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Abstract. We consider a setting in which a principal faces a decision
and asks an external expert for a recommendation as well as a probabilis-
tic prediction about what outcomes might occur if the recommendation
were implemented. The principal then follows the recommendation and
observes an outcome. Finally, the principal pays the expert based on the
prediction and the outcome, according to some decision scoring rule. In
this paper, we ask the question: What does the class of proper decision
scoring rules look like, i.e., what scoring rules incentivize the expert to
honestly reveal both the action he believes to be best for the principal and
the prediction for that action? We first show that in addition to an honest
recommendation, proper decision scoring rules can only incentivize the
expert to reveal the expected utility of taking the recommended action.
The principal cannot strictly incentivize honest reports on other aspects
of the conditional distribution over outcomes without setting poor incen-
tives on the recommendation itself. We then characterize proper decision
scoring rules as ones which give or sell the expert shares in the princi-
pal’s project. Each share pays, e.g., $1 per unit of utility obtained by
the principal. Owning these shares makes the expert want to maximize
the principal’s utility by giving the best-possible recommendation. Fur-
thermore, if shares are offered at a continuum of prices, this makes the
expert reveal the value of a share and therefore the expected utility of
the principal conditional on following the recommendation.

1 Introduction

Consider a firm that is about to make a major strategic decision. It wishes to
maximize the expected value of the firm. It hires an expert to consult on the
decision. The expert is strictly better informed than the firm, but it is commonly
understood that the outcome conditional on the chosen course of action is un-
certain even for the expert. The firm can commit to a compensation package for
the expert; compensation can be conditional both on the expert’s predictions
and on what happens (e.g., in terms of the value of the firm) after a decision
is made. (The compensation cannot depend on what would have happened if
another action had been chosen.) The firm cannot or does not want to commit
to an arbitrary mapping from expert reports to actions: once the report is made,
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the firm will always choose the action that maximizes expected value, condi-
tional on that report. What compensation schemes will incentivize the expert
to report truthfully? One straightforward solution is to give the expert a fixed
share of the firm at the outset. Are there other schemes that also reward accurate
predictions?

Our approach to formalizing and answering these questions is inspired by
existing work on eliciting honest predictions about an event that the firm or
principal cannot influence. In the single-expert case, such elicitation mecha-
nisms are known as proper scoring rules [Brier, 1950; Good, 1952, Section 8;
McCarthy, 1956; Savage, 1971; Gneiting and Raftery, 2007]. Formally, a scoring
rule for prediction is a function s that takes as input a probability distribu-
tion P̂ reported by the expert, as well as the actual outcome ω, and assigns a
score or reward s(P̂ , ω). A scoring rule s is proper if the expert maximizes his1

expected score by reporting as P̂ his true beliefs about how likely different out-
comes are. The class of proper scoring rules has been completely characterized
in prior work [e.g., Gneiting and Raftery, 2007, Section 2]. This characteriza-
tion also provides a foundation for the design of proper scoring rules that are
optimal with respect to a specific objective (and potentially under additional
constraints) [Osband, 1989; Neyman et al., 2020; Hartline et al., 2020], and as
such can be viewed as analogous to characterizations of incentive-compatible
choice functions in mechanism design, including characterizations based on cy-
cle monotonicity [first derived by Rochet, 1987; and utilized in an optimization
context by, e.g., Lavi and Swamy, 2007] or weak monotonicity [first derived by
Bikhchandani et al., 2006; and utilized by, e.g., Ashlagi et al., 2012].

In this paper, we derive a similar characterization of what we call proper
decision scoring rules – scoring rules that incentivize the expert to honestly
report the best available action and an honest prediction about the outcome
given that action. We show that proper decision scoring rules cannot give the
expert strict incentives to report any properties of the outcome distribution
under the recommended action, other than its expected utility (Section 3). For
example, there is no proper decision scoring rule that strictly incentivizes the
expert to honestly reveal the variance of the distribution for the recommended
action. Intuitively, rewarding the expert for getting anything other than the
mean of the distribution right will strictly incentivize him to recommend actions
whose outcome is easy to predict as opposed to actions with high expected utility
for the principal. Hence, the expert’s reward can depend only on the reported
expected utility for the recommended action, and the realized utility. We then
give a complete characterization of proper decision scoring rules (Section 4). In
the case of a company maximizing its value, the mechanisms can be interpreted
as offering the expert to buy, at varying prices, shares in the company (Section
5.1). The price schedule does not depend on the action chosen. Thus, given the
chosen action, the expert is incentivized to buy shares up to the point where the
price of a share exceeds the expected value of the share, thereby revealing the

1 We use “he” for experts and “she” for the principal, i.e., the firm or person setting
up the mechanism.
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principal’s expected utility. Moreover, once the expert has some positive share in
the principal’s utility, he will be (strictly) incentivized to recommend an optimal
action.

