .661 (.031) .661 (.031) .626 (.080) .626 (.080) .642 (.011) .642 (.011)
HC(LR) w/ disc. .872 (.017) .872 (.017) .668 (.035) .668 (.035) .682 (.071) .682 (.071) .676 (.014) .676 (.014)
HCapp(LR) .875 (.016) .875 (.016) .652 (.043) .652 (.043) .608 (.075) .608 (.075) .630 (.021) .630 (.021)
HCapp(LR) w/ disc. .867 (.021) .867 (.021) .646 (.040) .646 (.040) .657 (.094) .657 (.094) .678 (.014) .678 (.014)
HC(ANN) .866 (.021) .866 (.021) .654 (.037) .654 (.037) .674 (.053) .674 (.053) .654 (.007) .654 (.007)
HC(ANN) w/ disc. .853 (.024) .853 (.024) .637 (.043) .637 (.043) .701 (.036) .701 (.036) .679 (.012) .679 (.012)
IC-LR .850 (.017) .850 (.017) .701 (.016) .701 (.016) .679 (.021) .679 (.021) .500 (.000) .500 (.000)
IC-LR w/ disc. .873 (.014) .873 (.014) .702 (.017) .702 (.017) .760 (.016) .760 (.016) .694 (.004) .694 (.004)
IC-LR w/ neg. .879 (.013) .879 (.013) .725 (.018) .725 (.018) .688 (.027) .688 (.027) .683 (.005) .683 (.005)
Imp(LR) .879 (.016) .853 (.045) .722 (.021) .653 (.022) .757 (.030) .681 (.043) .684 (.005) .573 (.014)
Imp(LR) w/ disc. .874 (.015) .797 (.081) .705 (.021) .621 (.019) .796 (.014) .647 (.062) .725 (.004) .668 (.013)
Imp(ANN) .880 (.016) .853 (.044) .724 (.021) .654 (.022) .790 (.018) .712 (.017) .709 (.007) .578 (.020)
Imp(ANN) w/ disc. .873 (.015) .797 (.080) .708 (.021) .622 (.019) .798 (.014) .648 (.059) .726 (.004) .670 (.011)
Imp(RF) .850 (.017) .794 (.077) .665 (.023) .604 (.032) .781 (.015) .591 (.056) .711 (.005) .640 (.027)
Imp(RF) w/ disc. .873 (.016) .795 (.084) .681 (.023) .604 (.027) .786 (.016) .624 (.064) .726 (.004) .666 (.010)
Imp(kNN) .869 (.018) .809 (.087) .681 (.026) .584 (.042) .726 (.018) .533 (.029) .698 (.010) .626 (.039)
Imp(kNN) w/ disc. .861 (.022) .765 (.115) .660 (.036) .570 (.043) .729 (.038) .513 (.043) .692 (.021) .564 (.059)
R-F(LR) .870 (.017) .782 (.065) .680 (.024) .601 (.045) .739 (.021) .611 (.074) .690 (.005) .633 (.030)
R-F(LR) w/ disc. .867 (.017) .761 (.070) .690 (.023) .619 (.049) .783 (.016) .662 (.078) .718 (.004) .674 (.022)
R-F(ANN) .867 (.018) .808 (.048) .674 (.026) .611 (.043) .751 (.023) .674 (.050) .699 (.005) .656 (.014)
R-F(ANN) w/ disc. .861 (.018) .799 (.040) .678 (.026) .618 (.048) .773 (.018) .693 (.048) .718 (.004) .686 (.008)
R-F(RF) .850 (.017) .771 (.064) .656 (.024) .595 (.049) .756 (.017) .524 (.032) .710 (.005) .643 (.021)
R-F(RF) w/ disc. .861 (.018) .782 (.046) .667 (.024) .622 (.052) .738 (.021) .583 (.056) .718 (.004) .664 (.024)
R-F(kNN) .846 (.019) .735 (.060) .649 (.027) .574 (.041) .710 (.020) .530 (.031) .697 (.009) .639 (.030)
R-F(kNN) w/ disc. .844 (.020) .724 (.080) .660 (.028) .593 (.052) .720 (.027) .516 (.026) .692 (.016) .634 (.026)



Table 27: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.3, unbalanced datasets, pre-selected 4 features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .855 (.019) .855 (.019) .648 (.034) .648 (.034) .634 (.067) .634 (.067) .641 (.008) .641 (.008)
HC(LR) w/ disc. .849 (.020) .849 (.020) .656 (.032) .656 (.032) .649 (.076) .649 (.076) .669 (.012) .669 (.012)
HCapp(LR) .854 (.016) .854 (.016) .644 (.040) .644 (.040) .602 (.093) .602 (.093) .628 (.023) .628 (.023)
HCapp(LR) w/ disc. .846 (.019) .846 (.019) .646 (.043) .646 (.043) .621 (.094) .621 (.094) .669 (.012) .669 (.012)
HC(ANN) .841 (.024) .841 (.024) .635 (.037) .635 (.037) .660 (.054) .660 (.054) .645 (.007) .645 (.007)
HC(ANN) w/ disc. .830 (.026) .830 (.026) .622 (.039) .622 (.039) .666 (.037) .666 (.037) .668 (.012) .668 (.012)
IC-LR .822 (.013) .822 (.013) .680 (.021) .680 (.021) .683 (.023) .683 (.023) .500 (.000) .500 (.000)
IC-LR w/ disc. .853 (.015) .853 (.015) .683 (.022) .683 (.022) .733 (.015) .733 (.015) .681 (.006) .681 (.006)
IC-LR w/ neg. .867 (.014) .867 (.014) .709 (.019) .709 (.019) .694 (.029) .694 (.029) .674 (.004) .674 (.004)
Imp(LR) .863 (.018) .824 (.050) .705 (.022) .638 (.022) .749 (.028) .685 (.031) .675 (.005) .563 (.013)
Imp(LR) w/ disc. .853 (.017) .764 (.081) .682 (.023) .607 (.020) .778 (.016) .640 (.056) .717 (.004) .665 (.012)
Imp(ANN) .862 (.018) .824 (.050) .707 (.022) .638 (.021) .780 (.018) .703 (.017) .695 (.006) .565 (.015)
Imp(ANN) w/ disc. .852 (.017) .764 (.081) .684 (.023) .608 (.020) .780 (.016) .640 (.055) .718 (.004) .665 (.012)
Imp(RF) .828 (.022) .757 (.088) .649 (.027) .594 (.030) .762 (.018) .626 (.047) .703 (.005) .651 (.012)
Imp(RF) w/ disc. .853 (.018) .761 (.087) .663 (.025) .594 (.025) .768 (.017) .625 (.056) .717 (.004) .660 (.012)
Imp(kNN) .847 (.022) .766 (.091) .660 (.027) .578 (.043) .715 (.019) .545 (.039) .688 (.008) .619 (.036)
Imp(kNN) w/ disc. .838 (.026) .734 (.099) .634 (.037) .559 (.040) .711 (.041) .523 (.054) .686 (.015) .577 (.050)
R-F(LR) .854 (.019) .779 (.068) .659 (.026) .603 (.040) .721 (.022) .618 (.076) .682 (.005) .638 (.010)
R-F(LR) w/ disc. .849 (.020) .753 (.077) .670 (.024) .617 (.044) .759 (.017) .635 (.086) .710 (.004) .673 (.013)
R-F(ANN) .849 (.020) .796 (.047) .655 (.025) .605 (.039) .728 (.023) .664 (.051) .685 (.005) .649 (.008)
R-F(ANN) w/ disc. .844 (.020) .791 (.038) .653 (.028) .606 (.042) .740 (.017) .659 (.048) .710 (.004) .676 (.008)
R-F(RF) .831 (.021) .755 (.060) .636 (.026) .592 (.045) .732 (.019) .545 (.030) .700 (.005) .650 (.012)
R-F(RF) w/ disc. .843 (.020) .776 (.052) .654 (.025) .617 (.040) .719 (.026) .553 (.088) .710 (.004) .672 (.012)
R-F(kNN) .826 (.023) .730 (.061) .627 (.027) .571 (.037) .693 (.023) .550 (.032) .685 (.008) .637 (.018)
R-F(kNN) w/ disc. .825 (.022) .729 (.055) .643 (.028) .589 (.048) .705 (.026) .549 (.041) .682 (.011) .632 (.024)



Table 28: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.4, unbalanced datasets, pre-selected 4 features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .827 (.020) .827 (.020) .627 (.036) .627 (.036) .647 (.043) .647 (.043) .633 (.006) .633 (.006)
HC(LR) w/ disc. .820 (.022) .820 (.022) .636 (.030) .636 (.030) .663 (.044) .663 (.044) .660 (.007) .660 (.007)
HCapp(LR) .829 (.018) .829 (.018) .623 (.042) .623 (.042) .640 (.054) .640 (.054) .626 (.017) .626 (.017)
HCapp(LR) w/ disc. .820 (.020) .820 (.020) .634 (.026) .634 (.026) .665 (.054) .665 (.054) .659 (.008) .659 (.008)
HC(ANN) .809 (.026) .809 (.026) .612 (.038) .612 (.038) .658 (.032) .658 (.032) .637 (.006) .637 (.006)
HC(ANN) w/ disc. .796 (.029) .796 (.029) .606 (.033) .606 (.033) .642 (.034) .642 (.034) .659 (.008) .659 (.008)
IC-LR .785 (.018) .785 (.018) .656 (.016) .656 (.016) .675 (.022) .675 (.022) .500 (.000) .500 (.000)
IC-LR w/ disc. .826 (.016) .826 (.016) .659 (.017) .659 (.017) .709 (.017) .709 (.017) .667 (.005) .667 (.005)
IC-LR w/ neg. .846 (.015) .846 (.015) .688 (.016) .688 (.016) .690 (.027) .690 (.027) .665 (.004) .665 (.004)
Imp(LR) .842 (.019) .794 (.050) .683 (.023) .620 (.024) .736 (.026) .675 (.024) .665 (.004) .559 (.015)
Imp(LR) w/ disc. .827 (.020) .728 (.078) .663 (.024) .592 (.019) .756 (.021) .622 (.054) .709 (.004) .651 (.014)
Imp(ANN) .842 (.019) .795 (.049) .685 (.023) .621 (.024) .764 (.018) .688 (.016) .679 (.005) .559 (.017)
Imp(ANN) w/ disc. .826 (.020) .727 (.078) .664 (.024) .592 (.019) .759 (.022) .622 (.053) .709 (.004) .652 (.013)
Imp(RF) .806 (.022) .737 (.070) .634 (.028) .584 (.029) .735 (.019) .625 (.025) .694 (.005) .649 (.009)
Imp(RF) w/ disc. .826 (.022) .726 (.080) .645 (.025) .582 (.023) .748 (.022) .615 (.053) .708 (.005) .648 (.012)
Imp(kNN) .822 (.023) .744 (.076) .638 (.029) .568 (.038) .700 (.023) .546 (.045) .677 (.008) .604 (.039)
Imp(kNN) w/ disc. .811 (.027) .703 (.094) .615 (.039) .548 (.036) .695 (.036) .517 (.047) .671 (.017) .571 (.046)
R-F(LR) .830 (.021) .786 (.052) .633 (.026) .597 (.036) .704 (.023) .639 (.050) .670 (.005) .633 (.006)
R-F(LR) w/ disc. .824 (.023) .768 (.050) .652 (.026) .615 (.035) .736 (.020) .667 (.040) .696 (.005) .662 (.006)
R-F(ANN) .826 (.022) .787 (.035) .630 (.027) .596 (.034) .704 (.025) .659 (.033) .670 (.005) .640 (.006)
R-F(ANN) w/ disc. .820 (.022) .779 (.034) .635 (.029) .596 (.034) .707 (.024) .643 (.036) .696 (.004) .663 (.006)
R-F(RF) .806 (.022) .752 (.047) .618 (.027) .592 (.039) .700 (.019) .565 (.029) .686 (.005) .646 (.009)
R-F(RF) w/ disc. .822 (.022) .779 (.039) .640 (.027) .613 (.030) .704 (.024) .608 (.053) .696 (.005) .662 (.005)
R-F(kNN) .806 (.023) .747 (.046) .606 (.028) .573 (.038) .676 (.023) .573 (.029) .671 (.007) .629 (.015)
R-F(kNN) w/ disc. .805 (.025) .745 (.048) .627 (.029) .588 (.043) .687 (.024) .575 (.043) .668 (.009) .624 (.019)



Table 29: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.5, unbalanced datasets, pre-selected 4 features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .788 (.024) .788 (.024) .611 (.033) .611 (.033) .645 (.033) .645 (.033) .622 (.008) .622 (.008)
HC(LR) w/ disc. .779 (.024) .779 (.024) .616 (.027) .616 (.027) .655 (.030) .655 (.030) .646 (.006) .646 (.006)
HCapp(LR) .788 (.023) .788 (.023) .608 (.039) .608 (.039) .644 (.035) .644 (.035) .618 (.013) .618 (.013)
HCapp(LR) w/ disc. .780 (.024) .780 (.024) .617 (.033) .617 (.033) .658 (.026) .658 (.026) .644 (.006) .644 (.006)
HC(ANN) .776 (.027) .776 (.027) .596 (.033) .596 (.033) .643 (.030) .643 (.030) .625 (.009) .625 (.009)
HC(ANN) w/ disc. .768 (.028) .768 (.028) .583 (.032) .583 (.032) .623 (.031) .623 (.031) .645 (.007) .645 (.007)
IC-LR .746 (.022) .746 (.022) .638 (.022) .638 (.022) .684 (.023) .684 (.023) .500 (.000) .500 (.000)
IC-LR w/ disc. .795 (.024) .795 (.024) .641 (.023) .641 (.023) .683 (.016) .683 (.016) .653 (.004) .653 (.004)
IC-LR w/ neg. .821 (.022) .821 (.022) .669 (.021) .669 (.021) .701 (.027) .701 (.027) .650 (.005) .650 (.005)
Imp(LR) .815 (.021) .750 (.053) .662 (.023) .601 (.023) .728 (.026) .666 (.023) .651 (.005) .554 (.013)
Imp(LR) w/ disc. .791 (.023) .679 (.080) .641 (.025) .578 (.022) .727 (.024) .595 (.051) .696 (.005) .637 (.011)
Imp(ANN) .815 (.021) .750 (.052) .664 (.024) .602 (.022) .749 (.020) .676 (.016) .660 (.006) .553 (.014)
Imp(ANN) w/ disc. .790 (.023) .679 (.080) .640 (.027) .574 (.024) .729 (.024) .595 (.050) .696 (.005) .637 (.011)
Imp(RF) .778 (.024) .698 (.067) .618 (.028) .572 (.028) .710 (.019) .616 (.022) .686 (.005) .643 (.007)
Imp(RF) w/ disc. .791 (.023) .679 (.080) .627 (.027) .569 (.024) .720 (.024) .590 (.050) .694 (.005) .635 (.010)
Imp(kNN) .789 (.028) .699 (.082) .616 (.030) .557 (.034) .684 (.023) .543 (.047) .665 (.009) .597 (.041)
Imp(kNN) w/ disc. .772 (.037) .655 (.090) .595 (.039) .541 (.036) .669 (.042) .513 (.047) .658 (.015) .559 (.043)
R-F(LR) .792 (.024) .767 (.030) .609 (.027) .589 (.033) .682 (.025) .643 (.032) .652 (.005) .624 (.006)
R-F(LR) w/ disc. .785 (.027) .751 (.037) .633 (.028) .605 (.029) .707 (.020) .655 (.026) .673 (.005) .645 (.006)
R-F(ANN) .786 (.024) .759 (.031) .604 (.028) .583 (.032) .680 (.027) .642 (.030) .652 (.005) .628 (.006)
R-F(ANN) w/ disc. .782 (.028) .749 (.034) .610 (.032) .575 (.032) .671 (.024) .620 (.030) .673 (.005) .645 (.006)
R-F(RF) .771 (.025) .732 (.036) .599 (.028) .583 (.033) .667 (.019) .574 (.022) .667 (.005) .638 (.007)
R-F(RF) w/ disc. .787 (.027) .754 (.033) .625 (.028) .601 (.029) .684 (.021) .624 (.032) .673 (.005) .645 (.006)
R-F(kNN) .769 (.025) .739 (.032) .583 (.028) .573 (.036) .655 (.021) .586 (.023) .651 (.007) .618 (.013)
R-F(kNN) w/ disc. .770 (.029) .736 (.038) .608 (.030) .576 (.040) .657 (.024) .576 (.035) .648 (.009) .612 (.018)



Table 30: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.0, balanced datasets, each classifier selects 4 best features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .859 (.015) .859 (.015) .671 (.030) .671 (.030) .726 (.028) .726 (.028) .686 (.006) .686 (.006)
HC(LR) w/ disc. .855 (.017) .855 (.017) .674 (.027) .674 (.027) .741 (.031) .741 (.031) .695 (.005) .695 (.005)
HCapp(LR) .860 (.015) .860 (.015) .673 (.032) .673 (.032) .709 (.032) .709 (.032) .647 (.018) .647 (.018)
HCapp(LR) w/ disc. .851 (.028) .851 (.028) .653 (.051) .653 (.051) .729 (.034) .729 (.034) .634 (.006) .634 (.006)
HC(ANN) .859 (.014) .859 (.014) .679 (.027) .679 (.027) .718 (.026) .718 (.026) .687 (.006) .687 (.006)
HC(ANN) w/ disc. .847 (.016) .847 (.016) .676 (.025) .676 (.025) .739 (.030) .739 (.030) .696 (.005) .696 (.005)
Mincut .743 (.024) .743 (.024) .564 (.047) .564 (.047) .500 (.017) .500 (.017) .700 (.005) .700 (.005)
Mincut w/ disc. .850 (.018) .850 (.018) .650 (.036) .650 (.036) .739 (.031) .739 (.031) .701 (.005) .701 (.005)
IC-LR .861 (.014) .861 (.014) .671 (.027) .671 (.027) .666 (.036) .666 (.036) .499 (.004) .499 (.004)
IC-LR w/ disc. .858 (.015) .858 (.015) .675 (.025) .675 (.025) .742 (.030) .742 (.030) .695 (.005) .695 (.005)
IC-LR w/ neg. .862 (.015) .862 (.015) .682 (.025) .682 (.025) .675 (.038) .675 (.038) .686 (.006) .686 (.006)
Maj .746 (.025) .746 (.025) .565 (.047) .565 (.047) .500 (.017) .500 (.017) .701 (.005) .701 (.005)
Maj w/ disc. .854 (.017) .854 (.017) .648 (.036) .648 (.036) .739 (.032) .739 (.032) .701 (.005) .701 (.005)
Imp(LR) .860 (.014) .859 (.031) .682 (.026) .580 (.090) .725 (.026) .643 (.069) .688 (.006) .606 (.079)
Imp(LR) w/ disc. .858 (.015) .853 (.036) .676 (.024) .583 (.090) .742 (.031) .678 (.100) .695 (.005) .499 (.004)
Imp(ANN) .859 (.015) .857 (.031) .681 (.025) .580 (.090) .719 (.026) .659 (.045) .698 (.005) .578 (.024)
Imp(ANN) w/ disc. .847 (.016) .827 (.042) .676 (.024) .583 (.090) .739 (.030) .675 (.096) .696 (.006) .504 (.018)
Imp(RF) .819 (.019) .700 (.103) .645 (.027) .538 (.062) .728 (.032) .654 (.085) .701 (.005) .527 (.028)
Imp(RF) w/ disc. .854 (.017) .844 (.039) .661 (.028) .577 (.087) .739 (.031) .666 (.101) .701 (.005) .519 (.033)
Imp(kNN) .853 (.018) .803 (.070) .657 (.030) .563 (.079) .717 (.029) .617 (.056) .675 (.038) .516 (.025)
Imp(kNN) w/ disc. .846 (.023) .809 (.084) .660 (.034) .568 (.084) .728 (.047) .662 (.100) .678 (.054) .490 (.050)
R-F(LR) .860 (.014) .860 (.014) .682 (.026) .682 (.026) .725 (.026) .725 (.026) .688 (.006) .688 (.006)
R-F(LR) w/ disc. .858 (.015) .858 (.015) .676 (.024) .676 (.024) .742 (.031) .742 (.031) .695 (.005) .695 (.005)
R-F(ANN) .859 (.014) .858 (.015) .681 (.025) .681 (.025) .719 (.027) .719 (.029) .698 (.005) .698 (.006)
R-F(ANN) w/ disc. .847 (.017) .847 (.017) .676 (.024) .676 (.024) .740 (.030) .738 (.030) .695 (.005) .696 (.005)
R-F(RF) .819 (.019) .820 (.019) .644 (.027) .644 (.026) .728 (.032) .729 (.031) .701 (.005) .701 (.005)
R-F(RF) w/ disc. .854 (.018) .854 (.017) .662 (.028) .661 (.028) .740 (.031) .740 (.032) .701 (.005) .701 (.005)
R-F(kNN) .852 (.017) .851 (.017) .659 (.031) .659 (.031) .717 (.028) .716 (.028) .680 (.031) .670 (.044)
R-F(kNN) w/ disc. .847 (.021) .848 (.023) .660 (.034) .660 (.035) .726 (.050) .727 (.050) .676 (.056) .679 (.053)