2 Setting

We consider a setting in which a principal faces a choice from some finite set of
at least two actions A. After taking any such action, the principal observes an
outcome from some finite set Ω, to which she assigns a utility according to some
utility function u : Ω → R.

In addition to the principal, there is an expert who holds beliefs described by
some vector of conditional probability distributions P ∈ ∆(Ω)A, which specifies
for each action a ∈ A and outcome ω ∈ Ω the probability P (ω | a) that outcome
ω will be obtained if action a is taken by the principal.2

The principal may ask the expert to recommend some action â – with the
intention of getting the expert to report one that maximizes EP [u(O) | â], where
O is the outcome distributed according to P (· | â) – and to also make a prediction
P̂â ∈ ∆(Ω) about what outcome action â will give rise to. The principal then
always follows that recommendation. The principal could also ask the expert to
report on what would happen if she took suboptimal actions a 6= â. However, it
makes little sense for the principal to use these reports for rewarding the expert.
After all, these other predictions are never tested. Hence, if she gave him different
(expected) rewards depending on whether he reports P̂a or P̂ ′a, he would prefer
reporting one of them over the other regardless of which represents his beliefs.
If we reward based on reports about unrecommended actions (P (· | a))a6=â,
we would therefore strictly incentivize misreporting. For a formal statement and
proof of this point, see Othman and Sandholm (2010, Theorems 1 and 4) or Chen
et al. (2014, Theorem 4.1). Since we are concerned with properly incentivizing
the expert, we will therefore only consider the report P̂â ∈ ∆(Ω) about the
recommended action â.

Others have considered principals who take suboptimal actions with some
(small) probability [Chen et al., 2014; cf. Zermeño, 2011; Zermeño, 2012]. This
can help incentivize the expert to report honestly. For instance, Chen et al. (2014)
show that taking an action a with a small positive probability is enough to make

2 Throughout this paper, we assume that the expert could hold any beliefs P ∈
∆(Ω)A. An alternative setting would be one in which the expert has exclusive access
to some private piece of information e from some set H. Each such piece of evidence
gives rise to a posterior P (· | ·, e) ∈ ∆(Ω)A and the principal knows both the
possible pieces of evidence and how they map to posteriors. In some cases, this gives
rise to ways of scoring that are not available here. For instance, the outcome ω
might inform the principal directly about which e the expert observed [cf. Boutilier,
2012, Section 3.1; Carroll, 2019]. Extending our characterizations to such settings
appears nontrivial. In contrast, in our setup, the principal is not required to know
the evidence structure, making the scoring rules under consideration more generally
applicable.
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the expert honestly report his belief P (· | a). The principal may thus learn from
the expert about the effects of all actions, not just the one she ends up taking.
However, randomizing also has a number of disadvantages. First and obviously,
the principal prefers taking the best action all of the time over taking the best
action almost all of the time. Second, the principal, who will finally make the
decision, may be unable to credibly commit to taking, say, the worst available
action if the dice demand it. The expert may not trust that the principal will
really go through with a promise (or, rather, threat) of choosing a suboptimal
action some of the time (cf. Chen et al., 2014, Section 5). Third, if the proba-
bility of suboptimal actions being chosen is small, then rewards or punishments
based on the outcomes of these events must be scaled up in inverse proportion to
that probability to generate proper incentives (Chen et al., 2014, Theorem 4.2).
While in theory this poses no problem, in practice there are limits to rewards
and punishments, due to budgets, limited liability, and other constraints. Oper-
ating within these constraints will thus require suboptimal actions to be chosen
significantly more often. Fourth, taking each action with positive probability is
only an option when the set of available actions is at most countable. Fifth and
finally, in the real world an action may produce different effects depending on
the probability with which it is taken. For instance, if the decision mechanism is
transparent, actions may be less effective when they are chosen with low prob-
ability as a result of randomization over suboptimal actions, because they will
then catch employees by surprise.

In our setting, the principal has no way of directly verifying the informa-
tion she receives. We also assume that the expert has no intrinsic interests in
the principal’s endeavors.3 To nevertheless incentivize the expert to report his
private information honestly, the principal may therefore use a decision scoring
rule (DSR) s : ∆(Ω) × Ω → R, which maps a report and an outcome observed
after taking â onto a reward for the expert. This reward could be financial, but
it could also be given in some social currency, e.g., a number of points listed
on some website. As we have noted earlier, we do not let the score depend on
predictions about what would happen if an action other than â were to be taken.
Furthermore, we do not let the score depend on what action is recommended –
other than through the outcome obtained after implementing â. It is easy to see
why that would set poor incentives for some beliefs. We do not give a formal
proof here to avoid the introduction of alternative formalisms. However, such a
proof could easily be conducted as part of the proof of Lemma 1. Incidentally,
because the DSR does not take as input the recommended action, affecting the
principal’s outcome by making a good recommendation is indistinguishable from
affecting the principal’s outcome in other ways. Our work, therefore, generalizes
beyond this pure recommendation setting. It also means that any proper DSR

3 Of course, if the principal knows what intrinsic preferences the expert has over
outcomes, the principal can exactly compensate these preferences with payments.
Hence, our characterization would still characterize the net scoring rules that the
principal can induce. If the principal does not know the expert’s preferences, however,
propriety of the net scoring rule can in general not be ensured.
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(as defined and characterized in this paper) not only incentivizes the expert to
make good recommendations a∗ but also to take unobservable actions in the
principal’s favor whenever he can4 (cf. the notion of “principal alignment” in
prediction markets, as discussed by Shi et al., 2009).

Ideally, the principal sets up s such that the expert is incentivized to recom-
mend an action â from opt(P ) = arg maxa∈A EO∼P [u(O) | a], the set of optimal

actions, and further to report P̂â = P (· | â) honestly. The most basic form of this
requirement is (non-strict) propriety: among the reports that give the expert the
highest expected score should always be one that consists of an optimal action
and an honest prediction. Formally, we can define this as follows.

Definition 1. We say that a DSR s is proper if for all beliefs P (· | ·) ∈ ∆(Ω)A

and all possible recommendations â ∈ A and predictions P̂â ∈ ∆(Ω) we have

EO∼P
[
s(P̂â, O) | â

]
≤ EO∼P [s(P (· | a∗), O) | a∗] (1)

for some a∗ ∈ opt(P ).

We limit our attention to designing proper DSRs. However, while this pro-
priety implies that the expert has no bad incentives, it does not require that
the expert has any good incentives. For example, any constant s is (non-strictly)
proper. We might therefore be interested in the structure of strictly proper DSRs,
i.e., ones where inequality 1 is strict unless â is optimal and P̂â = P (· | â) is
reported honestly. As we will see (Lemma 2), no DSR is strictly proper in this
sense. We will therefore define partially strict versions of propriety.

Definition 2. We say that s is right-action proper if it is proper and for all
beliefs P (· | ·) ∈ ∆(Ω)A and all possible recommendations â ∈ A and predictions
P̂â ∈ ∆(Ω),

EP
[
s(P̂â, O) | â

]
= max
a∗∈opt(P )

EP [s(P (· | a∗), O) | a∗] (2)

implies â ∈ opt(P ). We call s strictly proper w.r.t. the mean if eq. 2 implies

EO∼P (·|â) [u(O)] = EO∼P̂â
[u(O)] . (3)

Right-action propriety should be a main goal. Fortunately, such scoring rules
do indeed exist. One class of such rules is especially easy to identify. For any
c1, c2 ∈ R with c1 > 0, we can use

s(P̂â, ω) = c1u(ω) + c2. (4)

4 From our definition of propriety it will immediately follow that this is the case when
the expert knows which interventions he will make at the time of submitting his
prediction. Much more surprisingly, our characterization will show that he will be
incentivized to take action in the principal’s favor, even if that renders his earlier
prediction inaccurate. In other words, if an expert makes a recommendation and
prediction today, and then on the next day is to his surprise and unobservable to the
principal given an opportunity to increase the principal’s expected utility beyond
what he predicted earlier, he will gladly seize that opportunity.
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If we imagine that the principal is some company whose utility is the company’s
overall value, then this corresponds to giving the expert some share in the com-
pany [Chen et al., 2014, Section 5; cf. Johnstone et al., 2011], which is of course
a common approach in principal-agent problems. It is much less obvious what
the entire classes of proper and right-action proper DSRs look like, and on what
other aspects of the report P̂â they can set strict incentives. As we will see, the
only further form of strictness that proper DSRs can achieve is strict propriety
w.r.t. the mean. This is why we only define these two forms of partially strict
propriety here.