Table 31: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.1, balanced datasets, each classifier selects 4 best features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .817 (.020) .817 (.020) .645 (.029) .645 (.029) .690 (.029) .690 (.029) .665 (.006) .665 (.006)
HC(LR) w/ disc. .821 (.019) .821 (.019) .646 (.028) .646 (.028) .714 (.030) .714 (.030) .672 (.005) .672 (.005)
HCapp(LR) .817 (.021) .817 (.021) .652 (.028) .652 (.028) .693 (.029) .693 (.029) .665 (.006) .665 (.006)
HCapp(LR) w/ disc. .817 (.020) .817 (.020) .645 (.038) .645 (.038) .716 (.029) .716 (.029) .670 (.009) .670 (.009)
HC(ANN) .804 (.024) .804 (.024) .633 (.032) .633 (.032) .672 (.032) .672 (.032) .665 (.006) .665 (.006)
HC(ANN) w/ disc. .798 (.024) .798 (.024) .628 (.033) .628 (.033) .701 (.031) .701 (.031) .672 (.006) .672 (.006)
Mincut .768 (.037) .768 (.037) .573 (.039) .573 (.039) .500 (.018) .500 (.018) .673 (.006) .673 (.006)
Mincut w/ disc. .814 (.020) .814 (.020) .629 (.033) .629 (.033) .713 (.028) .713 (.028) .672 (.006) .672 (.006)
IC-LR .825 (.018) .825 (.018) .649 (.033) .649 (.033) .664 (.035) .664 (.035) .499 (.005) .499 (.005)
IC-LR w/ disc. .826 (.017) .826 (.017) .653 (.029) .653 (.029) .719 (.030) .719 (.030) .670 (.006) .670 (.006)
IC-LR w/ neg. .824 (.018) .824 (.018) .661 (.025) .661 (.025) .667 (.034) .667 (.034) .680 (.007) .680 (.007)
Maj .685 (.029) .717 (.084) .544 (.038) .544 (.046) .500 (.018) .500 (.018) .687 (.006) .566 (.031)
Maj w/ disc. .818 (.021) .678 (.098) .615 (.038) .543 (.045) .721 (.028) .616 (.071) .695 (.005) .565 (.034)
Imp(LR) .822 (.019) .822 (.035) .662 (.027) .574 (.082) .722 (.026) .658 (.062) .678 (.006) .616 (.069)
Imp(LR) w/ disc. .824 (.017) .797 (.048) .654 (.026) .576 (.082) .731 (.027) .600 (.103) .691 (.005) .512 (.039)
Imp(ANN) .823 (.017) .819 (.035) .662 (.026) .575 (.082) .719 (.026) .660 (.051) .694 (.006) .556 (.007)
Imp(ANN) w/ disc. .824 (.017) .784 (.051) .655 (.025) .574 (.083) .729 (.027) .615 (.096) .693 (.006) .563 (.028)
Imp(RF) .793 (.020) .637 (.113) .625 (.029) .540 (.060) .720 (.028) .609 (.073) .689 (.006) .541 (.032)
Imp(RF) w/ disc. .821 (.020) .775 (.078) .644 (.029) .565 (.080) .730 (.027) .592 (.098) .697 (.005) .551 (.031)
Imp(kNN) .815 (.019) .740 (.094) .636 (.030) .556 (.070) .710 (.029) .618 (.060) .669 (.027) .553 (.030)
Imp(kNN) w/ disc. .813 (.038) .756 (.107) .635 (.034) .560 (.073) .711 (.049) .596 (.098) .661 (.062) .557 (.051)
R-F(LR) .831 (.019) .539 (.070) .640 (.029) .506 (.029) .699 (.027) .509 (.027) .676 (.009) .528 (.038)
R-F(LR) w/ disc. .826 (.019) .537 (.071) .640 (.029) .513 (.037) .721 (.029) .518 (.045) .690 (.006) .525 (.038)
R-F(ANN) .828 (.019) .537 (.067) .637 (.029) .506 (.025) .694 (.031) .509 (.025) .681 (.008) .518 (.032)
R-F(ANN) w/ disc. .818 (.019) .536 (.065) .631 (.038) .510 (.032) .720 (.028) .519 (.044) .691 (.006) .514 (.025)
R-F(RF) .793 (.022) .534 (.060) .614 (.028) .506 (.026) .703 (.028) .511 (.028) .688 (.006) .529 (.034)
R-F(RF) w/ disc. .822 (.021) .536 (.067) .629 (.031) .511 (.034) .720 (.028) .520 (.045) .694 (.005) .525 (.035)
R-F(kNN) .811 (.025) .529 (.068) .611 (.029) .506 (.027) .682 (.031) .509 (.031) .672 (.012) .521 (.032)
R-F(kNN) w/ disc. .807 (.025) .527 (.064) .624 (.034) .514 (.038) .706 (.036) .510 (.033) .656 (.054) .520 (.035)



Table 32: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.2, balanced datasets, each classifier selects 4 best features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .794 (.023) .794 (.023) .624 (.032) .624 (.032) .677 (.031) .677 (.031) .648 (.005) .648 (.005)
HC(LR) w/ disc. .795 (.022) .795 (.022) .631 (.031) .631 (.031) .693 (.032) .693 (.032) .649 (.005) .649 (.005)
HCapp(LR) .793 (.019) .793 (.019) .631 (.032) .631 (.032) .680 (.030) .680 (.030) .648 (.005) .648 (.005)
HCapp(LR) w/ disc. .794 (.021) .794 (.021) .629 (.042) .629 (.042) .692 (.032) .692 (.032) .648 (.005) .648 (.005)
HC(ANN) .778 (.025) .778 (.025) .614 (.031) .614 (.031) .654 (.033) .654 (.033) .648 (.005) .648 (.005)
HC(ANN) w/ disc. .771 (.025) .771 (.025) .608 (.036) .608 (.036) .679 (.036) .679 (.036) .647 (.005) .647 (.005)
Mincut .770 (.030) .770 (.030) .576 (.039) .576 (.039) .501 (.018) .501 (.018) .651 (.006) .651 (.006)
Mincut w/ disc. .793 (.022) .793 (.022) .620 (.030) .620 (.030) .692 (.032) .692 (.032) .648 (.006) .648 (.006)
IC-LR .789 (.019) .789 (.019) .632 (.034) .632 (.034) .665 (.043) .665 (.043) .498 (.004) .498 (.004)
IC-LR w/ disc. .801 (.020) .801 (.020) .637 (.030) .637 (.030) .696 (.029) .696 (.029) .646 (.007) .646 (.007)
IC-LR w/ neg. .794 (.020) .794 (.020) .659 (.029) .659 (.029) .655 (.042) .655 (.042) .671 (.008) .671 (.008)
Maj .664 (.030) .686 (.087) .537 (.033) .533 (.046) .500 (.017) .501 (.021) .678 (.006) .564 (.032)
Maj w/ disc. .795 (.025) .637 (.089) .604 (.037) .534 (.044) .706 (.029) .576 (.061) .688 (.005) .568 (.032)
Imp(LR) .795 (.019) .790 (.026) .649 (.028) .571 (.073) .713 (.028) .654 (.055) .667 (.008) .622 (.053)
Imp(LR) w/ disc. .800 (.019) .767 (.041) .638 (.028) .571 (.075) .719 (.027) .569 (.090) .686 (.005) .504 (.022)
Imp(ANN) .799 (.019) .789 (.035) .649 (.028) .570 (.073) .714 (.026) .655 (.049) .685 (.005) .536 (.005)
Imp(ANN) w/ disc. .801 (.019) .752 (.069) .638 (.030) .572 (.075) .717 (.027) .576 (.083) .689 (.005) .538 (.016)
Imp(RF) .771 (.025) .638 (.096) .613 (.032) .541 (.056) .709 (.028) .589 (.068) .679 (.005) .553 (.031)
Imp(RF) w/ disc. .797 (.020) .750 (.073) .628 (.033) .568 (.073) .716 (.026) .566 (.082) .689 (.005) .540 (.025)
Imp(kNN) .789 (.021) .720 (.086) .624 (.031) .553 (.064) .697 (.030) .610 (.058) .659 (.016) .556 (.035)
Imp(kNN) w/ disc. .791 (.024) .714 (.111) .613 (.040) .554 (.067) .697 (.046) .563 (.086) .652 (.045) .550 (.042)
R-F(LR) .809 (.022) .548 (.057) .617 (.029) .505 (.025) .681 (.027) .515 (.032) .664 (.008) .588 (.041)
R-F(LR) w/ disc. .801 (.024) .541 (.059) .620 (.032) .514 (.038) .704 (.028) .520 (.041) .685 (.005) .584 (.030)
R-F(ANN) .807 (.022) .546 (.057) .615 (.029) .504 (.024) .677 (.029) .514 (.031) .667 (.007) .549 (.046)
R-F(ANN) w/ disc. .796 (.026) .550 (.064) .616 (.034) .514 (.040) .703 (.028) .523 (.043) .683 (.006) .548 (.044)
R-F(RF) .776 (.026) .543 (.046) .597 (.031) .504 (.025) .685 (.027) .521 (.033) .678 (.005) .579 (.023)
R-F(RF) w/ disc. .803 (.024) .560 (.069) .614 (.032) .515 (.038) .703 (.030) .527 (.045) .687 (.005) .587 (.023)
R-F(kNN) .780 (.023) .538 (.057) .591 (.033) .501 (.023) .666 (.027) .513 (.031) .659 (.018) .583 (.028)
R-F(kNN) w/ disc. .777 (.029) .536 (.055) .608 (.036) .514 (.039) .679 (.035) .515 (.033) .658 (.029) .592 (.026)



Table 33: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.3, balanced datasets, each classifier selects 4 best features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .770 (.022) .770 (.022) .608 (.032) .608 (.032) .668 (.028) .668 (.028) .636 (.006) .636 (.006)
HC(LR) w/ disc. .769 (.023) .769 (.023) .616 (.032) .616 (.032) .680 (.030) .680 (.030) .637 (.006) .637 (.006)
HCapp(LR) .772 (.022) .772 (.022) .614 (.033) .614 (.033) .670 (.027) .670 (.027) .635 (.006) .635 (.006)
HCapp(LR) w/ disc. .769 (.022) .769 (.022) .616 (.041) .616 (.041) .681 (.030) .681 (.030) .637 (.006) .637 (.006)
HC(ANN) .756 (.028) .756 (.028) .599 (.034) .599 (.034) .644 (.032) .644 (.032) .635 (.006) .635 (.006)
HC(ANN) w/ disc. .748 (.027) .748 (.027) .590 (.036) .590 (.036) .664 (.033) .664 (.033) .636 (.006) .636 (.006)
Mincut .756 (.026) .756 (.026) .566 (.039) .566 (.039) .505 (.016) .505 (.016) .636 (.006) .636 (.006)
Mincut w/ disc. .767 (.022) .767 (.022) .606 (.034) .606 (.034) .682 (.033) .682 (.033) .637 (.006) .637 (.006)
IC-LR .760 (.026) .760 (.026) .622 (.037) .622 (.037) .667 (.044) .667 (.044) .499 (.009) .499 (.009)
IC-LR w/ disc. .774 (.025) .774 (.025) .621 (.037) .621 (.037) .682 (.030) .682 (.030) .633 (.007) .633 (.007)
IC-LR w/ neg. .770 (.027) .770 (.027) .631 (.033) .631 (.033) .671 (.034) .671 (.034) .660 (.010) .660 (.010)
Maj .663 (.040) .649 (.099) .530 (.034) .526 (.037) .503 (.015) .501 (.019) .666 (.008) .553 (.039)
Maj w/ disc. .770 (.028) .608 (.085) .588 (.037) .533 (.045) .699 (.027) .568 (.070) .679 (.005) .556 (.039)
Imp(LR) .773 (.023) .758 (.038) .633 (.031) .567 (.069) .708 (.026) .654 (.057) .658 (.010) .599 (.059)
Imp(LR) w/ disc. .772 (.023) .719 (.094) .624 (.033) .569 (.071) .710 (.027) .567 (.097) .679 (.006) .505 (.026)
Imp(ANN) .777 (.022) .750 (.047) .632 (.031) .567 (.069) .709 (.025) .651 (.059) .677 (.005) .520 (.005)
Imp(ANN) w/ disc. .771 (.023) .702 (.105) .622 (.036) .571 (.071) .709 (.029) .585 (.093) .680 (.005) .527 (.027)
Imp(RF) .751 (.023) .630 (.101) .600 (.032) .543 (.055) .697 (.026) .563 (.066) .668 (.006) .549 (.038)
Imp(RF) w/ disc. .769 (.024) .694 (.112) .616 (.036) .565 (.068) .711 (.028) .564 (.089) .680 (.005) .533 (.035)
Imp(kNN) .763 (.027) .666 (.105) .606 (.035) .546 (.058) .691 (.029) .594 (.077) .648 (.013) .561 (.042)
Imp(kNN) w/ disc. .762 (.034) .694 (.113) .601 (.042) .552 (.061) .694 (.040) .579 (.091) .652 (.030) .551 (.048)
R-F(LR) .788 (.025) .576 (.071) .598 (.033) .514 (.030) .669 (.025) .534 (.038) .653 (.011) .609 (.018)
R-F(LR) w/ disc. .776 (.027) .569 (.074) .606 (.032) .522 (.040) .695 (.028) .556 (.060) .676 (.005) .596 (.011)
R-F(ANN) .783 (.026) .573 (.069) .596 (.031) .514 (.029) .666 (.029) .533 (.043) .655 (.009) .568 (.043)
R-F(ANN) w/ disc. .773 (.028) .578 (.076) .599 (.034) .517 (.035) .692 (.028) .556 (.056) .674 (.006) .560 (.042)
R-F(RF) .764 (.026) .572 (.057) .587 (.031) .513 (.031) .670 (.027) .550 (.039) .668 (.006) .590 (.012)
R-F(RF) w/ disc. .777 (.028) .588 (.075) .599 (.033) .525 (.040) .696 (.029) .568 (.063) .678 (.005) .595 (.011)
R-F(kNN) .768 (.029) .570 (.068) .575 (.033) .508 (.027) .655 (.028) .537 (.043) .651 (.013) .594 (.021)
R-F(kNN) w/ disc. .757 (.031) .579 (.079) .592 (.036) .522 (.043) .674 (.032) .557 (.057) .648 (.021) .595 (.022)



Table 34: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.4, balanced datasets, each classifier selects 4 best features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .751 (.024) .751 (.024) .598 (.034) .598 (.034) .656 (.030) .656 (.030) .627 (.006) .627 (.006)
HC(LR) w/ disc. .747 (.026) .747 (.026) .604 (.033) .604 (.033) .667 (.030) .667 (.030) .627 (.006) .627 (.006)
HCapp(LR) .753 (.024) .753 (.024) .602 (.033) .602 (.033) .656 (.030) .656 (.030) .627 (.006) .627 (.006)
HCapp(LR) w/ disc. .747 (.026) .747 (.026) .601 (.039) .601 (.039) .670 (.029) .670 (.029) .627 (.006) .627 (.006)
HC(ANN) .734 (.027) .734 (.027) .585 (.036) .585 (.036) .626 (.038) .626 (.038) .626 (.007) .626 (.007)
HC(ANN) w/ disc. .727 (.029) .727 (.029) .578 (.035) .578 (.035) .654 (.035) .654 (.035) .626 (.006) .626 (.006)
Mincut .726 (.028) .726 (.028) .566 (.035) .566 (.035) .502 (.022) .502 (.022) .624 (.007) .624 (.007)
Mincut w/ disc. .744 (.027) .744 (.027) .595 (.034) .595 (.034) .667 (.031) .667 (.031) .625 (.007) .625 (.007)
IC-LR .734 (.030) .734 (.030) .606 (.038) .606 (.038) .646 (.052) .646 (.052) .498 (.007) .498 (.007)
IC-LR w/ disc. .745 (.026) .745 (.026) .608 (.036) .608 (.036) .659 (.031) .659 (.031) .617 (.006) .617 (.006)
IC-LR w/ neg. .751 (.026) .751 (.026) .608 (.039) .608 (.039) .677 (.042) .677 (.042) .652 (.012) .652 (.012)
Maj .651 (.042) .624 (.104) .531 (.030) .525 (.036) .498 (.020) .498 (.019) .657 (.007) .555 (.046)
Maj w/ disc. .752 (.030) .604 (.097) .574 (.036) .530 (.043) .685 (.028) .573 (.073) .670 (.004) .556 (.046)
Imp(LR) .755 (.023) .726 (.053) .619 (.030) .568 (.062) .697 (.027) .652 (.054) .649 (.013) .582 (.062)
Imp(LR) w/ disc. .740 (.027) .671 (.107) .611 (.031) .567 (.063) .696 (.027) .558 (.087) .670 (.005) .500 (.004)
Imp(ANN) .755 (.021) .718 (.056) .619 (.030) .569 (.062) .700 (.026) .649 (.058) .667 (.005) .510 (.005)
Imp(ANN) w/ disc. .741 (.026) .657 (.115) .609 (.032) .566 (.063) .691 (.031) .571 (.086) .671 (.005) .511 (.012)
Imp(RF) .725 (.026) .623 (.101) .590 (.032) .549 (.050) .681 (.024) .563 (.065) .659 (.006) .554 (.045)
Imp(RF) w/ disc. .742 (.026) .652 (.117) .604 (.031) .561 (.061) .695 (.027) .562 (.083) .670 (.005) .520 (.032)
Imp(kNN) .738 (.028) .625 (.110) .594 (.033) .546 (.054) .680 (.026) .584 (.073) .637 (.015) .551 (.047)
Imp(kNN) w/ disc. .727 (.035) .640 (.116) .587 (.041) .553 (.058) .680 (.044) .564 (.084) .635 (.031) .545 (.052)
R-F(LR) .766 (.027) .625 (.061) .582 (.030) .526 (.031) .653 (.027) .572 (.045) .641 (.010) .614 (.010)
R-F(LR) w/ disc. .758 (.025) .622 (.074) .588 (.034) .526 (.040) .684 (.027) .609 (.055) .668 (.005) .599 (.006)
R-F(ANN) .762 (.029) .614 (.065) .578 (.029) .524 (.031) .649 (.031) .552 (.048) .643 (.010) .597 (.031)
R-F(ANN) w/ disc. .753 (.027) .624 (.079) .580 (.032) .521 (.039) .678 (.029) .585 (.060) .667 (.006) .593 (.028)
R-F(RF) .743 (.028) .625 (.056) .574 (.030) .524 (.030) .654 (.026) .576 (.040) .658 (.006) .596 (.009)
R-F(RF) w/ disc. .762 (.025) .650 (.071) .586 (.033) .527 (.040) .685 (.026) .612 (.053) .669 (.005) .599 (.006)
R-F(kNN) .749 (.029) .621 (.063) .565 (.031) .520 (.032) .652 (.026) .584 (.045) .641 (.012) .601 (.016)
R-F(kNN) w/ disc. .747 (.028) .635 (.081) .574 (.036) .526 (.038) .667 (.032) .600 (.054) .642 (.018) .599 (.014)



Table 35: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.5, balanced datasets, each classifier selects 4 best features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .723 (.026) .723 (.026) .580 (.034) .580 (.034) .642 (.031) .642 (.031) .616 (.006) .616 (.006)
HC(LR) w/ disc. .718 (.026) .718 (.026) .582 (.034) .582 (.034) .657 (.032) .657 (.032) .617 (.006) .617 (.006)
HCapp(LR) .725 (.025) .725 (.025) .582 (.034) .582 (.034) .644 (.028) .644 (.028) .616 (.006) .616 (.006)
HCapp(LR) w/ disc. .717 (.027) .717 (.027) .579 (.038) .579 (.038) .659 (.031) .659 (.031) .617 (.006) .617 (.006)
HC(ANN) .704 (.030) .704 (.030) .567 (.034) .567 (.034) .618 (.033) .618 (.033) .616 (.006) .616 (.006)
HC(ANN) w/ disc. .701 (.029) .701 (.029) .558 (.040) .558 (.040) .641 (.029) .641 (.029) .616 (.006) .616 (.006)
Mincut .705 (.031) .705 (.031) .559 (.038) .559 (.038) .506 (.022) .506 (.022) .613 (.008) .613 (.008)
Mincut w/ disc. .714 (.025) .714 (.025) .578 (.036) .578 (.036) .655 (.031) .655 (.031) .614 (.009) .614 (.009)
IC-LR .711 (.031) .711 (.031) .588 (.037) .588 (.037) .636 (.045) .636 (.045) .497 (.005) .497 (.005)
IC-LR w/ disc. .717 (.023) .717 (.023) .588 (.036) .588 (.036) .638 (.031) .638 (.031) .605 (.008) .605 (.008)
IC-LR w/ neg. .726 (.026) .726 (.026) .587 (.037) .587 (.037) .655 (.038) .655 (.038) .638 (.015) .638 (.015)
Maj .653 (.042) .621 (.099) .529 (.030) .520 (.035) .503 (.019) .503 (.022) .647 (.006) .553 (.049)
Maj w/ disc. .732 (.030) .607 (.093) .560 (.034) .525 (.041) .681 (.029) .581 (.073) .657 (.005) .554 (.049)
Imp(LR) .734 (.024) .707 (.043) .598 (.033) .553 (.054) .684 (.026) .640 (.058) .634 (.013) .584 (.053)
Imp(LR) w/ disc. .706 (.029) .641 (.098) .589 (.035) .551 (.055) .681 (.029) .543 (.076) .659 (.005) .503 (.019)
Imp(ANN) .733 (.025) .700 (.048) .598 (.032) .553 (.054) .686 (.026) .634 (.064) .656 (.005) .505 (.004)
Imp(ANN) w/ disc. .704 (.030) .627 (.104) .581 (.041) .545 (.057) .680 (.031) .556 (.077) .659 (.006) .515 (.032)
Imp(RF) .706 (.030) .627 (.094) .576 (.029) .538 (.046) .667 (.029) .565 (.061) .648 (.006) .551 (.048)
Imp(RF) w/ disc. .704 (.029) .628 (.103) .583 (.035) .546 (.053) .681 (.028) .545 (.074) .657 (.005) .516 (.034)
Imp(kNN) .711 (.032) .616 (.102) .575 (.035) .538 (.044) .666 (.027) .577 (.067) .627 (.010) .555 (.047)
Imp(kNN) w/ disc. .690 (.037) .612 (.103) .570 (.041) .535 (.049) .655 (.054) .555 (.076) .626 (.024) .545 (.047)
R-F(LR) .742 (.028) .650 (.056) .565 (.031) .531 (.031) .643 (.029) .590 (.037) .627 (.010) .611 (.009)
R-F(LR) w/ disc. .736 (.029) .655 (.064) .569 (.033) .528 (.039) .675 (.031) .626 (.047) .657 (.005) .602 (.006)
R-F(ANN) .733 (.030) .633 (.059) .563 (.031) .529 (.031) .634 (.034) .566 (.044) .626 (.012) .603 (.017)
R-F(ANN) w/ disc. .730 (.028) .633 (.066) .559 (.035) .518 (.037) .669 (.034) .604 (.060) .655 (.008) .597 (.022)
R-F(RF) .725 (.028) .645 (.045) .560 (.031) .530 (.032) .641 (.027) .581 (.031) .648 (.006) .599 (.007)
R-F(RF) w/ disc. .742 (.027) .669 (.056) .570 (.034) .529 (.039) .677 (.030) .630 (.046) .657 (.005) .602 (.006)
R-F(kNN) .729 (.031) .652 (.052) .551 (.033) .528 (.029) .641 (.030) .602 (.036) .626 (.010) .599 (.012)
R-F(kNN) w/ disc. .726 (.028) .656 (.064) .560 (.032) .529 (.037) .664 (.030) .623 (.043) .626 (.015) .599 (.011)



Table 36: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.0, balanced datasets, each classifier selects 4 best features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .904 (.013) .904 (.013) .725 (.033) .725 (.033) .781 (.028) .781 (.028) .696 (.007) .696 (.007)
HC(LR) w/ disc. .909 (.013) .909 (.013) .724 (.027) .724 (.027) .787 (.032) .787 (.032) .729 (.006) .729 (.006)
HCapp(LR) .908 (.013) .908 (.013) .723 (.032) .723 (.032) .763 (.032) .763 (.032) .646 (.013) .646 (.013)
HCapp(LR) w/ disc. .909 (.022) .909 (.022) .699 (.056) .699 (.056) .758 (.037) .758 (.037) .644 (.009) .644 (.009)
HC(ANN) .906 (.013) .906 (.013) .737 (.028) .737 (.028) .778 (.028) .778 (.028) .700 (.009) .700 (.009)
HC(ANN) w/ disc. .907 (.013) .907 (.013) .727 (.025) .727 (.025) .788 (.031) .788 (.031) .731 (.005) .731 (.005)
IC-LR .900 (.013) .900 (.013) .728 (.025) .728 (.025) .729 (.037) .729 (.037) .500 (.000) .500 (.000)
IC-LR w/ disc. .909 (.013) .909 (.013) .730 (.026) .730 (.026) .791 (.032) .791 (.032) .730 (.005) .730 (.005)
IC-LR w/ neg. .904 (.014) .904 (.014) .744 (.027) .744 (.027) .741 (.041) .741 (.041) .702 (.007) .702 (.007)
Imp(LR) .904 (.014) .903 (.015) .741 (.027) .684 (.063) .786 (.027) .734 (.050) .703 (.005) .665 (.009)
Imp(LR) w/ disc. .909 (.013) .896 (.021) .729 (.026) .662 (.072) .791 (.032) .728 (.085) .730 (.005) .500 (.000)
Imp(ANN) .905 (.013) .902 (.014) .741 (.027) .684 (.062) .779 (.027) .749 (.027) .731 (.009) .680 (.014)
Imp(ANN) w/ disc. .908 (.013) .896 (.021) .730 (.025) .664 (.071) .790 (.031) .738 (.060) .730 (.005) .587 (.003)
Imp(RF) .884 (.015) .870 (.041) .698 (.028) .641 (.076) .794 (.033) .771 (.042) .734 (.005) .580 (.023)
Imp(RF) w/ disc. .909 (.014) .896 (.044) .702 (.027) .640 (.078) .786 (.032) .717 (.094) .730 (.005) .527 (.077)
Imp(kNN) .900 (.016) .869 (.032) .703 (.031) .620 (.094) .773 (.032) .738 (.040) .717 (.015) .628 (.041)
Imp(kNN) w/ disc. .894 (.022) .878 (.054) .704 (.031) .618 (.094) .770 (.038) .703 (.102) .710 (.027) .498 (.086)
R-F(LR) .904 (.014) .904 (.014) .741 (.027) .741 (.027) .786 (.027) .786 (.027) .703 (.005) .703 (.005)
R-F(LR) w/ disc. .909 (.013) .909 (.013) .729 (.026) .729 (.026) .791 (.032) .791 (.032) .730 (.005) .730 (.005)
R-F(ANN) .905 (.013) .905 (.013) .741 (.027) .741 (.027) .779 (.027) .780 (.027) .730 (.009) .731 (.010)
R-F(ANN) w/ disc. .908 (.013) .908 (.013) .730 (.025) .730 (.025) .790 (.031) .790 (.031) .730 (.005) .730 (.005)
R-F(RF) .885 (.015) .884 (.015) .698 (.028) .698 (.028) .794 (.033) .794 (.034) .734 (.005) .734 (.005)
R-F(RF) w/ disc. .910 (.014) .909 (.014) .703 (.028) .703 (.028) .786 (.032) .785 (.032) .730 (.005) .730 (.005)
R-F(kNN) .901 (.015) .900 (.015) .703 (.031) .702 (.033) .772 (.030) .772 (.030) .718 (.017) .715 (.018)
R-F(kNN) w/ disc. .893 (.022) .894 (.022) .704 (.031) .702 (.033) .770 (.038) .770 (.038) .711 (.021) .712 (.020)



Table 37: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.1, balanced datasets, each classifier selects 4 best features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .892 (.015) .892 (.015) .685 (.033) .685 (.033) .750 (.030) .750 (.030) .675 (.007) .675 (.007)
HC(LR) w/ disc. .890 (.017) .890 (.017) .686 (.028) .686 (.028) .764 (.031) .764 (.031) .705 (.006) .705 (.006)
HCapp(LR) .892 (.015) .892 (.015) .694 (.032) .694 (.032) .748 (.029) .748 (.029) .675 (.006) .675 (.006)
HCapp(LR) w/ disc. .890 (.017) .890 (.017) .685 (.041) .685 (.041) .758 (.030) .758 (.030) .704 (.005) .704 (.005)
HC(ANN) .888 (.016) .888 (.016) .688 (.032) .688 (.032) .734 (.035) .734 (.035) .680 (.006) .680 (.006)
HC(ANN) w/ disc. .877 (.019) .877 (.019) .669 (.033) .669 (.033) .757 (.033) .757 (.033) .706 (.006) .706 (.006)
IC-LR .878 (.016) .878 (.016) .701 (.027) .701 (.027) .728 (.038) .728 (.038) .500 (.000) .500 (.000)
IC-LR w/ disc. .894 (.014) .894 (.014) .704 (.028) .704 (.028) .774 (.030) .774 (.030) .710 (.005) .710 (.005)
IC-LR w/ neg. .895 (.013) .895 (.013) .720 (.031) .720 (.031) .731 (.035) .731 (.035) .695 (.007) .695 (.007)
Imp(LR) .894 (.014) .889 (.018) .717 (.029) .670 (.054) .781 (.025) .744 (.032) .697 (.006) .662 (.006)
Imp(LR) w/ disc. .895 (.013) .863 (.021) .703 (.027) .648 (.061) .782 (.029) .698 (.086) .726 (.005) .674 (.027)
Imp(ANN) .895 (.014) .889 (.018) .718 (.029) .670 (.054) .776 (.027) .744 (.027) .723 (.009) .676 (.013)
Imp(ANN) w/ disc. .893 (.014) .863 (.021) .705 (.027) .649 (.061) .782 (.028) .710 (.067) .727 (.005) .681 (.020)
Imp(RF) .866 (.016) .850 (.034) .670 (.030) .629 (.064) .784 (.031) .753 (.036) .718 (.005) .628 (.040)
Imp(RF) w/ disc. .893 (.016) .860 (.027) .680 (.030) .630 (.065) .776 (.029) .680 (.097) .726 (.005) .666 (.041)
Imp(kNN) .880 (.022) .848 (.050) .676 (.034) .619 (.075) .764 (.031) .727 (.039) .710 (.013) .664 (.023)
Imp(kNN) w/ disc. .872 (.039) .838 (.043) .676 (.033) .610 (.075) .758 (.036) .647 (.106) .703 (.028) .614 (.066)
R-F(LR) .883 (.017) .803 (.066) .682 (.032) .602 (.054) .754 (.028) .600 (.102) .694 (.006) .584 (.077)
R-F(LR) w/ disc. .887 (.016) .786 (.074) .686 (.030) .614 (.055) .773 (.030) .659 (.106) .725 (.006) .589 (.123)
R-F(ANN) .880 (.018) .795 (.074) .670 (.035) .598 (.060) .750 (.030) .642 (.089) .705 (.007) .598 (.090)
R-F(ANN) w/ disc. .879 (.017) .805 (.056) .672 (.035) .601 (.061) .769 (.030) .691 (.069) .725 (.006) .624 (.077)
R-F(RF) .862 (.018) .800 (.055) .659 (.031) .603 (.054) .764 (.031) .667 (.077) .717 (.005) .612 (.054)
R-F(RF) w/ disc. .881 (.018) .805 (.049) .666 (.032) .617 (.057) .761 (.030) .679 (.071) .723 (.005) .598 (.084)
R-F(kNN) .869 (.021) .718 (.114) .650 (.031) .569 (.049) .734 (.032) .615 (.068) .709 (.010) .621 (.050)
R-F(kNN) w/ disc. .865 (.024) .704 (.123) .661 (.035) .583 (.058) .748 (.031) .623 (.081) .695 (.033) .627 (.050)



Table 38: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.2, balanced datasets, each classifier selects 4 best features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .876 (.017) .876 (.017) .659 (.038) .659 (.038) .735 (.035) .735 (.035) .661 (.005) .661 (.005)
HC(LR) w/ disc. .872 (.016) .872 (.016) .664 (.032) .664 (.032) .744 (.033) .744 (.033) .692 (.006) .692 (.006)
HCapp(LR) .876 (.017) .876 (.017) .668 (.036) .668 (.036) .735 (.034) .735 (.034) .662 (.006) .662 (.006)
HCapp(LR) w/ disc. .871 (.017) .871 (.017) .662 (.044) .662 (.044) .742 (.032) .742 (.032) .691 (.006) .691 (.006)
HC(ANN) .868 (.021) .868 (.021) .657 (.033) .657 (.033) .718 (.036) .718 (.036) .666 (.007) .666 (.007)
HC(ANN) w/ disc. .850 (.023) .850 (.023) .641 (.036) .641 (.036) .732 (.034) .732 (.034) .691 (.006) .691 (.006)
IC-LR .852 (.018) .852 (.018) .681 (.030) .681 (.030) .731 (.041) .731 (.041) .500 (.000) .500 (.000)
IC-LR w/ disc. .874 (.015) .874 (.015) .683 (.029) .683 (.029) .755 (.032) .755 (.032) .694 (.006) .694 (.006)
IC-LR w/ neg. .881 (.015) .881 (.015) .721 (.026) .721 (.026) .725 (.042) .725 (.042) .689 (.005) .689 (.005)
Imp(LR) .878 (.015) .869 (.016) .703 (.031) .659 (.051) .772 (.029) .732 (.031) .689 (.005) .655 (.006)
Imp(LR) w/ disc. .877 (.014) .833 (.024) .686 (.028) .638 (.057) .773 (.030) .670 (.073) .721 (.005) .680 (.011)
Imp(ANN) .879 (.015) .869 (.016) .704 (.031) .661 (.051) .770 (.029) .735 (.029) .713 (.007) .668 (.010)
Imp(ANN) w/ disc. .875 (.014) .833 (.024) .688 (.028) .639 (.058) .771 (.030) .678 (.066) .721 (.005) .682 (.009)
Imp(RF) .849 (.019) .821 (.036) .656 (.034) .623 (.059) .774 (.030) .727 (.039) .707 (.006) .637 (.033)
Imp(RF) w/ disc. .876 (.016) .832 (.025) .663 (.031) .622 (.061) .766 (.029) .662 (.073) .719 (.006) .672 (.014)
Imp(kNN) .861 (.024) .836 (.040) .664 (.035) .616 (.066) .753 (.030) .714 (.040) .700 (.009) .653 (.026)
Imp(kNN) w/ disc. .857 (.028) .803 (.057) .649 (.041) .602 (.067) .743 (.041) .617 (.091) .692 (.021) .621 (.051)
R-F(LR) .866 (.019) .788 (.059) .657 (.033) .584 (.053) .735 (.029) .605 (.101) .687 (.005) .626 (.035)
R-F(LR) w/ disc. .867 (.018) .759 (.066) .666 (.032) .604 (.055) .755 (.032) .645 (.091) .717 (.006) .665 (.034)
R-F(ANN) .862 (.020) .792 (.065) .651 (.034) .589 (.052) .731 (.029) .638 (.089) .693 (.006) .639 (.019)
R-F(ANN) w/ disc. .860 (.020) .792 (.055) .654 (.036) .601 (.058) .750 (.033) .676 (.061) .717 (.006) .656 (.048)
R-F(RF) .847 (.022) .777 (.053) .641 (.034) .592 (.048) .744 (.030) .657 (.067) .707 (.006) .642 (.026)
R-F(RF) w/ disc. .861 (.020) .792 (.045) .650 (.033) .612 (.051) .746 (.032) .671 (.069) .716 (.006) .655 (.037)
R-F(kNN) .840 (.021) .694 (.096) .626 (.037) .551 (.044) .714 (.030) .611 (.060) .698 (.012) .649 (.022)
R-F(kNN) w/ disc. .835 (.025) .681 (.100) .643 (.038) .580 (.054) .726 (.036) .616 (.071) .697 (.013) .647 (.028)