While right-action propriety appears most important, setting incentives on
the predictions for what will happen after taking the recommended action can
be useful for a variety of reasons. For example, consider again a principal owning
a firm. By eliciting predictions, she may hope to inform auxiliary decisions. For
instance, the principal may wish to know the expected value of the firm to
decide at which prices she would be willing to sell some shares, whether to buy a
luxury apartment with a view of Central Park or a modest flat in Brooklyn, etc.
Similarly, if the recommended project is risky (if the variance of the utility is high
according to the reported probability distribution), the principal may wish to
hedge against the uncertainty and hold off on other major decisions that require
financial security (acquiring another company, buying said apartment, starting a
family, etc.). Another reason to reward accurate predictions can be motivated by
an alternative interpretation of scoring rules themselves. Instead of using scoring
rules to set incentives on an expert’s future recommendations and predictions,
we could also use them [in line with the name and the original intention of, e.g.,
Brier, 1950] to evaluate experts based on their past record. While making good
recommendations is paramount, we would all else equal regard an expert as more
competent (and more likely to be helpful in the future) if he can make accurate
predictions about what outcomes his recommendations give rise to.

If we are willing to drop the demand of getting honest recommendations,
then the characterization of scoring rules for prediction (see, e.g., Gneiting and
Raftery, 2007, Section 2) tells us which DSRs are strictly proper w.r.t. the re-
ported probability distribution (see Chen et al., 2014, Sections 3-4). It is infor-
mative to work through an example of such a scoring rule for prediction and
why it strictly incentivizes giving a suboptimal recommendation. Consider the
quadratic scoring rule (originally proposed by and sometimes named after Brier,
1950): s(P̂ , ω) = 2P̂ (ω)−

∑
ω′∈Ω P̂ (ω′)2. In a context in which no action needs

to be selected and an expert must report only a probability distribution, it is well
known that the expert is best off reporting the distribution truthfully. Hence,
even if we allow the expert to choose the principal’s action and thereby the
random variable he is being scored on, it will elicit honest predictions for that
random variable. However, s is not a proper decision scoring rule. It generally
incentivizes the expert to recommend an action a that makes the outcome eas-
iest to predict. For instance, suppose that Ω = {ω1, ..., ωm}, that the optimal
action a∗ leads to the uniform distribution Oa∗ = 1

m ∗ω1 + ...+ 1
m ∗ωm, while a′

leads to Oa′ = 1 ∗ ω1 deterministically. Then the expert will (assuming m > 1)
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always prefer recommending the suboptimal a′, since

E [s(Pa′ , Oa′)] = 1 >
1

m
=

2

m
−
∑
w′∈Ω

1

m2
= E [s(Pa∗ , Oa∗)] . (5)

3 Only means matter

We have argued [and, as noted, it has been formally proven in earlier work:
Othman and Sandholm, 2010, Theorems 1 and 4; Chen et al., 2014, Theorem
4.1] that proper DSRs cannot strictly incentivize the expert to honestly report
on what would happen if a non-recommended action were taken. Next, we prove
that if a DSR is to be proper, it can only strictly incentivize the expert to be
honest about the optimal (recommended) action and the expected utility of that
action. That is, no proper DSRs are strictly proper w.r.t. any other aspect of
the report. For example, proper DSRs cannot strictly incentivize the expert to
honestly reveal the variance of the utility given that the recommended action
is taken (aside from the special case of |Ω| = 2, in which the mean reveals the
entire distribution).

To prove that result, we need a simple lemma. From the definition of propriety
it follows that if one action is better than another, the expert must weakly
prefer recommending the better action, even if, say, the worse action makes the
outcome more predictable. But if two actions’ expected utilities are the same,
could a proper DSR induce the expert to strictly prefer recommending one of
the two (say, the one with an easier-to-predict distribution over outcomes)? It
turns out that this is not the case. That is, we show that under honest prediction
the expected scores for two different recommendations are the same whenever
the expected utilities of the two recommendations are the same.