Table 39: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.3, balanced datasets, each classifier selects 4 best features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .853 (.022) .853 (.022) .641 (.038) .641 (.038) .726 (.028) .726 (.028) .653 (.006) .653 (.006)
HC(LR) w/ disc. .846 (.024) .846 (.024) .646 (.036) .646 (.036) .728 (.031) .728 (.031) .675 (.007) .675 (.007)
HCapp(LR) .853 (.022) .853 (.022) .647 (.038) .647 (.038) .727 (.027) .727 (.027) .653 (.006) .653 (.006)
HCapp(LR) w/ disc. .846 (.023) .846 (.023) .645 (.042) .645 (.042) .728 (.031) .728 (.031) .677 (.006) .677 (.006)
HC(ANN) .841 (.023) .841 (.023) .634 (.036) .634 (.036) .700 (.033) .700 (.033) .655 (.006) .655 (.006)
HC(ANN) w/ disc. .825 (.028) .825 (.028) .615 (.036) .615 (.036) .718 (.034) .718 (.034) .677 (.006) .677 (.006)
IC-LR .820 (.024) .820 (.024) .662 (.035) .662 (.035) .737 (.036) .737 (.036) .502 (.014) .502 (.014)
IC-LR w/ disc. .850 (.021) .850 (.021) .662 (.035) .662 (.035) .739 (.030) .739 (.030) .680 (.006) .680 (.006)
IC-LR w/ neg. .862 (.016) .862 (.016) .676 (.036) .676 (.036) .737 (.029) .737 (.029) .682 (.006) .682 (.006)
Imp(LR) .860 (.018) .842 (.024) .683 (.035) .641 (.049) .768 (.024) .727 (.028) .684 (.005) .648 (.005)
Imp(LR) w/ disc. .854 (.019) .798 (.043) .668 (.037) .622 (.056) .762 (.029) .664 (.073) .714 (.005) .672 (.009)
Imp(ANN) .860 (.018) .841 (.024) .685 (.034) .643 (.049) .767 (.024) .730 (.027) .705 (.008) .661 (.008)
Imp(ANN) w/ disc. .853 (.020) .798 (.043) .669 (.037) .622 (.057) .760 (.029) .668 (.072) .714 (.006) .673 (.009)
Imp(RF) .832 (.023) .797 (.038) .638 (.036) .602 (.057) .760 (.029) .691 (.062) .698 (.006) .649 (.013)
Imp(RF) w/ disc. .855 (.020) .797 (.043) .647 (.035) .609 (.054) .754 (.029) .659 (.070) .711 (.006) .667 (.011)
Imp(kNN) .838 (.026) .795 (.070) .642 (.038) .596 (.061) .743 (.031) .700 (.048) .691 (.009) .634 (.029)
Imp(kNN) w/ disc. .829 (.036) .766 (.073) .630 (.046) .587 (.063) .738 (.035) .629 (.083) .687 (.015) .619 (.040)
R-F(LR) .846 (.019) .767 (.081) .633 (.036) .585 (.046) .720 (.027) .623 (.083) .678 (.005) .634 (.012)
R-F(LR) w/ disc. .842 (.021) .733 (.093) .647 (.037) .602 (.051) .739 (.031) .651 (.088) .707 (.006) .671 (.011)
R-F(ANN) .842 (.020) .784 (.053) .628 (.036) .581 (.044) .718 (.029) .651 (.062) .680 (.006) .630 (.021)
R-F(ANN) w/ disc. .838 (.024) .776 (.054) .638 (.041) .597 (.045) .736 (.031) .668 (.060) .706 (.006) .667 (.013)
R-F(RF) .829 (.021) .757 (.055) .621 (.035) .583 (.051) .722 (.030) .653 (.070) .695 (.006) .649 (.013)
R-F(RF) w/ disc. .838 (.022) .766 (.055) .636 (.037) .610 (.045) .732 (.031) .664 (.072) .706 (.006) .669 (.014)
R-F(kNN) .819 (.024) .705 (.076) .601 (.036) .551 (.042) .700 (.031) .631 (.050) .690 (.008) .649 (.017)
R-F(kNN) w/ disc. .811 (.028) .703 (.076) .624 (.041) .573 (.054) .714 (.032) .638 (.061) .686 (.010) .644 (.021)



Table 40: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.4, balanced datasets, each classifier selects 4 best features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .827 (.022) .827 (.022) .623 (.035) .623 (.035) .709 (.029) .709 (.029) .642 (.006) .642 (.006)
HC(LR) w/ disc. .817 (.023) .817 (.023) .627 (.035) .627 (.035) .707 (.027) .707 (.027) .661 (.006) .661 (.006)
HCapp(LR) .827 (.021) .827 (.021) .628 (.036) .628 (.036) .710 (.029) .710 (.029) .643 (.006) .643 (.006)
HCapp(LR) w/ disc. .818 (.022) .818 (.022) .625 (.041) .625 (.041) .707 (.027) .707 (.027) .662 (.006) .662 (.006)
HC(ANN) .807 (.027) .807 (.027) .612 (.037) .612 (.037) .680 (.039) .680 (.039) .644 (.007) .644 (.007)
HC(ANN) w/ disc. .794 (.030) .794 (.030) .598 (.038) .598 (.038) .696 (.031) .696 (.031) .662 (.007) .662 (.007)
IC-LR .788 (.025) .788 (.025) .640 (.034) .640 (.034) .728 (.038) .728 (.038) .501 (.010) .501 (.010)
IC-LR w/ disc. .826 (.022) .826 (.022) .641 (.033) .641 (.033) .720 (.026) .720 (.026) .667 (.006) .667 (.006)
IC-LR w/ neg. .846 (.022) .846 (.022) .663 (.035) .663 (.035) .748 (.030) .748 (.030) .678 (.005) .678 (.005)
Imp(LR) .841 (.020) .810 (.028) .665 (.033) .629 (.044) .758 (.025) .714 (.028) .678 (.005) .639 (.006)
Imp(LR) w/ disc. .828 (.020) .754 (.050) .647 (.034) .609 (.048) .744 (.031) .642 (.068) .706 (.006) .657 (.009)
Imp(ANN) .840 (.020) .809 (.026) .665 (.033) .630 (.044) .758 (.024) .716 (.029) .694 (.007) .648 (.008)
Imp(ANN) w/ disc. .827 (.021) .754 (.049) .647 (.034) .609 (.049) .742 (.031) .644 (.066) .706 (.006) .659 (.009)
Imp(RF) .807 (.024) .762 (.038) .624 (.037) .599 (.047) .742 (.028) .687 (.033) .691 (.006) .648 (.009)
Imp(RF) w/ disc. .827 (.022) .753 (.049) .633 (.036) .601 (.047) .739 (.031) .641 (.066) .704 (.005) .657 (.009)
Imp(kNN) .814 (.028) .755 (.065) .627 (.035) .592 (.051) .731 (.027) .675 (.050) .680 (.009) .622 (.021)
Imp(kNN) w/ disc. .805 (.037) .720 (.077) .618 (.043) .585 (.056) .719 (.041) .605 (.081) .674 (.016) .589 (.051)
R-F(LR) .823 (.024) .781 (.042) .611 (.034) .587 (.041) .703 (.027) .654 (.046) .666 (.006) .630 (.008)
R-F(LR) w/ disc. .816 (.023) .759 (.055) .627 (.040) .601 (.041) .724 (.026) .672 (.057) .693 (.006) .660 (.008)
R-F(ANN) .818 (.025) .777 (.041) .606 (.034) .582 (.042) .700 (.029) .656 (.042) .666 (.006) .630 (.013)
R-F(ANN) w/ disc. .814 (.025) .771 (.041) .617 (.039) .590 (.041) .720 (.027) .672 (.045) .692 (.006) .659 (.009)
R-F(RF) .802 (.026) .749 (.043) .601 (.035) .585 (.042) .700 (.027) .660 (.044) .682 (.006) .647 (.009)
R-F(RF) w/ disc. .816 (.024) .775 (.038) .621 (.038) .603 (.039) .719 (.026) .674 (.052) .692 (.006) .659 (.008)
R-F(kNN) .798 (.028) .725 (.048) .584 (.035) .557 (.042) .689 (.028) .646 (.042) .675 (.008) .638 (.012)
R-F(kNN) w/ disc. .792 (.027) .728 (.060) .601 (.043) .576 (.048) .703 (.031) .652 (.046) .673 (.010) .634 (.017)



Table 41: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.5, balanced datasets, each classifier selects 4 best features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .782 (.026) .782 (.026) .601 (.037) .601 (.037) .684 (.030) .684 (.030) .629 (.006) .629 (.006)
HC(LR) w/ disc. .775 (.026) .775 (.026) .600 (.036) .600 (.036) .683 (.032) .683 (.032) .646 (.006) .646 (.006)
HCapp(LR) .783 (.026) .783 (.026) .603 (.037) .603 (.037) .685 (.029) .685 (.029) .629 (.005) .629 (.005)
HCapp(LR) w/ disc. .775 (.027) .775 (.027) .599 (.039) .599 (.039) .683 (.032) .683 (.032) .646 (.006) .646 (.006)
HC(ANN) .765 (.033) .765 (.033) .589 (.035) .589 (.035) .656 (.031) .656 (.031) .631 (.006) .631 (.006)
HC(ANN) w/ disc. .758 (.030) .758 (.030) .572 (.039) .572 (.039) .671 (.032) .671 (.032) .646 (.006) .646 (.006)
IC-LR .744 (.028) .744 (.028) .614 (.035) .614 (.035) .720 (.036) .720 (.036) .501 (.007) .501 (.007)
IC-LR w/ disc. .790 (.023) .790 (.023) .614 (.035) .614 (.035) .700 (.030) .700 (.030) .653 (.006) .653 (.006)
IC-LR w/ neg. .819 (.021) .819 (.021) .639 (.031) .639 (.031) .724 (.031) .724 (.031) .672 (.005) .672 (.005)
Imp(LR) .811 (.024) .771 (.031) .638 (.036) .602 (.044) .746 (.026) .698 (.027) .672 (.005) .629 (.006)
Imp(LR) w/ disc. .788 (.023) .713 (.047) .622 (.037) .584 (.047) .727 (.032) .618 (.059) .696 (.005) .642 (.009)
Imp(ANN) .812 (.023) .771 (.031) .639 (.036) .603 (.044) .747 (.026) .700 (.028) .685 (.007) .635 (.007)
Imp(ANN) w/ disc. .788 (.023) .713 (.047) .619 (.040) .581 (.051) .725 (.031) .619 (.058) .696 (.005) .643 (.008)
Imp(RF) .782 (.025) .736 (.036) .606 (.036) .581 (.045) .725 (.031) .667 (.033) .682 (.006) .641 (.007)
Imp(RF) w/ disc. .787 (.024) .712 (.046) .609 (.038) .577 (.047) .725 (.031) .618 (.058) .694 (.005) .642 (.008)
Imp(kNN) .781 (.029) .725 (.063) .602 (.040) .572 (.050) .716 (.032) .659 (.046) .668 (.009) .605 (.029)
Imp(kNN) w/ disc. .765 (.039) .685 (.069) .591 (.048) .561 (.053) .704 (.039) .590 (.067) .662 (.015) .581 (.043)
R-F(LR) .784 (.028) .757 (.034) .590 (.034) .575 (.036) .681 (.029) .649 (.037) .649 (.006) .621 (.007)
R-F(LR) w/ disc. .778 (.030) .744 (.039) .605 (.040) .581 (.040) .702 (.031) .669 (.034) .673 (.006) .645 (.007)
R-F(ANN) .778 (.030) .747 (.036) .586 (.035) .568 (.036) .676 (.036) .641 (.038) .646 (.007) .620 (.009)
R-F(ANN) w/ disc. .776 (.029) .741 (.037) .592 (.041) .563 (.042) .698 (.032) .663 (.034) .671 (.006) .641 (.010)
R-F(RF) .770 (.030) .727 (.039) .581 (.034) .571 (.038) .678 (.029) .651 (.032) .664 (.006) .636 (.007)
R-F(RF) w/ disc. .783 (.029) .748 (.035) .601 (.039) .582 (.038) .703 (.031) .670 (.033) .672 (.006) .644 (.007)
R-F(kNN) .766 (.031) .715 (.045) .565 (.035) .555 (.037) .672 (.033) .646 (.034) .655 (.008) .622 (.013)
R-F(kNN) w/ disc. .762 (.029) .715 (.045) .581 (.038) .564 (.043) .688 (.031) .654 (.039) .653 (.009) .620 (.014)



Table 42: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.0, unbalanced datasets, each classifier selects 4 best
features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .848 (.019) .848 (.019) .725 (.016) .725 (.016) .932 (.003) .932 (.003) .809 (.002) .809 (.002)
HC(LR) w/ disc. .850 (.014) .850 (.014) .716 (.018) .716 (.018) .932 (.003) .932 (.003) .820 (.003) .820 (.003)
HCapp(LR) .851 (.016) .851 (.016) .719 (.017) .719 (.017) .932 (.003) .932 (.003) .809 (.009) .809 (.009)
HCapp(LR) w/ disc. .841 (.033) .841 (.033) .709 (.016) .709 (.016) .931 (.003) .931 (.003) .820 (.003) .820 (.003)
HC(ANN) .851 (.015) .851 (.015) .727 (.016) .727 (.016) .931 (.003) .931 (.003) .820 (.003) .820 (.003)
HC(ANN) w/ disc. .848 (.015) .848 (.015) .720 (.016) .720 (.016) .931 (.003) .931 (.003) .820 (.003) .820 (.003)
Mincut .735 (.027) .735 (.027) .472 (.135) .472 (.135) .085 (.004) .085 (.004) .818 (.003) .818 (.003)
Mincut w/ disc. .845 (.014) .845 (.014) .695 (.025) .695 (.025) .931 (.004) .931 (.004) .820 (.003) .820 (.003)
IC-LR .855 (.014) .855 (.014) .715 (.020) .715 (.020) .931 (.003) .931 (.003) .779 (.002) .779 (.002)
IC-LR w/ disc. .852 (.015) .852 (.015) .720 (.018) .720 (.018) .931 (.003) .931 (.003) .820 (.003) .820 (.003)
IC-LR w/ neg. .855 (.014) .855 (.014) .731 (.016) .731 (.016) .931 (.003) .931 (.003) .808 (.003) .808 (.003)
Maj .735 (.027) .735 (.027) .464 (.129) .464 (.129) .084 (.004) .084 (.004) .819 (.003) .819 (.003)
Maj w/ disc. .847 (.015) .847 (.015) .689 (.029) .689 (.029) .929 (.005) .929 (.005) .819 (.003) .819 (.003)
Imp(LR) .854 (.014) .827 (.093) .733 (.015) .698 (.013) .931 (.003) .931 (.003) .809 (.002) .779 (.002)
Imp(LR) w/ disc. .852 (.014) .817 (.092) .720 (.018) .698 (.013) .931 (.003) .931 (.003) .820 (.003) .779 (.002)
Imp(ANN) .850 (.015) .823 (.092) .733 (.015) .698 (.013) .931 (.003) .931 (.003) .820 (.003) .779 (.002)
Imp(ANN) w/ disc. .848 (.014) .786 (.091) .721 (.017) .698 (.013) .931 (.003) .931 (.003) .820 (.003) .779 (.002)
Imp(RF) .820 (.015) .666 (.097) .700 (.018) .698 (.013) .930 (.005) .931 (.003) .819 (.003) .779 (.002)
Imp(RF) w/ disc. .848 (.015) .803 (.090) .708 (.022) .698 (.013) .931 (.004) .931 (.003) .819 (.003) .779 (.002)
Imp(kNN) .846 (.017) .745 (.112) .719 (.022) .698 (.013) .931 (.003) .931 (.003) .812 (.007) .769 (.053)
Imp(kNN) w/ disc. .842 (.020) .759 (.119) .708 (.022) .698 (.013) .930 (.004) .931 (.003) .808 (.013) .761 (.097)
R-F(LR) .854 (.014) .854 (.014) .733 (.015) .733 (.015) .931 (.003) .931 (.003) .809 (.002) .809 (.002)
R-F(LR) w/ disc. .852 (.014) .852 (.014) .720 (.018) .720 (.018) .931 (.003) .931 (.003) .820 (.003) .820 (.003)
R-F(ANN) .850 (.015) .850 (.015) .733 (.016) .732 (.014) .931 (.003) .931 (.003) .820 (.003) .820 (.003)
R-F(ANN) w/ disc. .849 (.015) .848 (.014) .720 (.018) .722 (.018) .931 (.003) .931 (.003) .820 (.003) .820 (.003)
R-F(RF) .820 (.015) .820 (.016) .701 (.017) .700 (.018) .930 (.005) .930 (.005) .819 (.003) .819 (.003)
R-F(RF) w/ disc. .848 (.014) .848 (.015) .709 (.021) .710 (.021) .931 (.004) .931 (.004) .819 (.003) .819 (.003)
R-F(kNN) .844 (.018) .846 (.018) .719 (.022) .721 (.020) .930 (.003) .931 (.003) .812 (.006) .812 (.006)
R-F(kNN) w/ disc. .841 (.028) .841 (.028) .706 (.023) .706 (.023) .930 (.004) .930 (.004) .807 (.011) .804 (.016)



Table 43: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.1, unbalanced datasets, each classifier selects 4 best
features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .810 (.014) .810 (.014) .699 (.018) .699 (.018) .930 (.004) .930 (.004) .803 (.003) .803 (.003)
HC(LR) w/ disc. .814 (.016) .814 (.016) .695 (.017) .695 (.017) .929 (.004) .929 (.004) .804 (.003) .804 (.003)
HCapp(LR) .814 (.015) .814 (.015) .702 (.016) .702 (.016) .930 (.004) .930 (.004) .795 (.013) .795 (.013)
HCapp(LR) w/ disc. .814 (.019) .814 (.019) .699 (.016) .699 (.016) .929 (.004) .929 (.004) .804 (.003) .804 (.003)
HC(ANN) .794 (.021) .794 (.021) .688 (.021) .688 (.021) .930 (.004) .930 (.004) .803 (.003) .803 (.003)
HC(ANN) w/ disc. .792 (.020) .792 (.020) .692 (.017) .692 (.017) .930 (.004) .930 (.004) .802 (.003) .802 (.003)
Mincut .770 (.030) .770 (.030) .512 (.107) .512 (.107) .081 (.004) .081 (.004) .802 (.003) .802 (.003)
Mincut w/ disc. .808 (.016) .808 (.016) .684 (.019) .684 (.019) .928 (.004) .928 (.004) .804 (.002) .804 (.002)
IC-LR .812 (.014) .812 (.014) .701 (.016) .701 (.016) .931 (.004) .931 (.004) .778 (.003) .778 (.003)
IC-LR w/ disc. .822 (.015) .822 (.015) .704 (.019) .704 (.019) .930 (.004) .930 (.004) .804 (.003) .804 (.003)
IC-LR w/ neg. .811 (.016) .811 (.016) .720 (.017) .720 (.017) .931 (.004) .931 (.004) .802 (.003) .802 (.003)
Maj .678 (.021) .744 (.060) .410 (.094) .591 (.070) .077 (.004) .137 (.116) .810 (.002) .779 (.003)
Maj w/ disc. .811 (.021) .697 (.082) .664 (.031) .689 (.017) .922 (.006) .929 (.004) .816 (.002) .779 (.005)
Imp(LR) .816 (.015) .760 (.104) .726 (.015) .700 (.015) .931 (.004) .931 (.004) .804 (.002) .778 (.003)
Imp(LR) w/ disc. .824 (.015) .740 (.103) .716 (.019) .700 (.015) .930 (.004) .931 (.004) .816 (.002) .778 (.003)
Imp(ANN) .820 (.016) .755 (.104) .726 (.016) .700 (.015) .931 (.004) .931 (.004) .816 (.002) .778 (.003)
Imp(ANN) w/ disc. .824 (.015) .732 (.103) .717 (.017) .700 (.015) .931 (.004) .931 (.004) .816 (.002) .778 (.003)
Imp(RF) .794 (.020) .635 (.091) .686 (.023) .699 (.015) .929 (.005) .931 (.004) .813 (.003) .778 (.003)
Imp(RF) w/ disc. .821 (.018) .726 (.106) .707 (.019) .700 (.015) .929 (.004) .931 (.004) .816 (.002) .778 (.003)
Imp(kNN) .810 (.018) .679 (.098) .712 (.019) .698 (.015) .930 (.004) .931 (.004) .810 (.006) .778 (.003)
Imp(kNN) w/ disc. .818 (.018) .694 (.120) .704 (.024) .697 (.020) .927 (.007) .931 (.004) .811 (.006) .778 (.003)
R-F(LR) .828 (.018) .576 (.051) .709 (.015) .696 (.014) .930 (.004) .930 (.004) .804 (.003) .778 (.003)
R-F(LR) w/ disc. .820 (.015) .570 (.046) .703 (.017) .696 (.015) .929 (.003) .930 (.004) .816 (.003) .778 (.003)
R-F(ANN) .823 (.017) .581 (.055) .708 (.015) .696 (.015) .930 (.004) .930 (.004) .810 (.003) .778 (.003)
R-F(ANN) w/ disc. .818 (.017) .570 (.037) .703 (.019) .696 (.014) .930 (.004) .930 (.004) .814 (.003) .778 (.003)
R-F(RF) .796 (.018) .578 (.050) .681 (.019) .696 (.015) .927 (.005) .930 (.004) .813 (.003) .778 (.003)
R-F(RF) w/ disc. .816 (.022) .573 (.042) .695 (.018) .696 (.015) .927 (.005) .930 (.004) .816 (.002) .778 (.003)
R-F(kNN) .807 (.019) .564 (.043) .696 (.019) .695 (.016) .930 (.005) .930 (.004) .809 (.005) .778 (.003)
R-F(kNN) w/ disc. .802 (.022) .564 (.040) .696 (.019) .695 (.015) .929 (.004) .930 (.004) .810 (.004) .778 (.003)



Table 44: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.2, unbalanced datasets, each classifier selects 4 best
features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .787 (.020) .787 (.020) .693 (.018) .693 (.018) .929 (.003) .929 (.003) .800 (.003) .800 (.003)
HC(LR) w/ disc. .788 (.020) .788 (.020) .681 (.017) .681 (.017) .928 (.003) .928 (.003) .800 (.003) .800 (.003)
HCapp(LR) .791 (.020) .791 (.020) .692 (.022) .692 (.022) .929 (.003) .929 (.003) .791 (.010) .791 (.010)
HCapp(LR) w/ disc. .788 (.020) .788 (.020) .691 (.017) .691 (.017) .929 (.003) .929 (.003) .800 (.003) .800 (.003)
HC(ANN) .775 (.019) .775 (.019) .676 (.024) .676 (.024) .929 (.003) .929 (.003) .801 (.003) .801 (.003)
HC(ANN) w/ disc. .768 (.021) .768 (.021) .692 (.022) .692 (.022) .929 (.003) .929 (.003) .801 (.003) .801 (.003)
Mincut .767 (.024) .767 (.024) .550 (.083) .550 (.083) .083 (.018) .083 (.018) .800 (.003) .800 (.003)
Mincut w/ disc. .788 (.020) .788 (.020) .676 (.020) .676 (.020) .929 (.004) .929 (.004) .799 (.003) .799 (.003)
IC-LR .777 (.023) .777 (.023) .696 (.017) .696 (.017) .931 (.003) .931 (.003) .779 (.003) .779 (.003)
IC-LR w/ disc. .791 (.020) .791 (.020) .693 (.016) .693 (.016) .931 (.003) .931 (.003) .800 (.003) .800 (.003)
IC-LR w/ neg. .793 (.020) .793 (.020) .711 (.019) .711 (.019) .931 (.003) .931 (.003) .801 (.003) .801 (.003)
Maj .649 (.028) .711 (.073) .420 (.094) .669 (.033) .075 (.003) .573 (.085) .810 (.003) .781 (.004)
Maj w/ disc. .797 (.021) .679 (.068) .652 (.043) .699 (.017) .921 (.005) .930 (.003) .814 (.003) .782 (.006)
Imp(LR) .796 (.020) .734 (.100) .720 (.019) .701 (.016) .931 (.003) .931 (.003) .802 (.003) .779 (.003)
Imp(LR) w/ disc. .794 (.020) .681 (.112) .708 (.016) .701 (.016) .930 (.003) .931 (.003) .814 (.003) .779 (.003)
Imp(ANN) .798 (.021) .722 (.096) .719 (.018) .701 (.016) .931 (.003) .931 (.003) .813 (.002) .779 (.003)
Imp(ANN) w/ disc. .793 (.021) .674 (.112) .707 (.016) .701 (.016) .931 (.003) .931 (.003) .814 (.003) .779 (.003)
Imp(RF) .765 (.017) .601 (.070) .686 (.019) .700 (.016) .928 (.004) .931 (.003) .812 (.003) .780 (.004)
Imp(RF) w/ disc. .795 (.020) .675 (.111) .699 (.017) .701 (.016) .929 (.004) .931 (.003) .815 (.003) .779 (.003)
Imp(kNN) .786 (.017) .653 (.093) .704 (.021) .698 (.018) .930 (.003) .931 (.003) .807 (.005) .780 (.004)
Imp(kNN) w/ disc. .780 (.030) .644 (.106) .687 (.025) .685 (.055) .928 (.006) .931 (.003) .803 (.011) .768 (.042)
R-F(LR) .810 (.021) .580 (.035) .699 (.019) .698 (.017) .929 (.003) .929 (.003) .803 (.004) .779 (.004)
R-F(LR) w/ disc. .800 (.019) .573 (.038) .698 (.018) .699 (.017) .929 (.003) .929 (.003) .814 (.003) .781 (.006)
R-F(ANN) .805 (.021) .578 (.031) .693 (.020) .697 (.017) .929 (.003) .929 (.003) .806 (.003) .778 (.003)
R-F(ANN) w/ disc. .799 (.021) .581 (.043) .697 (.020) .700 (.016) .929 (.003) .929 (.003) .810 (.003) .778 (.003)
R-F(RF) .778 (.021) .575 (.030) .672 (.024) .697 (.017) .924 (.004) .928 (.003) .811 (.003) .782 (.007)
R-F(RF) w/ disc. .801 (.020) .590 (.048) .681 (.023) .700 (.016) .926 (.004) .929 (.003) .813 (.003) .785 (.010)
R-F(kNN) .782 (.019) .577 (.039) .692 (.020) .697 (.017) .928 (.004) .929 (.003) .806 (.005) .782 (.007)
R-F(kNN) w/ disc. .784 (.024) .576 (.039) .689 (.023) .699 (.017) .928 (.003) .929 (.003) .807 (.005) .781 (.006)



Table 45: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.3, unbalanced datasets, each classifier selects 4 best
features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .774 (.023) .774 (.023) .679 (.019) .679 (.019) .924 (.004) .924 (.004) .796 (.002) .796 (.002)
HC(LR) w/ disc. .771 (.025) .771 (.025) .682 (.019) .682 (.019) .923 (.005) .923 (.005) .796 (.002) .796 (.002)
HCapp(LR) .779 (.024) .779 (.024) .683 (.018) .683 (.018) .924 (.004) .924 (.004) .791 (.009) .791 (.009)
HCapp(LR) w/ disc. .776 (.022) .776 (.022) .688 (.016) .688 (.016) .924 (.005) .924 (.005) .796 (.002) .796 (.002)
HC(ANN) .755 (.029) .755 (.029) .671 (.021) .671 (.021) .924 (.004) .924 (.004) .796 (.002) .796 (.002)
HC(ANN) w/ disc. .746 (.030) .746 (.030) .692 (.017) .692 (.017) .924 (.004) .924 (.004) .796 (.002) .796 (.002)
Mincut .741 (.027) .741 (.027) .590 (.073) .590 (.073) .084 (.017) .084 (.017) .791 (.007) .791 (.007)
Mincut w/ disc. .770 (.025) .770 (.025) .680 (.020) .680 (.020) .930 (.005) .930 (.005) .795 (.004) .795 (.004)
IC-LR .762 (.035) .762 (.035) .697 (.013) .697 (.013) .931 (.004) .931 (.004) .779 (.002) .779 (.002)
IC-LR w/ disc. .771 (.025) .771 (.025) .694 (.015) .694 (.015) .931 (.004) .931 (.004) .781 (.006) .781 (.006)
IC-LR w/ neg. .777 (.024) .777 (.024) .707 (.016) .707 (.016) .931 (.004) .931 (.004) .798 (.003) .798 (.003)
Maj .645 (.031) .684 (.078) .442 (.076) .685 (.026) .078 (.004) .731 (.008) .807 (.002) .780 (.002)
Maj w/ disc. .774 (.021) .657 (.073) .653 (.032) .695 (.016) .922 (.005) .931 (.004) .811 (.002) .780 (.002)
Imp(LR) .781 (.018) .722 (.080) .710 (.015) .697 (.013) .931 (.004) .931 (.004) .799 (.003) .779 (.002)
Imp(LR) w/ disc. .771 (.017) .688 (.100) .702 (.017) .697 (.013) .930 (.004) .931 (.004) .809 (.003) .779 (.002)
Imp(ANN) .783 (.019) .706 (.087) .710 (.015) .697 (.013) .931 (.004) .931 (.004) .809 (.003) .779 (.002)
Imp(ANN) w/ disc. .769 (.019) .676 (.103) .704 (.016) .697 (.013) .930 (.003) .931 (.004) .811 (.002) .779 (.002)
Imp(RF) .751 (.025) .632 (.084) .674 (.021) .697 (.013) .926 (.004) .931 (.004) .809 (.003) .779 (.002)
Imp(RF) w/ disc. .770 (.017) .679 (.104) .691 (.017) .697 (.013) .929 (.004) .931 (.004) .811 (.002) .779 (.002)
Imp(kNN) .767 (.020) .653 (.092) .694 (.019) .692 (.020) .930 (.004) .930 (.004) .804 (.004) .779 (.002)
Imp(kNN) w/ disc. .758 (.030) .677 (.099) .681 (.041) .684 (.046) .928 (.007) .931 (.004) .804 (.005) .766 (.056)
R-F(LR) .788 (.021) .611 (.052) .688 (.017) .692 (.014) .924 (.005) .924 (.004) .798 (.003) .776 (.002)
R-F(LR) w/ disc. .774 (.024) .597 (.051) .694 (.018) .695 (.013) .923 (.004) .924 (.004) .807 (.002) .782 (.007)
R-F(ANN) .785 (.021) .613 (.056) .688 (.017) .690 (.015) .924 (.004) .924 (.004) .797 (.003) .775 (.002)
R-F(ANN) w/ disc. .777 (.023) .614 (.055) .694 (.018) .695 (.013) .924 (.004) .924 (.004) .802 (.003) .775 (.002)
R-F(RF) .759 (.021) .624 (.050) .656 (.022) .689 (.015) .916 (.004) .921 (.004) .804 (.002) .781 (.005)
R-F(RF) w/ disc. .777 (.025) .628 (.063) .682 (.021) .695 (.013) .920 (.004) .924 (.004) .807 (.002) .783 (.006)
R-F(kNN) .768 (.024) .606 (.053) .678 (.018) .689 (.016) .923 (.004) .924 (.004) .800 (.004) .778 (.005)
R-F(kNN) w/ disc. .763 (.027) .608 (.056) .687 (.023) .694 (.014) .922 (.004) .924 (.004) .796 (.017) .780 (.005)



Table 46: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.4, unbalanced datasets, each classifier selects 4 best
features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .755 (.021) .755 (.021) .669 (.018) .669 (.018) .910 (.004) .910 (.004) .786 (.002) .786 (.002)
HC(LR) w/ disc. .753 (.023) .753 (.023) .685 (.022) .685 (.022) .908 (.004) .908 (.004) .786 (.002) .786 (.002)
HCapp(LR) .756 (.021) .756 (.021) .675 (.018) .675 (.018) .910 (.004) .910 (.004) .779 (.010) .779 (.010)
HCapp(LR) w/ disc. .753 (.023) .753 (.023) .685 (.022) .685 (.022) .909 (.004) .909 (.004) .786 (.002) .786 (.002)
HC(ANN) .734 (.028) .734 (.028) .670 (.022) .670 (.022) .909 (.004) .909 (.004) .786 (.003) .786 (.003)
HC(ANN) w/ disc. .723 (.033) .723 (.033) .689 (.024) .689 (.024) .909 (.004) .909 (.004) .786 (.002) .786 (.002)
Mincut .725 (.033) .725 (.033) .604 (.051) .604 (.051) .081 (.010) .081 (.010) .777 (.022) .777 (.022)
Mincut w/ disc. .751 (.021) .751 (.021) .680 (.024) .680 (.024) .931 (.004) .931 (.004) .782 (.014) .782 (.014)
IC-LR .741 (.029) .741 (.029) .698 (.015) .698 (.015) .932 (.004) .932 (.004) .778 (.002) .778 (.002)
IC-LR w/ disc. .746 (.021) .746 (.021) .696 (.016) .696 (.016) .931 (.004) .931 (.004) .778 (.002) .778 (.002)
IC-LR w/ neg. .734 (.039) .734 (.039) .705 (.017) .705 (.017) .932 (.004) .932 (.004) .795 (.003) .795 (.003)
Maj .628 (.025) .628 (.077) .479 (.063) .689 (.020) .092 (.004) .822 (.007) .803 (.003) .779 (.002)
Maj w/ disc. .760 (.035) .619 (.075) .645 (.041) .696 (.017) .923 (.006) .931 (.004) .808 (.003) .779 (.002)
Imp(LR) .759 (.020) .660 (.099) .706 (.019) .698 (.015) .932 (.004) .931 (.004) .796 (.003) .778 (.002)
Imp(LR) w/ disc. .747 (.020) .636 (.097) .701 (.017) .698 (.015) .930 (.004) .931 (.004) .805 (.003) .778 (.002)
Imp(ANN) .759 (.021) .642 (.095) .704 (.019) .698 (.015) .931 (.004) .931 (.004) .805 (.003) .778 (.002)
Imp(ANN) w/ disc. .746 (.019) .637 (.098) .701 (.016) .698 (.015) .931 (.004) .931 (.004) .808 (.003) .778 (.002)
Imp(RF) .730 (.024) .612 (.075) .670 (.022) .698 (.015) .925 (.005) .931 (.004) .805 (.003) .779 (.002)
Imp(RF) w/ disc. .745 (.020) .621 (.093) .691 (.020) .698 (.015) .929 (.004) .931 (.004) .808 (.003) .778 (.002)
Imp(kNN) .746 (.026) .641 (.091) .688 (.020) .693 (.020) .931 (.004) .931 (.004) .803 (.004) .778 (.002)
Imp(kNN) w/ disc. .736 (.030) .633 (.091) .682 (.039) .685 (.054) .927 (.007) .931 (.004) .797 (.011) .770 (.034)
R-F(LR) .769 (.024) .642 (.055) .671 (.017) .684 (.015) .909 (.005) .910 (.004) .785 (.003) .766 (.003)
R-F(LR) w/ disc. .765 (.020) .628 (.061) .687 (.020) .692 (.019) .908 (.005) .909 (.004) .794 (.003) .777 (.007)
R-F(ANN) .763 (.023) .625 (.055) .669 (.018) .683 (.016) .909 (.004) .909 (.004) .782 (.003) .764 (.002)
R-F(ANN) w/ disc. .763 (.023) .631 (.064) .689 (.021) .691 (.018) .909 (.004) .909 (.004) .789 (.003) .766 (.003)
R-F(RF) .743 (.021) .642 (.047) .648 (.018) .678 (.017) .895 (.007) .902 (.005) .791 (.002) .775 (.006)
R-F(RF) w/ disc. .771 (.021) .676 (.065) .676 (.024) .690 (.019) .906 (.006) .909 (.004) .794 (.003) .777 (.007)
R-F(kNN) .750 (.027) .646 (.057) .672 (.018) .682 (.018) .908 (.005) .909 (.004) .788 (.004) .770 (.005)
R-F(kNN) w/ disc. .752 (.027) .654 (.064) .681 (.022) .692 (.018) .907 (.005) .909 (.004) .786 (.008) .770 (.007)



Table 47: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.5, unbalanced datasets, each classifier selects 4 best
features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .735 (.025) .735 (.025) .660 (.022) .660 (.022) .877 (.005) .877 (.005) .764 (.004) .764 (.004)
HC(LR) w/ disc. .725 (.026) .725 (.026) .683 (.029) .683 (.029) .878 (.011) .878 (.011) .764 (.004) .764 (.004)
HCapp(LR) .738 (.023) .738 (.023) .662 (.020) .662 (.020) .877 (.005) .877 (.005) .759 (.009) .759 (.009)
HCapp(LR) w/ disc. .724 (.024) .724 (.024) .683 (.028) .683 (.028) .878 (.011) .878 (.011) .764 (.004) .764 (.004)
HC(ANN) .720 (.033) .720 (.033) .667 (.019) .667 (.019) .877 (.005) .877 (.005) .764 (.004) .764 (.004)
HC(ANN) w/ disc. .714 (.026) .714 (.026) .690 (.019) .690 (.019) .879 (.011) .879 (.011) .764 (.003) .764 (.003)
Mincut .721 (.029) .721 (.029) .622 (.064) .622 (.064) .087 (.016) .087 (.016) .754 (.020) .754 (.020)
Mincut w/ disc. .725 (.026) .725 (.026) .696 (.017) .696 (.017) .930 (.003) .930 (.003) .773 (.024) .773 (.024)
IC-LR .712 (.031) .712 (.031) .700 (.012) .700 (.012) .931 (.003) .931 (.003) .779 (.003) .779 (.003)
IC-LR w/ disc. .715 (.027) .715 (.027) .699 (.012) .699 (.012) .930 (.003) .930 (.003) .779 (.003) .779 (.003)
IC-LR w/ neg. .704 (.038) .704 (.038) .702 (.011) .702 (.011) .931 (.003) .931 (.003) .793 (.003) .793 (.003)
Maj .648 (.032) .623 (.083) .518 (.054) .698 (.013) .126 (.005) .879 (.005) .800 (.003) .779 (.003)
Maj w/ disc. .746 (.031) .614 (.075) .641 (.040) .700 (.012) .924 (.004) .930 (.003) .804 (.002) .779 (.003)
Imp(LR) .733 (.021) .618 (.085) .700 (.017) .700 (.012) .931 (.003) .930 (.003) .793 (.003) .779 (.003)
Imp(LR) w/ disc. .721 (.032) .569 (.059) .696 (.016) .700 (.012) .929 (.003) .930 (.003) .803 (.003) .779 (.003)
Imp(ANN) .733 (.019) .604 (.080) .700 (.015) .700 (.012) .930 (.003) .930 (.003) .802 (.003) .779 (.003)
Imp(ANN) w/ disc. .725 (.026) .569 (.058) .698 (.013) .700 (.012) .930 (.003) .930 (.003) .804 (.003) .779 (.003)
Imp(RF) .714 (.023) .571 (.056) .675 (.023) .700 (.012) .920 (.004) .930 (.003) .802 (.003) .779 (.003)
Imp(RF) w/ disc. .724 (.023) .568 (.058) .691 (.017) .700 (.012) .929 (.004) .930 (.003) .804 (.002) .779 (.003)
Imp(kNN) .721 (.031) .599 (.073) .684 (.023) .682 (.046) .929 (.003) .930 (.003) .796 (.012) .776 (.010)
Imp(kNN) w/ disc. .706 (.058) .578 (.071) .679 (.045) .689 (.045) .928 (.003) .930 (.003) .790 (.031) .771 (.027)
R-F(LR) .750 (.023) .659 (.042) .655 (.019) .672 (.016) .877 (.005) .877 (.005) .760 (.004) .746 (.004)
R-F(LR) w/ disc. .743 (.026) .658 (.053) .682 (.022) .690 (.019) .878 (.011) .879 (.011) .769 (.003) .757 (.005)
R-F(ANN) .739 (.026) .639 (.047) .658 (.018) .673 (.017) .877 (.005) .877 (.005) .756 (.004) .745 (.004)
R-F(ANN) w/ disc. .738 (.029) .634 (.049) .685 (.021) .691 (.019) .879 (.011) .879 (.011) .764 (.004) .747 (.004)
R-F(RF) .730 (.028) .658 (.043) .634 (.020) .667 (.016) .862 (.005) .866 (.005) .766 (.003) .755 (.005)
R-F(RF) w/ disc. .749 (.024) .673 (.051) .669 (.027) .689 (.020) .875 (.011) .878 (.011) .769 (.003) .758 (.006)
R-F(kNN) .731 (.029) .661 (.037) .657 (.018) .670 (.016) .876 (.005) .876 (.005) .764 (.005) .751 (.006)
R-F(kNN) w/ disc. .731 (.025) .670 (.042) .674 (.027) .684 (.026) .876 (.011) .878 (.011) .763 (.007) .752 (.006)