Lemma 1. Let s be a proper DSR and Pa, Pa′ ∈ ∆(Ω). Then, if

min
ω∈Ω

u(ω) < EO∼Pa
[u(O)] = EO∼Pa′ [u(O)] < max

ω∈Ω
u(ω) (6)

it must be the case that EO∼Pa
[s(Pa, O)] = EO∼Pa′ [s(Pa′ , O)] .

It is worth noting that the proof is based on the lack of “space” in the set
R of possible scores. We could imagine experts who maximize a lexicographic
score. Then our result only shows that the lexically highest value of the scores
– under honest reporting – of two equally good recommendations must be the
same. But the lexically lower values could be given according to some scoring
rule for prediction (such as the quadratic scoring rule) and thus make the expert
prefer one of two recommendations with equal expected utility for the expert.

We have now shown that the expected utility of an action uniquely deter-
mines the expected reward the expert gets for recommending that action and
honestly predicting the outcome given that action. Next, we show – perhaps
more surprisingly – that in a sense, the mean is the only piece of information
the principal can elicit from the expert. That is, as long as the expert honestly
reports the expected utility of the recommendation, he can almost arbitrarily
mis-predict the outcome to a proper DSR without affecting his expected score.
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Lemma 2. Let s be a proper DSR and Pa, P̂a ∈ ∆(Ω). Then if

min
ω∈Ω

u(ω) < EPa [u(O)] = EP̂a
[u(O)] < max

ω∈Ω
u(ω) (7)

and supp(Pa) ⊆ supp(P̂a), it must be the case that

EPa [s(Pa, O)] = EPa

[
s(P̂a, O)

]
.

Lemma 2 implies that proper DSRs cannot be strictly proper w.r.t. any-
thing but the mean (and the recommended action). Thus, we will henceforth
only consider DSRs s(µ̂, ω), which take only the reported mean as input. Note
that not all proper scoring rules can be expressed as a scoring rule that de-
pends only on the mean. For one, we could punish the expert if the support
of the reported probability distribution does not contain the observed outcome.
Of course, unless min/maxω̂∈Ω u(ω̂) will occur with certainty, the expert has
no reason not to report full support. Furthermore, we could let the submitted
probability distribution determine the scoring rule in ways that do not affect
the expected score. Since none of these dependencies on details of the submitted
probability distribution seem helpful, we will ignore them.

Next we argue that in a proper DSR, s(µ̂, ω) can only depend on u(ω) (and
µ̂, of course), i.e., on the utility of the obtained outcome rather than the outcome
itself.

Lemma 3. Let s : R × Ω → R be a proper DSR; ω1, ω2 ∈ Ω be two outcomes
with u(ω1) = u(ω2); and µ̂ ∈ R be a non-extreme report, i.e., a report with
minω∈Ω u(ω) < µ̂ < maxω∈Ω u(ω). Then s(µ̂, ω1) = s(µ̂, ω2).

Note that if µ̂ = min/maxω∈Ω u(ω), then the result does not hold when
u(ω1) = u(ω2) 6= µ̂. This is because the extreme reports µ̂ = min/maxω∈Ω u(ω)
mean that the expert predicts such ω1, ω2 never to occur. There is some arbi-
trariness in how we punish such predictions and in particular, we could punish
different ω1, ω2 with the same utility differently (though we cannot think of a
reason why it would be helpful to do so). As with the non-full-support reports
excluded in Lemma 2, we could carry this case through the rest of this paper and
in our characterization provide separate rules for how scores are to be assigned
in the case that µ̂ = min/maxω∈Ω u(ω). Such rules would not be too difficult to
provide. However, in most of the real-world settings we have in mind (such as
predicting a company’s profit), it appears unlikely that a sensible expert would
ever provide such an extreme report. We will therefore ignore this degenerate
case for the rest of this paper. Nonetheless, depending on one’s area of interest
it is helpful to keep in mind that in the case of these extreme predictions, the
principal has some additional degrees of freedom in how to punish the expert’s
incorrect prediction.

We thus limit attention to DSRs that can depend only on the utility of the
obtained outcome. So from now on, we will consider scoring rules s : R×R→ R
that map a reported mean µ̂ and the obtained utility y onto a score s(µ̂, y).