Table 48: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.0, unbalanced datasets, each classifier selects 4 best features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .906 (.017) .906 (.017) .710 (.031) .710 (.031) .748 (.061) .748 (.061) .705 (.005) .705 (.005)
HC(LR) w/ disc. .910 (.014) .910 (.014) .725 (.021) .725 (.021) .788 (.052) .788 (.052) .730 (.005) .730 (.005)
HCapp(LR) .910 (.014) .910 (.014) .684 (.044) .684 (.044) .745 (.064) .745 (.064) .672 (.032) .672 (.032)
HCapp(LR) w/ disc. .905 (.038) .905 (.038) .638 (.057) .638 (.057) .727 (.047) .727 (.047) .718 (.004) .718 (.004)
HC(ANN) .907 (.015) .907 (.015) .728 (.037) .728 (.037) .785 (.040) .785 (.040) .717 (.012) .717 (.012)
HC(ANN) w/ disc. .909 (.014) .909 (.014) .733 (.019) .733 (.019) .800 (.029) .800 (.029) .729 (.009) .729 (.009)
IC-LR .900 (.014) .900 (.014) .730 (.020) .730 (.020) .725 (.048) .725 (.048) .500 (.000) .500 (.000)
IC-LR w/ disc. .911 (.014) .911 (.014) .735 (.018) .735 (.018) .803 (.029) .803 (.029) .731 (.004) .731 (.004)
IC-LR w/ neg. .904 (.016) .904 (.016) .751 (.018) .751 (.018) .727 (.048) .727 (.048) .705 (.005) .705 (.005)
Imp(LR) .907 (.015) .897 (.034) .749 (.019) .640 (.030) .777 (.027) .605 (.095) .705 (.005) .560 (.012)
Imp(LR) w/ disc. .911 (.014) .875 (.062) .734 (.018) .606 (.033) .803 (.029) .482 (.124) .731 (.004) .500 (.000)
Imp(ANN) .907 (.015) .897 (.034) .748 (.019) .640 (.028) .798 (.020) .723 (.032) .729 (.012) .646 (.016)
Imp(ANN) w/ disc. .911 (.014) .875 (.062) .734 (.017) .608 (.034) .803 (.029) .626 (.064) .732 (.004) .588 (.003)
Imp(RF) .888 (.014) .848 (.102) .705 (.021) .561 (.039) .794 (.033) .666 (.063) .737 (.004) .535 (.046)
Imp(RF) w/ disc. .912 (.015) .847 (.164) .709 (.021) .569 (.045) .789 (.030) .447 (.117) .732 (.004) .528 (.074)
Imp(kNN) .902 (.018) .842 (.106) .712 (.025) .507 (.020) .739 (.031) .502 (.004) .708 (.019) .471 (.042)
Imp(kNN) w/ disc. .890 (.028) .837 (.113) .698 (.030) .509 (.042) .731 (.052) .490 (.044) .714 (.017) .473 (.063)
R-F(LR) .907 (.015) .907 (.015) .749 (.019) .749 (.019) .777 (.027) .777 (.027) .705 (.005) .705 (.005)
R-F(LR) w/ disc. .911 (.014) .911 (.014) .734 (.018) .734 (.018) .803 (.029) .803 (.029) .731 (.004) .731 (.004)
R-F(ANN) .907 (.015) .907 (.014) .748 (.019) .748 (.019) .797 (.020) .798 (.019) .723 (.013) .725 (.014)
R-F(ANN) w/ disc. .911 (.014) .910 (.014) .734 (.018) .734 (.018) .803 (.028) .803 (.029) .732 (.004) .732 (.004)
R-F(RF) .887 (.014) .888 (.014) .705 (.020) .704 (.020) .794 (.033) .794 (.034) .737 (.004) .737 (.004)
R-F(RF) w/ disc. .912 (.014) .912 (.015) .708 (.021) .708 (.021) .790 (.030) .789 (.030) .732 (.004) .732 (.004)
R-F(kNN) .902 (.016) .903 (.016) .712 (.024) .713 (.023) .738 (.030) .742 (.031) .710 (.015) .710 (.013)
R-F(kNN) w/ disc. .892 (.033) .893 (.034) .697 (.030) .695 (.034) .726 (.049) .733 (.048) .714 (.018) .710 (.022)



Table 49: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.1, unbalanced datasets, each classifier selects 4 best features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .888 (.018) .888 (.018) .656 (.043) .656 (.043) .652 (.081) .652 (.081) .661 (.009) .661 (.009)
HC(LR) w/ disc. .888 (.015) .888 (.015) .669 (.046) .669 (.046) .696 (.069) .696 (.069) .670 (.034) .670 (.034)
HCapp(LR) .888 (.017) .888 (.017) .660 (.050) .660 (.050) .659 (.072) .659 (.072) .632 (.069) .632 (.069)
HCapp(LR) w/ disc. .890 (.013) .890 (.013) .645 (.067) .645 (.067) .664 (.102) .664 (.102) .676 (.025) .676 (.025)
HC(ANN) .884 (.014) .884 (.014) .663 (.036) .663 (.036) .644 (.092) .644 (.092) .675 (.010) .675 (.010)
HC(ANN) w/ disc. .874 (.015) .874 (.015) .651 (.045) .651 (.045) .707 (.048) .707 (.048) .691 (.014) .691 (.014)
IC-LR .875 (.013) .875 (.013) .705 (.021) .705 (.021) .709 (.042) .709 (.042) .500 (.000) .500 (.000)
IC-LR w/ disc. .893 (.011) .893 (.011) .707 (.020) .707 (.020) .770 (.026) .770 (.026) .711 (.005) .711 (.005)
IC-LR w/ neg. .893 (.013) .893 (.013) .728 (.020) .728 (.020) .727 (.043) .727 (.043) .691 (.004) .691 (.004)
Imp(LR) .891 (.014) .869 (.049) .728 (.022) .628 (.030) .764 (.029) .652 (.082) .693 (.005) .563 (.003)
Imp(LR) w/ disc. .893 (.013) .825 (.090) .710 (.024) .587 (.037) .788 (.028) .594 (.083) .731 (.002) .661 (.026)
Imp(ANN) .891 (.014) .868 (.049) .728 (.024) .630 (.029) .787 (.022) .713 (.018) .720 (.006) .600 (.008)
Imp(ANN) w/ disc. .891 (.013) .826 (.084) .711 (.025) .589 (.036) .790 (.030) .633 (.059) .732 (.002) .676 (.018)
Imp(RF) .863 (.017) .827 (.071) .674 (.031) .568 (.040) .777 (.034) .612 (.051) .717 (.003) .608 (.044)
Imp(RF) w/ disc. .893 (.017) .817 (.104) .689 (.023) .562 (.043) .773 (.028) .512 (.111) .732 (.003) .673 (.019)
Imp(kNN) .874 (.019) .798 (.123) .687 (.027) .522 (.036) .728 (.027) .502 (.004) .704 (.010) .553 (.054)
Imp(kNN) w/ disc. .874 (.023) .763 (.143) .673 (.029) .523 (.037) .722 (.038) .497 (.036) .702 (.016) .513 (.064)
R-F(LR) .882 (.014) .798 (.060) .698 (.021) .590 (.059) .745 (.028) .563 (.106) .698 (.003) .487 (.121)
R-F(LR) w/ disc. .885 (.014) .781 (.065) .699 (.020) .628 (.049) .780 (.027) .676 (.063) .724 (.004) .552 (.125)
R-F(ANN) .881 (.015) .792 (.097) .694 (.024) .594 (.066) .762 (.021) .636 (.114) .711 (.007) .559 (.109)
R-F(ANN) w/ disc. .881 (.014) .806 (.053) .691 (.023) .603 (.066) .764 (.031) .700 (.055) .725 (.004) .642 (.076)
R-F(RF) .861 (.015) .791 (.055) .670 (.025) .602 (.052) .758 (.033) .531 (.035) .717 (.003) .539 (.067)
R-F(RF) w/ disc. .879 (.016) .803 (.046) .677 (.026) .616 (.055) .739 (.031) .576 (.069) .725 (.004) .474 (.127)
R-F(kNN) .863 (.018) .669 (.121) .667 (.027) .536 (.045) .712 (.032) .503 (.004) .704 (.013) .566 (.064)
R-F(kNN) w/ disc. .862 (.021) .654 (.119) .665 (.031) .549 (.057) .701 (.046) .501 (.004) .702 (.013) .536 (.039)



Table 50: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.2, unbalanced datasets, each classifier selects 4 best features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .870 (.015) .870 (.015) .643 (.036) .643 (.036) .621 (.090) .621 (.090) .640 (.011) .640 (.011)
HC(LR) w/ disc. .869 (.016) .869 (.016) .664 (.027) .664 (.027) .701 (.047) .701 (.047) .676 (.015) .676 (.015)
HCapp(LR) .869 (.018) .869 (.018) .641 (.045) .641 (.045) .603 (.098) .603 (.098) .633 (.018) .633 (.018)
HCapp(LR) w/ disc. .867 (.019) .867 (.019) .619 (.061) .619 (.061) .699 (.049) .699 (.049) .676 (.015) .676 (.015)
HC(ANN) .865 (.021) .865 (.021) .634 (.044) .634 (.044) .654 (.094) .654 (.094) .649 (.010) .649 (.010)
HC(ANN) w/ disc. .850 (.023) .850 (.023) .616 (.045) .616 (.045) .691 (.034) .691 (.034) .680 (.011) .680 (.011)
IC-LR .847 (.018) .847 (.018) .683 (.021) .683 (.021) .733 (.041) .733 (.041) .500 (.000) .500 (.000)
IC-LR w/ disc. .872 (.016) .872 (.016) .687 (.020) .687 (.020) .761 (.020) .761 (.020) .696 (.006) .696 (.006)
IC-LR w/ neg. .878 (.017) .878 (.017) .710 (.022) .710 (.022) .741 (.036) .741 (.036) .682 (.004) .682 (.004)
Imp(LR) .874 (.017) .842 (.054) .706 (.022) .615 (.031) .768 (.022) .655 (.074) .683 (.004) .558 (.003)
Imp(LR) w/ disc. .870 (.018) .780 (.105) .685 (.020) .576 (.033) .781 (.018) .625 (.070) .726 (.005) .666 (.018)
Imp(ANN) .875 (.017) .843 (.052) .706 (.022) .616 (.031) .786 (.016) .708 (.018) .707 (.008) .572 (.008)
Imp(ANN) w/ disc. .868 (.018) .783 (.097) .687 (.019) .577 (.035) .785 (.018) .644 (.058) .728 (.005) .672 (.014)
Imp(RF) .842 (.018) .764 (.102) .658 (.023) .566 (.037) .774 (.016) .576 (.046) .712 (.005) .641 (.021)
Imp(RF) w/ disc. .867 (.018) .769 (.133) .665 (.021) .560 (.031) .768 (.020) .576 (.107) .727 (.005) .661 (.015)
Imp(kNN) .858 (.019) .773 (.123) .666 (.024) .525 (.039) .722 (.028) .504 (.004) .698 (.011) .589 (.048)
Imp(kNN) w/ disc. .843 (.034) .721 (.135) .641 (.036) .525 (.045) .707 (.051) .499 (.010) .688 (.016) .524 (.042)
R-F(LR) .869 (.020) .776 (.065) .670 (.025) .584 (.049) .742 (.020) .591 (.078) .690 (.004) .625 (.046)
R-F(LR) w/ disc. .868 (.019) .740 (.086) .680 (.025) .620 (.046) .771 (.021) .666 (.062) .719 (.004) .672 (.027)
R-F(ANN) .863 (.018) .781 (.064) .662 (.029) .587 (.055) .755 (.016) .655 (.085) .700 (.005) .649 (.020)
R-F(ANN) w/ disc. .861 (.019) .796 (.056) .666 (.028) .593 (.054) .757 (.023) .692 (.032) .721 (.004) .685 (.013)
R-F(RF) .848 (.019) .767 (.064) .648 (.027) .588 (.040) .747 (.017) .515 (.020) .711 (.006) .644 (.016)
R-F(RF) w/ disc. .863 (.018) .764 (.055) .661 (.031) .621 (.049) .727 (.026) .593 (.056) .720 (.004) .657 (.051)
R-F(kNN) .837 (.022) .651 (.107) .645 (.031) .521 (.032) .709 (.023) .509 (.013) .696 (.011) .619 (.026)
R-F(kNN) w/ disc. .844 (.020) .640 (.102) .650 (.031) .535 (.049) .712 (.029) .505 (.012) .694 (.012) .621 (.021)



Table 51: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.3, unbalanced datasets, each classifier selects 4 best features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .856 (.019) .856 (.019) .621 (.042) .621 (.042) .630 (.070) .630 (.070) .639 (.007) .639 (.007)
HC(LR) w/ disc. .850 (.019) .850 (.019) .643 (.036) .643 (.036) .652 (.077) .652 (.077) .668 (.010) .668 (.010)
HCapp(LR) .856 (.020) .856 (.020) .614 (.050) .614 (.050) .638 (.065) .638 (.065) .633 (.016) .633 (.016)
HCapp(LR) w/ disc. .850 (.019) .850 (.019) .612 (.058) .612 (.058) .654 (.081) .654 (.081) .668 (.010) .668 (.010)
HC(ANN) .844 (.023) .844 (.023) .604 (.040) .604 (.040) .681 (.056) .681 (.056) .642 (.008) .642 (.008)
HC(ANN) w/ disc. .831 (.028) .831 (.028) .594 (.048) .594 (.048) .657 (.039) .657 (.039) .666 (.012) .666 (.012)
IC-LR .822 (.022) .822 (.022) .660 (.028) .660 (.028) .724 (.048) .724 (.048) .500 (.000) .500 (.000)
IC-LR w/ disc. .853 (.017) .853 (.017) .662 (.026) .662 (.026) .732 (.024) .732 (.024) .679 (.005) .679 (.005)
IC-LR w/ neg. .866 (.015) .866 (.015) .687 (.023) .687 (.023) .733 (.041) .733 (.041) .673 (.006) .673 (.006)
Imp(LR) .861 (.017) .823 (.050) .680 (.023) .595 (.023) .755 (.027) .665 (.040) .673 (.005) .559 (.015)
Imp(LR) w/ disc. .854 (.016) .770 (.077) .659 (.026) .562 (.024) .758 (.025) .590 (.073) .716 (.004) .659 (.014)
Imp(ANN) .862 (.017) .825 (.045) .681 (.024) .596 (.024) .772 (.022) .695 (.020) .694 (.006) .563 (.019)
Imp(ANN) w/ disc. .853 (.015) .771 (.073) .661 (.027) .560 (.027) .760 (.025) .607 (.059) .718 (.004) .662 (.012)
Imp(RF) .826 (.020) .765 (.086) .630 (.026) .554 (.031) .749 (.027) .614 (.048) .703 (.005) .651 (.012)
Imp(RF) w/ disc. .850 (.021) .769 (.075) .646 (.026) .549 (.028) .750 (.025) .578 (.079) .717 (.004) .657 (.011)
Imp(kNN) .835 (.026) .758 (.091) .642 (.027) .524 (.029) .711 (.025) .509 (.019) .687 (.007) .601 (.046)
Imp(kNN) w/ disc. .831 (.022) .749 (.070) .616 (.047) .518 (.035) .693 (.052) .503 (.011) .680 (.015) .550 (.052)
R-F(LR) .854 (.020) .801 (.042) .647 (.021) .584 (.045) .724 (.028) .626 (.083) .680 (.004) .638 (.008)
R-F(LR) w/ disc. .848 (.019) .774 (.050) .664 (.027) .613 (.042) .744 (.029) .625 (.095) .708 (.004) .671 (.010)
R-F(ANN) .847 (.021) .792 (.053) .644 (.025) .594 (.046) .737 (.026) .678 (.072) .684 (.005) .648 (.007)
R-F(ANN) w/ disc. .841 (.022) .796 (.036) .636 (.040) .586 (.039) .721 (.029) .654 (.049) .709 (.004) .674 (.007)
R-F(RF) .824 (.024) .760 (.051) .623 (.027) .581 (.049) .722 (.026) .551 (.033) .700 (.005) .649 (.013)
R-F(RF) w/ disc. .841 (.025) .780 (.043) .649 (.031) .607 (.044) .705 (.030) .550 (.088) .709 (.004) .670 (.010)
R-F(kNN) .818 (.027) .719 (.061) .625 (.025) .540 (.034) .698 (.033) .543 (.030) .681 (.010) .632 (.022)
R-F(kNN) w/ disc. .818 (.026) .705 (.074) .639 (.030) .551 (.046) .687 (.028) .554 (.042) .678 (.016) .632 (.019)