Decision Scoring Rules 9

4 Characterization

Now that we have shown that we can limit our attention to scoring rules s that
map a reported expected utility and an observed utility onto a score, we can
finally characterize proper decision scoring rules. The change in inputs to s also
allows us to consider scoring rules independently of any utility function and
outcome set, which in turn lets us ignore the degenerate cases of the reported
mean µ being the lowest-possible and highest-possible utility. With this, we can
characterize proper DSRs as follows.

Theorem 1. A DSR s : R× R→ R is proper if and only if

s(µ̂, y) = f(µ̂)(y − µ̂) +

∫ µ̂

0

f(x)dx+ C (8)

for some non-negative, non-decreasing f and constant C ∈ R. If this condition
is satisfied, then furthermore, s is right-action proper if f > 0 and strictly proper
w.r.t. the mean if and only if f is strictly increasing.

While this is the mathematically simplest description, Eq. 8 is not very intu-
itive. We will give some interpretations and alternative statements of Theorem
1 in the next section. In particular, we give the interpretation of proper DSRs
as selling shares in Section 5.1.

As an example, we can construct the simplest possible right-action proper
DSR s(µ̂, y) = c1y + c2 for c1 > 0 (see eq. 4) from using the constant function
f = c1 and C = c2. Assuming that the true and reported mean must always be
non-negative, the second-simplest example (which up to a factor of 1/2 is also
given by Chen and Kash, 2011, end of Section 4) arises from f(µ̂) = µ̂, which
gives

s(µ̂, y) = µ̂y − 1

2
µ̂2. (9)

Because s is positive affine in y, it is again easy to see that the expert wants
to recommend the best action. A straightforward analysis shows that s is also
strictly proper w.r.t. the mean of the optimal action.

5 Interpretation and alternative statements

5.1 Selling shares at different prices

We can interpret the proper scoring rules of Theorem 1 as ones where the prin-

cipal sells f(µ̂) shares in the project, for an overall price of f(µ̂)µ̂−
∫ µ̂
0
f(x)dx.

Since this expression for the price is not very intuitive, let us re-write it a bit.
For technical convenience, assume that f is strictly increasing and continuous
and therefore invertible.By a well-known and intuitive formula for the integral
of the inverse (see, e.g., Key, 1994, Theorem 1), we have

f(µ̂)µ̂−
∫ µ̂

0

f(x)dx =

∫ f(µ̂)

f(0)

f−1(z)dz. (10)
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Hence

s(µ̂, y) = f(µ̂)y −
∫ f(µ̂)

0

f−1(z)dz + C ′ (11)

for some constant C ′ ∈ R. Now imagine that instead of reporting a mean µ̂
to s, the expert is offered shares in the project at various prices, with prices
starting at 0. Then, the expert will start buying shares at the lowest prices and
continue buying up to the price that is equal to the expected value of the project
(thereby revealing that value). Let q = f(µ̂) denote the total number of shares
bought by the agent if his reported expected value is µ̂. Then f−1(z) is the price
of the z-th share (ordered by price). (Note that if f is strictly increasing, f−1

is, too.) Again, to act optimally, the expert stops buying shares when the cost
of the marginal share is exactly the value of a single share, i.e., when f−1(q)
(= f−1(f(µ̂)) = µ̂) is the expected utility of the principal. Hence, if the expert
has bought a set of shares indicating that the value of such a share is µ̂, he will

have paid a total of
∫ f(µ̂)
0

f−1(z)dz for those shares; if the realized value of the
project is y, those shares will be worth f(µ̂)y; adding an arbitrary constant C ′

to the expert’s reward, we obtain the formula in Equation 11.

As an example, we can rewrite the scoring rule resulting from f(µ̂) = µ̂ (see
eq. 9) as s(µ, y) = µy −

∫ µ
0
zdz to easily see why it is strictly proper w.r.t. the

mean: This scoring rule corresponds to the case where we offer the same number
of shares at every price above 0.

It is worth noting that scoring rules for eliciting mere predictions (see Gneit-
ing and Raftery, 2007, for an overview and introduction) can be interpreted in
a similar way. Roughly, to elicit the probability of some outcome ω, we can offer
the expert Arrow-Debreu securities on ω – assets which pay some fixed amount
if ω occurs and are worthless otherwise – at different prices [cf. Savage, 1971;
Schervish, 1989; Gneiting and Raftery, 2007, Section 3.2].