Table 52: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.4, unbalanced datasets, each classifier selects 4 best features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .826 (.017) .826 (.017) .603 (.040) .603 (.040) .665 (.043) .665 (.043) .634 (.007) .634 (.007)
HC(LR) w/ disc. .820 (.017) .820 (.017) .617 (.033) .617 (.033) .687 (.035) .687 (.035) .662 (.007) .662 (.007)
HCapp(LR) .826 (.017) .826 (.017) .600 (.040) .600 (.040) .664 (.041) .664 (.041) .624 (.021) .624 (.021)
HCapp(LR) w/ disc. .820 (.017) .820 (.017) .603 (.049) .603 (.049) .686 (.035) .686 (.035) .662 (.007) .662 (.007)
HC(ANN) .806 (.023) .806 (.023) .581 (.043) .581 (.043) .683 (.030) .683 (.030) .638 (.006) .638 (.006)
HC(ANN) w/ disc. .800 (.025) .800 (.025) .577 (.041) .577 (.041) .655 (.039) .655 (.039) .661 (.008) .661 (.008)
IC-LR .788 (.019) .788 (.019) .641 (.027) .641 (.027) .729 (.033) .729 (.033) .500 (.000) .500 (.000)
IC-LR w/ disc. .829 (.017) .829 (.017) .645 (.030) .645 (.030) .722 (.018) .722 (.018) .668 (.004) .668 (.004)
IC-LR w/ neg. .846 (.017) .846 (.017) .673 (.024) .673 (.024) .741 (.030) .741 (.030) .665 (.005) .665 (.005)
Imp(LR) .840 (.020) .788 (.054) .671 (.021) .592 (.028) .756 (.025) .673 (.035) .665 (.005) .558 (.014)
Imp(LR) w/ disc. .825 (.020) .724 (.082) .649 (.024) .556 (.030) .757 (.022) .621 (.039) .709 (.005) .652 (.013)
Imp(ANN) .839 (.021) .790 (.054) .672 (.021) .592 (.028) .766 (.023) .684 (.020) .679 (.007) .555 (.017)
Imp(ANN) w/ disc. .823 (.021) .724 (.080) .651 (.024) .555 (.030) .759 (.022) .627 (.039) .709 (.005) .654 (.013)
Imp(RF) .801 (.024) .734 (.083) .620 (.033) .553 (.034) .733 (.021) .631 (.035) .696 (.005) .651 (.007)
Imp(RF) w/ disc. .825 (.021) .724 (.080) .635 (.025) .547 (.029) .746 (.025) .611 (.044) .709 (.005) .651 (.012)
Imp(kNN) .812 (.026) .727 (.106) .626 (.028) .522 (.033) .710 (.024) .511 (.017) .679 (.007) .605 (.042)
Imp(kNN) w/ disc. .791 (.039) .645 (.122) .602 (.040) .507 (.032) .686 (.036) .498 (.027) .673 (.017) .545 (.048)
R-F(LR) .825 (.019) .797 (.033) .621 (.024) .584 (.033) .717 (.024) .663 (.044) .670 (.004) .634 (.007)
R-F(LR) w/ disc. .822 (.020) .777 (.037) .637 (.030) .601 (.037) .734 (.022) .681 (.036) .696 (.005) .663 (.007)
R-F(ANN) .820 (.019) .790 (.036) .618 (.024) .581 (.030) .724 (.023) .681 (.030) .670 (.005) .638 (.008)
R-F(ANN) w/ disc. .818 (.021) .782 (.035) .608 (.039) .569 (.041) .709 (.026) .652 (.038) .697 (.005) .664 (.006)
R-F(RF) .802 (.021) .751 (.049) .607 (.028) .584 (.037) .699 (.025) .585 (.040) .687 (.005) .648 (.007)
R-F(RF) w/ disc. .820 (.022) .780 (.036) .628 (.029) .598 (.033) .700 (.025) .605 (.068) .697 (.005) .662 (.007)
R-F(kNN) .796 (.024) .720 (.046) .597 (.027) .562 (.039) .687 (.026) .588 (.050) .673 (.007) .629 (.016)
R-F(kNN) w/ disc. .800 (.021) .731 (.043) .613 (.031) .539 (.040) .680 (.029) .585 (.053) .668 (.010) .625 (.030)



Table 53: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.5, unbalanced datasets, each classifier selects 4 best features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .788 (.024) .788 (.024) .596 (.041) .596 (.041) .657 (.039) .657 (.039) .622 (.006) .622 (.006)
HC(LR) w/ disc. .779 (.023) .779 (.023) .598 (.035) .598 (.035) .674 (.028) .674 (.028) .643 (.006) .643 (.006)
HCapp(LR) .787 (.025) .787 (.025) .599 (.038) .599 (.038) .656 (.042) .656 (.042) .617 (.013) .617 (.013)
HCapp(LR) w/ disc. .779 (.023) .779 (.023) .593 (.040) .593 (.040) .675 (.027) .675 (.027) .643 (.006) .643 (.006)
HC(ANN) .777 (.027) .777 (.027) .575 (.037) .575 (.037) .659 (.033) .659 (.033) .624 (.004) .624 (.004)
HC(ANN) w/ disc. .770 (.025) .770 (.025) .556 (.030) .556 (.030) .631 (.040) .631 (.040) .643 (.006) .643 (.006)
IC-LR .751 (.022) .751 (.022) .618 (.025) .618 (.025) .722 (.029) .722 (.029) .500 (.000) .500 (.000)
IC-LR w/ disc. .796 (.022) .796 (.022) .620 (.028) .620 (.028) .697 (.023) .697 (.023) .651 (.005) .651 (.005)
IC-LR w/ neg. .819 (.021) .819 (.021) .643 (.026) .643 (.026) .731 (.028) .731 (.028) .652 (.005) .652 (.005)
Imp(LR) .809 (.023) .729 (.063) .641 (.027) .571 (.026) .742 (.018) .665 (.029) .652 (.005) .554 (.012)
Imp(LR) w/ disc. .794 (.021) .658 (.082) .622 (.027) .548 (.029) .731 (.022) .594 (.049) .696 (.006) .632 (.014)
Imp(ANN) .809 (.022) .732 (.060) .641 (.026) .572 (.027) .754 (.016) .676 (.020) .661 (.006) .552 (.015)
Imp(ANN) w/ disc. .792 (.022) .659 (.080) .621 (.027) .544 (.032) .733 (.023) .596 (.048) .696 (.006) .633 (.013)
Imp(RF) .781 (.028) .683 (.078) .602 (.031) .544 (.030) .715 (.021) .621 (.028) .684 (.006) .640 (.006)
Imp(RF) w/ disc. .790 (.023) .659 (.080) .606 (.026) .536 (.027) .726 (.023) .591 (.048) .695 (.006) .631 (.013)
Imp(kNN) .782 (.031) .681 (.078) .598 (.040) .512 (.032) .689 (.028) .506 (.014) .663 (.011) .574 (.049)
Imp(kNN) w/ disc. .757 (.036) .600 (.105) .578 (.037) .506 (.023) .675 (.032) .497 (.030) .656 (.016) .553 (.047)
R-F(LR) .790 (.024) .765 (.038) .599 (.029) .576 (.036) .696 (.022) .655 (.039) .651 (.006) .622 (.005)
R-F(LR) w/ disc. .785 (.025) .746 (.045) .615 (.031) .586 (.034) .710 (.022) .672 (.028) .673 (.006) .645 (.006)
R-F(ANN) .784 (.026) .755 (.041) .595 (.030) .567 (.032) .692 (.026) .662 (.030) .650 (.006) .623 (.005)
R-F(ANN) w/ disc. .783 (.025) .751 (.036) .584 (.033) .557 (.034) .678 (.026) .636 (.039) .674 (.006) .646 (.006)
R-F(RF) .774 (.024) .732 (.034) .591 (.030) .573 (.031) .673 (.019) .581 (.028) .665 (.007) .634 (.006)
R-F(RF) w/ disc. .787 (.024) .757 (.034) .607 (.031) .580 (.030) .685 (.026) .636 (.036) .673 (.006) .645 (.005)
R-F(kNN) .769 (.028) .728 (.033) .574 (.032) .557 (.034) .669 (.024) .592 (.035) .652 (.008) .615 (.012)
R-F(kNN) w/ disc. .767 (.023) .727 (.038) .594 (.032) .543 (.037) .659 (.023) .586 (.039) .649 (.007) .615 (.015)

Table 54: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.0, balanced datasets, all features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCapp(LR) .848 (.016) .848 (.016) .655 (.040) .655 (.040) .662 (.068) .662 (.068) .680 (.013) .680 (.013)
HCapp(LR) w/ disc. .851 (.038) .851 (.038) .648 (.063) .648 (.063) .741 (.045) .741 (.045) .651 (.035) .651 (.035)
Mincut .498 (.019) .498 (.019) .498 (.020) .498 (.020) .500 (.017) .500 (.017) .499 (.005) .499 (.005)
Mincut w/ disc. .562 (.030) .562 (.030) .504 (.020) .504 (.020) .611 (.032) .611 (.032) .608 (.011) .608 (.011)
IC-LR .862 (.015) .862 (.015) .691 (.024) .691 (.024) .628 (.048) .628 (.048) .587 (.024) .587 (.024)
IC-LR w/ disc. .857 (.016) .857 (.016) .690 (.023) .690 (.023) .817 (.017) .817 (.017) .705 (.005) .705 (.005)
IC-LR w/ neg. .860 (.015) .860 (.015) .693 (.021) .693 (.021) .565 (.063) .565 (.063) .669 (.008) .669 (.008)
Imp(LR) .851 (.016) .768 (.071) .687 (.023) .524 (.043) .746 (.022) .508 (.032) .669 (.006) .501 (.005)
Imp(LR) w/ disc. .856 (.014) .829 (.034) .688 (.021) .556 (.067) .814 (.018) .505 (.026) .705 (.005) .501 (.005)



Table 55: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.1, balanced datasets, all features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCapp(LR) .808 (.022) .808 (.022) .640 (.029) .640 (.029) .658 (.042) .658 (.042) .658 (.007) .658 (.007)
HCapp(LR) w/ disc. .812 (.040) .812 (.040) .634 (.052) .634 (.052) .734 (.024) .734 (.024) .669 (.006) .669 (.006)
Mincut .497 (.020) .497 (.020) .498 (.019) .498 (.019) .501 (.018) .501 (.018) .500 (.004) .500 (.004)
Mincut w/ disc. .542 (.026) .542 (.026) .502 (.019) .502 (.019) .503 (.018) .503 (.018) .560 (.008) .560 (.008)
IC-LR .833 (.018) .833 (.018) .666 (.029) .666 (.029) .609 (.064) .609 (.064) .592 (.008) .592 (.008)
IC-LR w/ disc. .831 (.021) .831 (.021) .666 (.025) .666 (.025) .788 (.016) .788 (.016) .684 (.006) .684 (.006)
IC-LR w/ neg. .839 (.020) .839 (.020) .670 (.023) .670 (.023) .550 (.055) .550 (.055) .666 (.007) .666 (.007)
Imp(LR) .822 (.021) .738 (.051) .672 (.028) .522 (.037) .739 (.024) .507 (.033) .665 (.005) .500 (.004)
Imp(LR) w/ disc. .832 (.021) .774 (.047) .668 (.024) .555 (.061) .795 (.018) .501 (.019) .701 (.004) .500 (.004)

Table 56: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.2, balanced datasets, all features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCapp(LR) .778 (.026) .778 (.026) .616 (.038) .616 (.038) .656 (.030) .656 (.030) .639 (.008) .639 (.008)
HCapp(LR) w/ disc. .785 (.042) .785 (.042) .620 (.052) .620 (.052) .727 (.021) .727 (.021) .648 (.032) .648 (.032)
Mincut .498 (.022) .498 (.022) .501 (.022) .501 (.022) .498 (.018) .498 (.018) .500 (.004) .500 (.004)
Mincut w/ disc. .535 (.030) .535 (.030) .504 (.023) .504 (.023) .498 (.017) .498 (.017) .550 (.007) .550 (.007)
IC-LR .801 (.021) .801 (.021) .653 (.027) .653 (.027) .603 (.064) .603 (.064) .585 (.009) .585 (.009)
IC-LR w/ disc. .806 (.020) .806 (.020) .651 (.031) .651 (.031) .773 (.018) .773 (.018) .669 (.004) .669 (.004)
IC-LR w/ neg. .806 (.023) .806 (.023) .661 (.028) .661 (.028) .538 (.068) .538 (.068) .663 (.006) .663 (.006)
Imp(LR) .803 (.020) .700 (.062) .662 (.030) .520 (.043) .729 (.020) .508 (.025) .659 (.005) .500 (.004)
Imp(LR) w/ disc. .811 (.019) .722 (.075) .657 (.027) .549 (.065) .782 (.018) .503 (.018) .698 (.005) .500 (.004)

Table 57: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.3, balanced datasets, all features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCapp(LR) .752 (.022) .752 (.022) .589 (.038) .589 (.038) .655 (.042) .655 (.042) .631 (.007) .631 (.007)
HCapp(LR) w/ disc. .757 (.037) .757 (.037) .607 (.043) .607 (.043) .715 (.039) .715 (.039) .627 (.043) .627 (.043)
Mincut .503 (.020) .503 (.020) .502 (.020) .502 (.020) .499 (.016) .499 (.016) .498 (.004) .498 (.004)
Mincut w/ disc. .546 (.030) .546 (.030) .508 (.022) .508 (.022) .499 (.016) .499 (.016) .543 (.007) .543 (.007)
IC-LR .776 (.019) .776 (.019) .635 (.026) .635 (.026) .607 (.074) .607 (.074) .584 (.005) .584 (.005)
IC-LR w/ disc. .784 (.021) .784 (.021) .634 (.026) .634 (.026) .757 (.021) .757 (.021) .655 (.006) .655 (.006)
IC-LR w/ neg. .781 (.017) .781 (.017) .647 (.032) .647 (.032) .530 (.054) .530 (.054) .652 (.007) .652 (.007)
Imp(LR) .779 (.019) .688 (.051) .647 (.030) .517 (.038) .725 (.021) .505 (.020) .649 (.006) .502 (.004)
Imp(LR) w/ disc. .784 (.020) .685 (.086) .640 (.027) .537 (.055) .771 (.024) .503 (.015) .691 (.004) .502 (.004)



Table 58: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.4, balanced datasets, all features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCapp(LR) .724 (.031) .724 (.031) .571 (.038) .571 (.038) .643 (.034) .643 (.034) .622 (.008) .622 (.008)
HCapp(LR) w/ disc. .732 (.037) .732 (.037) .582 (.042) .582 (.042) .708 (.038) .708 (.038) .614 (.044) .614 (.044)
Mincut .503 (.021) .503 (.021) .496 (.020) .496 (.020) .500 (.015) .500 (.015) .500 (.004) .500 (.004)
Mincut w/ disc. .550 (.035) .550 (.035) .502 (.021) .502 (.021) .500 (.015) .500 (.015) .544 (.007) .544 (.007)
IC-LR .747 (.026) .747 (.026) .616 (.028) .616 (.028) .597 (.075) .597 (.075) .579 (.007) .579 (.007)
IC-LR w/ disc. .760 (.025) .760 (.025) .613 (.030) .613 (.030) .747 (.026) .747 (.026) .640 (.008) .640 (.008)
IC-LR w/ neg. .746 (.038) .746 (.038) .623 (.025) .623 (.025) .522 (.058) .522 (.058) .648 (.009) .648 (.009)
Imp(LR) .765 (.023) .670 (.050) .628 (.026) .531 (.042) .719 (.023) .507 (.022) .646 (.006) .502 (.012)
Imp(LR) w/ disc. .763 (.025) .660 (.090) .621 (.025) .550 (.052) .763 (.019) .502 (.016) .684 (.004) .500 (.004)

Table 59: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.5, balanced datasets, all features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCapp(LR) .703 (.028) .703 (.028) .566 (.030) .566 (.030) .634 (.043) .634 (.043) .616 (.008) .616 (.008)
HCapp(LR) w/ disc. .704 (.042) .704 (.042) .572 (.044) .572 (.044) .694 (.036) .694 (.036) .621 (.007) .621 (.007)
Mincut .508 (.023) .508 (.023) .499 (.022) .499 (.022) .498 (.018) .498 (.018) .500 (.004) .500 (.004)
Mincut w/ disc. .564 (.038) .564 (.038) .509 (.027) .509 (.027) .498 (.018) .498 (.018) .546 (.007) .546 (.007)
IC-LR .723 (.025) .723 (.025) .606 (.030) .606 (.030) .590 (.071) .590 (.071) .571 (.007) .571 (.007)
IC-LR w/ disc. .735 (.024) .735 (.024) .606 (.028) .606 (.028) .738 (.019) .738 (.019) .627 (.010) .627 (.010)
IC-LR w/ neg. .712 (.044) .712 (.044) .607 (.036) .607 (.036) .508 (.044) .508 (.044) .642 (.008) .642 (.008)
Imp(LR) .737 (.021) .653 (.057) .615 (.027) .523 (.039) .712 (.022) .511 (.025) .639 (.007) .502 (.009)
Imp(LR) w/ disc. .730 (.023) .649 (.083) .610 (.027) .542 (.049) .758 (.019) .513 (.026) .674 (.005) .500 (.004)

Table 60: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.0, balanced datasets, all features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCapp(LR) .901 (.013) .901 (.013) .703 (.037) .703 (.037) .697 (.090) .697 (.090) .693 (.018) .693 (.018)
HCapp(LR) w/ disc. .907 (.045) .907 (.045) .700 (.065) .700 (.065) .791 (.052) .791 (.052) .675 (.040) .675 (.040)
IC-LR .911 (.013) .911 (.013) .751 (.024) .751 (.024) .705 (.037) .705 (.037) .634 (.007) .634 (.007)
IC-LR w/ disc. .921 (.011) .921 (.011) .753 (.024) .753 (.024) .895 (.012) .895 (.012) .768 (.005) .768 (.005)
IC-LR w/ neg. .913 (.012) .913 (.012) .761 (.026) .761 (.026) .691 (.026) .691 (.026) .719 (.007) .719 (.007)
Imp(LR) .910 (.012) .892 (.016) .752 (.025) .687 (.047) .801 (.021) .654 (.062) .721 (.006) .619 (.013)
Imp(LR) w/ disc. .922 (.011) .919 (.012) .748 (.024) .691 (.050) .895 (.012) .797 (.069) .768 (.005) .550 (.037)

Table 61: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.1, balanced datasets, all features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCapp(LR) .878 (.016) .878 (.016) .681 (.033) .681 (.033) .686 (.056) .686 (.056) .679 (.009) .679 (.009)
HCapp(LR) w/ disc. .888 (.043) .888 (.043) .677 (.056) .677 (.056) .791 (.025) .791 (.025) .697 (.010) .697 (.010)
IC-LR .892 (.014) .892 (.014) .723 (.025) .723 (.025) .702 (.041) .702 (.041) .629 (.006) .629 (.006)
IC-LR w/ disc. .904 (.013) .904 (.013) .723 (.025) .723 (.025) .869 (.017) .869 (.017) .743 (.006) .743 (.006)
IC-LR w/ neg. .901 (.014) .901 (.014) .732 (.019) .732 (.019) .680 (.045) .680 (.045) .715 (.005) .715 (.005)
Imp(LR) .894 (.015) .877 (.016) .729 (.029) .671 (.049) .792 (.024) .636 (.058) .719 (.005) .637 (.010)
Imp(LR) w/ disc. .907 (.013) .890 (.017) .727 (.025) .677 (.048) .874 (.017) .680 (.119) .764 (.005) .697 (.021)



Table 62: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.2, balanced datasets, all features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCapp(LR) .849 (.024) .849 (.024) .656 (.039) .656 (.039) .688 (.037) .688 (.037) .662 (.007) .662 (.007)
HCapp(LR) w/ disc. .864 (.043) .864 (.043) .663 (.056) .663 (.056) .785 (.025) .785 (.025) .682 (.038) .682 (.038)
IC-LR .865 (.018) .865 (.018) .706 (.029) .706 (.029) .692 (.037) .692 (.037) .622 (.006) .622 (.006)
IC-LR w/ disc. .883 (.016) .883 (.016) .707 (.029) .707 (.029) .850 (.018) .850 (.018) .727 (.004) .727 (.004)
IC-LR w/ neg. .880 (.017) .880 (.017) .722 (.028) .722 (.028) .686 (.045) .686 (.045) .711 (.004) .711 (.004)
Imp(LR) .878 (.018) .854 (.027) .714 (.030) .662 (.044) .785 (.019) .649 (.050) .713 (.004) .637 (.008)
Imp(LR) w/ disc. .890 (.016) .861 (.026) .713 (.030) .666 (.049) .859 (.015) .634 (.121) .758 (.004) .697 (.011)

Table 63: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.3, balanced datasets, all features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCapp(LR) .826 (.022) .826 (.022) .628 (.040) .628 (.040) .690 (.048) .690 (.048) .653 (.007) .653 (.007)
HCapp(LR) w/ disc. .839 (.042) .839 (.042) .647 (.047) .647 (.047) .768 (.044) .768 (.044) .664 (.054) .664 (.054)
IC-LR .839 (.018) .839 (.018) .685 (.027) .685 (.027) .713 (.041) .713 (.041) .618 (.006) .618 (.006)
IC-LR w/ disc. .861 (.016) .861 (.016) .684 (.028) .684 (.028) .836 (.020) .836 (.020) .711 (.005) .711 (.005)
IC-LR w/ neg. .861 (.018) .861 (.018) .708 (.026) .708 (.026) .698 (.052) .698 (.052) .702 (.007) .702 (.007)
Imp(LR) .860 (.018) .832 (.023) .700 (.030) .649 (.041) .781 (.021) .636 (.046) .706 (.005) .635 (.007)
Imp(LR) w/ disc. .868 (.017) .831 (.021) .694 (.027) .649 (.044) .850 (.022) .603 (.091) .751 (.005) .689 (.008)

Table 64: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.4, balanced datasets, all features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCapp(LR) .796 (.030) .796 (.030) .599 (.043) .599 (.043) .678 (.046) .678 (.046) .645 (.008) .645 (.008)
HCapp(LR) w/ disc. .812 (.042) .812 (.042) .615 (.046) .615 (.046) .765 (.045) .765 (.045) .650 (.056) .650 (.056)
IC-LR .812 (.024) .812 (.024) .658 (.032) .658 (.032) .718 (.044) .718 (.044) .610 (.007) .610 (.007)
IC-LR w/ disc. .836 (.023) .836 (.023) .658 (.033) .658 (.033) .822 (.023) .822 (.023) .696 (.007) .696 (.007)
IC-LR w/ neg. .835 (.021) .835 (.021) .677 (.026) .677 (.026) .713 (.045) .713 (.045) .695 (.006) .695 (.006)
Imp(LR) .844 (.022) .810 (.033) .674 (.031) .633 (.041) .771 (.026) .638 (.044) .699 (.006) .627 (.008)
Imp(LR) w/ disc. .847 (.021) .795 (.036) .670 (.030) .633 (.043) .838 (.019) .600 (.091) .742 (.005) .676 (.009)

Table 65: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.5, balanced datasets, all features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCapp(LR) .771 (.028) .771 (.028) .590 (.033) .590 (.033) .674 (.049) .674 (.049) .639 (.007) .639 (.007)
HCapp(LR) w/ disc. .783 (.041) .783 (.041) .604 (.049) .604 (.049) .748 (.042) .748 (.042) .661 (.006) .661 (.006)
IC-LR .784 (.022) .784 (.022) .648 (.031) .648 (.031) .721 (.031) .721 (.031) .602 (.007) .602 (.007)
IC-LR w/ disc. .810 (.020) .810 (.020) .649 (.029) .649 (.029) .811 (.022) .811 (.022) .681 (.005) .681 (.005)
IC-LR w/ neg. .814 (.018) .814 (.018) .669 (.028) .669 (.028) .700 (.046) .700 (.046) .687 (.006) .687 (.006)
Imp(LR) .818 (.019) .786 (.026) .657 (.032) .618 (.044) .766 (.024) .639 (.042) .692 (.007) .624 (.007)
Imp(LR) w/ disc. .818 (.018) .759 (.036) .654 (.031) .618 (.044) .828 (.020) .650 (.065) .731 (.006) .663 (.009)



Table 66: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.0, unbalanced datasets, all features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCapp(LR) .825 (.072) .825 (.072) .709 (.021) .709 (.021) .931 (.003) .931 (.003) .794 (.016) .794 (.016)
HCapp(LR) w/ disc. .838 (.055) .838 (.055) .702 (.018) .702 (.018) .933 (.006) .933 (.006) .798 (.022) .798 (.022)
Mincut .444 (.016) .444 (.016) .299 (.016) .299 (.016) .078 (.004) .078 (.004) .222 (.003) .222 (.003)
Mincut w/ disc. .523 (.031) .523 (.031) .316 (.017) .316 (.017) .364 (.040) .364 (.040) .550 (.020) .550 (.020)
IC-LR .858 (.013) .858 (.013) .733 (.017) .733 (.017) .931 (.003) .931 (.003) .779 (.003) .779 (.003)
IC-LR w/ disc. .858 (.014) .858 (.014) .736 (.016) .736 (.016) .948 (.003) .948 (.003) .819 (.002) .819 (.002)
IC-LR w/ neg. .858 (.012) .858 (.012) .746 (.016) .746 (.016) .931 (.003) .931 (.003) .801 (.005) .801 (.005)
Imp(LR) .850 (.014) .733 (.093) .743 (.017) .701 (.016) .930 (.004) .931 (.003) .811 (.003) .779 (.003)
Imp(LR) w/ disc. .855 (.013) .786 (.089) .735 (.018) .701 (.016) .952 (.004) .931 (.003) .819 (.002) .779 (.003)

Table 67: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.1, unbalanced datasets, all features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCapp(LR) .804 (.024) .804 (.024) .696 (.018) .696 (.018) .929 (.003) .929 (.003) .791 (.012) .791 (.012)
HCapp(LR) w/ disc. .809 (.021) .809 (.021) .694 (.013) .694 (.013) .930 (.003) .930 (.003) .792 (.015) .792 (.015)
Mincut .447 (.014) .447 (.014) .303 (.012) .303 (.012) .071 (.002) .071 (.002) .224 (.002) .224 (.002)
Mincut w/ disc. .500 (.025) .500 (.025) .318 (.015) .318 (.015) .085 (.006) .085 (.006) .459 (.027) .459 (.027)
IC-LR .828 (.021) .828 (.021) .714 (.016) .714 (.016) .929 (.003) .929 (.003) .776 (.002) .776 (.002)
IC-LR w/ disc. .838 (.015) .838 (.015) .713 (.018) .713 (.018) .938 (.003) .938 (.003) .805 (.002) .805 (.002)
IC-LR w/ neg. .831 (.018) .831 (.018) .728 (.017) .728 (.017) .929 (.002) .929 (.002) .798 (.009) .798 (.009)
Imp(LR) .826 (.015) .684 (.072) .733 (.014) .697 (.012) .929 (.004) .929 (.002) .805 (.002) .776 (.002)
Imp(LR) w/ disc. .836 (.016) .709 (.084) .724 (.017) .697 (.012) .945 (.002) .929 (.002) .815 (.002) .776 (.002)

Table 68: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.2, unbalanced datasets, all features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCapp(LR) .775 (.023) .775 (.023) .692 (.016) .692 (.016) .931 (.003) .931 (.003) .789 (.010) .789 (.010)
HCapp(LR) w/ disc. .786 (.018) .786 (.018) .695 (.015) .695 (.015) .931 (.003) .931 (.003) .789 (.009) .789 (.009)
Mincut .450 (.023) .450 (.023) .303 (.014) .303 (.014) .069 (.003) .069 (.003) .221 (.003) .221 (.003)
Mincut w/ disc. .495 (.024) .495 (.024) .321 (.019) .321 (.019) .070 (.003) .070 (.003) .424 (.038) .424 (.038)
IC-LR .793 (.023) .793 (.023) .709 (.018) .709 (.018) .931 (.003) .931 (.003) .779 (.003) .779 (.003)
IC-LR w/ disc. .804 (.022) .804 (.022) .712 (.017) .712 (.017) .936 (.003) .936 (.003) .799 (.003) .799 (.003)
IC-LR w/ neg. .798 (.018) .798 (.018) .725 (.018) .725 (.018) .931 (.003) .931 (.003) .803 (.003) .803 (.003)
Imp(LR) .802 (.019) .662 (.088) .725 (.017) .698 (.014) .929 (.003) .931 (.003) .805 (.004) .779 (.003)
Imp(LR) w/ disc. .808 (.019) .672 (.102) .720 (.017) .698 (.014) .943 (.004) .931 (.003) .813 (.003) .779 (.003)



Table 69: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.3, unbalanced datasets, all features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCapp(LR) .756 (.022) .756 (.022) .688 (.014) .688 (.014) .931 (.004) .931 (.004) .785 (.006) .785 (.006)
HCapp(LR) w/ disc. .768 (.027) .768 (.027) .696 (.016) .696 (.016) .931 (.004) .931 (.004) .787 (.010) .787 (.010)
Mincut .445 (.023) .445 (.023) .299 (.013) .299 (.013) .069 (.004) .069 (.004) .221 (.003) .221 (.003)
Mincut w/ disc. .509 (.032) .509 (.032) .324 (.015) .324 (.015) .069 (.004) .069 (.004) .468 (.019) .468 (.019)
IC-LR .770 (.023) .770 (.023) .700 (.017) .700 (.017) .931 (.004) .931 (.004) .779 (.003) .779 (.003)
IC-LR w/ disc. .782 (.022) .782 (.022) .703 (.014) .703 (.014) .933 (.005) .933 (.005) .794 (.004) .794 (.004)
IC-LR w/ neg. .764 (.035) .764 (.035) .716 (.018) .716 (.018) .931 (.004) .931 (.004) .798 (.004) .798 (.004)
Imp(LR) .788 (.024) .651 (.080) .716 (.019) .701 (.013) .929 (.005) .931 (.004) .800 (.003) .779 (.003)
Imp(LR) w/ disc. .792 (.024) .650 (.089) .713 (.017) .701 (.013) .941 (.004) .931 (.004) .810 (.002) .779 (.003)

Table 70: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.4, unbalanced datasets, all features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCapp(LR) .733 (.026) .733 (.026) .676 (.013) .676 (.013) .929 (.004) .929 (.004) .779 (.002) .779 (.002)
HCapp(LR) w/ disc. .736 (.026) .736 (.026) .691 (.020) .691 (.020) .930 (.003) .930 (.003) .785 (.009) .785 (.009)
Mincut .439 (.014) .439 (.014) .305 (.015) .305 (.015) .070 (.003) .070 (.003) .221 (.002) .221 (.002)
Mincut w/ disc. .514 (.036) .514 (.036) .350 (.024) .350 (.024) .070 (.003) .070 (.003) .507 (.022) .507 (.022)
IC-LR .744 (.019) .744 (.019) .690 (.017) .690 (.017) .930 (.003) .930 (.003) .779 (.002) .779 (.002)
IC-LR w/ disc. .762 (.019) .762 (.019) .689 (.018) .689 (.018) .932 (.003) .932 (.003) .788 (.003) .788 (.003)
IC-LR w/ neg. .747 (.026) .747 (.026) .704 (.016) .704 (.016) .930 (.003) .930 (.003) .795 (.002) .795 (.002)
Imp(LR) .769 (.020) .637 (.064) .709 (.012) .696 (.015) .927 (.003) .930 (.003) .797 (.002) .779 (.002)
Imp(LR) w/ disc. .766 (.019) .619 (.064) .704 (.014) .696 (.015) .938 (.003) .930 (.003) .806 (.003) .779 (.002)

Table 71: Our methods vs. the rest: mean classifier accuracy for 𝜖 = 0.5, unbalanced datasets, all features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCapp(LR) .696 (.033) .696 (.033) .669 (.019) .669 (.019) .930 (.003) .930 (.003) .779 (.002) .779 (.002)
HCapp(LR) w/ disc. .707 (.047) .707 (.047) .695 (.016) .695 (.016) .931 (.003) .931 (.003) .780 (.002) .780 (.002)
Mincut .457 (.023) .457 (.023) .304 (.016) .304 (.016) .068 (.003) .068 (.003) .222 (.002) .222 (.002)
Mincut w/ disc. .542 (.038) .542 (.038) .377 (.030) .377 (.030) .068 (.003) .068 (.003) .567 (.009) .567 (.009)
IC-LR .716 (.025) .716 (.025) .686 (.018) .686 (.018) .931 (.002) .931 (.002) .780 (.002) .780 (.002)
IC-LR w/ disc. .730 (.028) .730 (.028) .689 (.018) .689 (.018) .934 (.002) .934 (.002) .783 (.003) .783 (.003)
IC-LR w/ neg. .716 (.040) .716 (.040) .699 (.022) .699 (.022) .932 (.002) .932 (.002) .792 (.003) .792 (.003)
Imp(LR) .751 (.022) .606 (.067) .699 (.018) .698 (.017) .929 (.003) .932 (.003) .795 (.002) .780 (.002)
Imp(LR) w/ disc. .741 (.016) .596 (.072) .699 (.018) .698 (.017) .937 (.003) .932 (.003) .804 (.002) .780 (.002)



Table 72: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.0, unbalanced datasets, all features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCapp(LR) .881 (.077) .881 (.077) .616 (.069) .616 (.069) .635 (.142) .635 (.142) .639 (.059) .639 (.059)
HCapp(LR) w/ disc. .900 (.067) .900 (.067) .597 (.067) .597 (.067) .703 (.080) .703 (.080) .649 (.081) .649 (.081)
IC-LR .915 (.010) .915 (.010) .758 (.017) .758 (.017) .701 (.024) .701 (.024) .631 (.004) .631 (.004)
IC-LR w/ disc. .924 (.010) .924 (.010) .762 (.017) .762 (.017) .911 (.010) .911 (.010) .770 (.003) .770 (.003)
IC-LR w/ neg. .917 (.010) .917 (.010) .774 (.018) .774 (.018) .708 (.028) .708 (.028) .718 (.003) .718 (.003)
Imp(LR) .915 (.011) .867 (.065) .767 (.020) .657 (.028) .796 (.025) .412 (.045) .724 (.003) .594 (.006)
Imp(LR) w/ disc. .926 (.010) .904 (.041) .758 (.017) .653 (.024) .913 (.009) .422 (.154) .770 (.003) .562 (.014)

Table 73: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.1, unbalanced datasets, all features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCapp(LR) .878 (.020) .878 (.020) .599 (.062) .599 (.062) .529 (.121) .529 (.121) .634 (.042) .634 (.042)
HCapp(LR) w/ disc. .892 (.013) .892 (.013) .563 (.072) .563 (.072) .620 (.169) .620 (.169) .638 (.076) .638 (.076)
IC-LR .893 (.013) .893 (.013) .731 (.020) .731 (.020) .684 (.024) .684 (.024) .627 (.006) .627 (.006)
IC-LR w/ disc. .907 (.011) .907 (.011) .731 (.018) .731 (.018) .878 (.007) .878 (.007) .748 (.001) .748 (.001)
IC-LR w/ neg. .900 (.011) .900 (.011) .748 (.019) .748 (.019) .700 (.028) .700 (.028) .715 (.007) .715 (.007)
Imp(LR) .901 (.015) .854 (.062) .743 (.020) .645 (.021) .770 (.027) .445 (.063) .722 (.005) .604 (.006)
Imp(LR) w/ disc. .909 (.014) .871 (.054) .734 (.021) .642 (.024) .892 (.011) .451 (.134) .769 (.003) .690 (.013)

Table 74: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.2, unbalanced datasets, all features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCapp(LR) .849 (.030) .849 (.030) .568 (.052) .568 (.052) .572 (.091) .572 (.091) .619 (.036) .619 (.036)
HCapp(LR) w/ disc. .866 (.015) .866 (.015) .563 (.063) .563 (.063) .656 (.104) .656 (.104) .648 (.045) .648 (.045)
IC-LR .867 (.015) .867 (.015) .721 (.020) .721 (.020) .699 (.038) .699 (.038) .619 (.005) .619 (.005)
IC-LR w/ disc. .882 (.013) .882 (.013) .723 (.019) .723 (.019) .860 (.008) .860 (.008) .724 (.007) .724 (.007)
IC-LR w/ neg. .878 (.015) .878 (.015) .741 (.018) .741 (.018) .708 (.036) .708 (.036) .705 (.003) .705 (.003)
Imp(LR) .878 (.014) .821 (.061) .729 (.025) .635 (.025) .772 (.017) .448 (.056) .710 (.003) .602 (.005)
Imp(LR) w/ disc. .885 (.015) .824 (.071) .720 (.023) .627 (.022) .883 (.012) .519 (.093) .756 (.003) .690 (.004)

Table 75: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.3, unbalanced datasets, all features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCapp(LR) .827 (.023) .827 (.023) .562 (.046) .562 (.046) .557 (.062) .557 (.062) .585 (.061) .585 (.061)
HCapp(LR) w/ disc. .849 (.018) .849 (.018) .555 (.051) .555 (.051) .654 (.076) .654 (.076) .621 (.037) .621 (.037)
IC-LR .842 (.018) .842 (.018) .691 (.021) .691 (.021) .705 (.027) .705 (.027) .613 (.004) .613 (.004)
IC-LR w/ disc. .863 (.016) .863 (.016) .690 (.023) .690 (.023) .843 (.010) .843 (.010) .711 (.005) .711 (.005)
IC-LR w/ neg. .861 (.017) .861 (.017) .712 (.021) .712 (.021) .711 (.033) .711 (.033) .697 (.003) .697 (.003)
Imp(LR) .864 (.017) .803 (.064) .699 (.023) .620 (.025) .769 (.020) .477 (.043) .702 (.004) .597 (.004)
Imp(LR) w/ disc. .870 (.019) .792 (.087) .688 (.021) .613 (.020) .875 (.010) .575 (.089) .749 (.005) .684 (.006)



Table 76: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.4, unbalanced datasets, all features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCapp(LR) .804 (.026) .804 (.026) .548 (.038) .548 (.038) .539 (.047) .539 (.047) .557 (.028) .557 (.028)
HCapp(LR) w/ disc. .820 (.022) .820 (.022) .532 (.053) .532 (.053) .599 (.085) .599 (.085) .611 (.049) .611 (.049)
IC-LR .811 (.022) .811 (.022) .673 (.022) .673 (.022) .708 (.022) .708 (.022) .607 (.006) .607 (.006)
IC-LR w/ disc. .838 (.016) .838 (.016) .673 (.023) .673 (.023) .832 (.011) .832 (.011) .699 (.004) .699 (.004)
IC-LR w/ neg. .841 (.021) .841 (.021) .694 (.023) .694 (.023) .716 (.024) .716 (.024) .691 (.004) .691 (.004)
Imp(LR) .843 (.015) .796 (.041) .689 (.024) .609 (.026) .759 (.018) .511 (.055) .695 (.004) .598 (.005)
Imp(LR) w/ disc. .844 (.017) .781 (.049) .678 (.021) .605 (.026) .854 (.010) .629 (.063) .741 (.004) .674 (.008)

Table 77: Our methods vs. the rest: mean classifier AUC for 𝜖 = 0.5, unbalanced datasets, all features.

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCapp(LR) .775 (.034) .775 (.034) .526 (.036) .526 (.036) .537 (.034) .537 (.034) .538 (.029) .538 (.029)
HCapp(LR) w/ disc. .780 (.066) .780 (.066) .552 (.038) .552 (.038) .651 (.054) .651 (.054) .559 (.043) .559 (.043)
IC-LR .784 (.027) .784 (.027) .651 (.022) .651 (.022) .713 (.021) .713 (.021) .603 (.008) .603 (.008)
IC-LR w/ disc. .810 (.020) .810 (.020) .655 (.025) .655 (.025) .822 (.014) .822 (.014) .682 (.003) .682 (.003)
IC-LR w/ neg. .818 (.026) .818 (.026) .673 (.019) .673 (.019) .721 (.021) .721 (.021) .682 (.005) .682 (.005)
Imp(LR) .816 (.015) .748 (.055) .667 (.027) .596 (.024) .763 (.016) .521 (.043) .687 (.004) .593 (.005)
Imp(LR) w/ disc. .813 (.018) .713 (.077) .658 (.029) .590 (.024) .845 (.013) .663 (.057) .732 (.004) .660 (.003)
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