5.2 A characterization of differentiable scoring rules

In the proof of Theorem 1, we first show that s(µ̂, y) = f(µ̂)y − g(µ̂) and then
infer how f and g relate to each other for s to be maximal at µ̂ = y. If s and
hence f and g are differentiable in µ̂, it is immediately clear what to do: for any
fixed µ, d

dµ̂s(µ̂, µ) has to be 0 at µ̂ = µ. This gives us the following corollary for
differentiable scoring rules. The theorem in this form makes it easier to compare
our result to that of Othman and Sandholm (2010, Section 2.3.2) (discussed
in Section 6.1 of our paper), as well as to some results on direct elicitation of
properties (see Section 6.3).

Corollary 1. A differentiable DSR s : R×R→ R is proper if and only if there
are differentiable f, g s.t. s(µ̂, y) = f(µ̂)y − g(µ̂) with g′(µ̂) = µ̂f ′(µ̂) for all
µ̂ ∈ R; f ′ ≥ 0; and f ≥ 0. Furthermore, s is right-action proper if f > 0 and
strictly proper w.r.t. to the reported mean of the optimal action if and only if
f ′ > 0.
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5.3 Characterization in terms of convex functions and subgradients

Existing work on elicitation often uses the terminology of convex functions and
their subgradients (see Section 6.2). Indeed, our result can be put in these terms
as well.

Corollary 2. A DSR s : R × R → R is proper if and only if there is a con-
vex, non-decreasing h with a subgradient h′ s.t. s(µ̂, y) = h′(µ̂)(y − µ̂) + h(µ̂).
Furthermore, s is right-action proper if h′ > 0 and strictly proper w.r.t. to the
reported mean of the optimal action if and only if h is strictly convex (i.e., if h′

is strictly increasing).

Proof. Follows directly from Theorem 1 and the equivalence of convex functions
and integrals over subderivatives, see e.g., Theorem 24.2 and Corollary 24.2.1 of
Rockafellar (1970). �

6 Related work

6.1 Othman and Sandholm (2010)

As far as we can tell, Othman and Sandholm (2010) are the first to consider the
problem of designing scoring rules for decision making. They study a simplified
case in which the set of outcomes Ω has only two elements, one with a utility
of 1, the other with a utility of 0. Note that the two-outcome-case is special
because the mean of a binary random variable fully determines its distribution.
In Section 2.3.2, they give a characterization of differentiable scoring rules with
good incentives, which is a special case of our Corollary 1.

6.2 Chen et al. (2014)

Chen et al. (2014) also characterize scoring rules for decision making. Their
key positive idea is the following. The expert reports an outcome prediction
(i.e., a distribution over Ω) for each action a ∈ A. Based on these predictions,
the principal chooses an action a randomly according to some distribution φ ∈
∆(A). For example, φ could assign 1− ε probability to an action that is optimal
according to the expert’s reports and distribute the remaining probability ε
equally among the other actions. Importantly, (if we want to strictly incentivize
honest reports from the experts) φ must have full support, i.e., each action must
be taken with positive probability. The expert is then scored for his outcome
prediction for a according to, say, Brier’s scoring rule (or any other proper scoring
rule for prediction, as characterized by Gneiting and Raftery, 2007). However,
the score is divided by φ(a). Thus for each action a, the prediction is scored only
with probability φ(a) but scaled up by 1/φ(a). These cancel out in the expert’s
expected score term. Therefore, the expected scoring of the outcome prediction
for a is as though the prediction for a was tested and scored according to Brier’s
scoring rule with probability 1. In particular, the expert is strictly incentivized
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to report honestly. Chen et al. (2014)’s provide a general characterization of
truthful mechanisms when the principal randomizes. In particular, they show
that scaling up rewards by a factor of 1/φ(a) is necessary.

Relative to our approach, Chen et al.’s has at least two advantages. For
one, it allows us to elicit full distributions for all actions rather than merely
the expected utility of a single recommended action. Second, it allows us to
construct decision markets that closely match the design of prediction markets
(of either the market scoring rule or the Arrow-Debreu securities type) (cf. Wang
and Pfeiffer, 2021). Our main concern with their approach is that randomization
(and the required scaling in proportion to 1/φ(a)) has a number of theoretical
and practical problems. We discuss these in detail in Section ??.

Chen et al. (2014, Section 5) do also consider a setting similar to ours in
which the expert recommends a single (optimal) action. But they do not give a
characterization of proper decision scoring rules for expected-utility-maximizing
principals or of what information can be extracted along with the best action.

6.3 Direct elicitation of properties

Typically, when designing scoring rules for prediction (without the recommen-
dation component) the goal is to elicit entire probability distributions over out-
comes. But a recent line of work has explored the direct elicitation of partic-
ular properties of the distribution without eliciting the entire distribution (e.g.
Lambert et al., 2008; Gneiting, 2011; Abernethy and Frongillo, 2012; Bellini
and Bignozzi, 2015). Of course, in principle, one could elicit entire distributions
and would thereby elicit all properties. But eliciting, say, a single-valued point
forecast may be required “for reasons of decision making, market mechanisms,
reporting requirements, communications, or tradition, among others” (Gneit-
ing, 2011, Section 1). Lemma 2 gives another reason to study scoring rules for
eliciting just the expected utility, albeit with the additional requirements that
the expected score under honest reporting must be the same for two variables
with equal mean (Lemma 1) and that the expected score under honest reporting
must be increasing in the true mean of the random variable. Results from the
literature on property elicitation can also be used to replace parts of the proof
of our main result.
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A Proof of Lemma 1

Lemma 1. Let s be a proper DSR and Pa, Pa′ ∈ ∆(Ω). Then, if

min
ω∈Ω

u(ω) < EO∼Pa
[u(O)] = EO∼Pa′ [u(O)] < max

ω∈Ω
u(ω) (6)

it must be the case that EO∼Pa
[s(Pa, O)] = EO∼Pa′ [s(Pa′ , O)] .

Proof. Let ωL = arg minω∈Ω u(ω) and ωH = arg maxω∈Ω u(ω) (with ties broken
arbitrarily). Let L = u(ωL) and H = u(ωH). Then, for p ∈ (0, 1), let Rp =
p ∗ ωH + (1− p) ∗ ωL and Qp be the distribution of that random variable. Note
first that because s is proper, E [s(Qp, Rp)] is non-decreasing in p. We claim that
E [s(Qp, Rp)] is also continuous in p. From this, we will directly derive the claim
of the lemma.

Such continuity properties have often been proven in the literature. For ex-
ample, Frongillo and Kash (2014, p. 1f.) note – translated to our setting – that
for proper s, E [s(Qp, Rp)] = maxp′∈[0,1] E [s(Qp′ , Rp)]. So E [s(Qp, Rp)] as a func-
tion of p is the pointwise maximum of a set of functions in p. These individual
functions are (by the definition of expectation) affine in p. It can be shown that
the pointwise maximum of a set of affine functions is convex. Finally, a convex
function defined on an open interval is continuous on that interval. For com-
pleteness, we also give a more elementary (longer) real analysis-style proof of
continuity in Appendix B.

We now use continuity to show that EO∼Pa
[s(Pa, O)] must be the same

for all Pa with the same non-degenerate mean µ (i.e., L < µ < H). For s
to be proper, it must be the case that EO∼Pa [s(Pa, O)] ≥ E [s(Qp, Rp)] for
all p with µ > pH + (1 − p)L and EO∼Pa

[s(Pa, O)] ≤ E [s(Qp, Rp)] for all p
with µ < pH + (1 − p)L. But because E [s(Qp, Rp)] is continuous, this implies
EO∼Pa

[s(Pa, O)] = E [s(Qp, Rp)] for the p s.t. µ = pH + (1− p)L. So for any Pa
with mean µ, this uniquely fixes the expected score under honestly reporting P
to the same E [s(Qp, Rp)]. �

B An elementary proof of the continuity of proper DSRs

We here give a proof of the continuity claim used in the proof of Lemma 1. Our
proof uses only basic real calculus and no convex analysis.
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Claim: Let s be a proper DSR and ωL, ωH ∈ Ω be two outcomes. For
p ∈ (0, 1), let Rp = p ∗ ωH + (1 − p) ∗ ωL and Qp be the distribution of that
random variable. Then E [s(Qp, Rp)] is continuous in p.

Proof. We conduct a proof by contradiction. Assume there is a discontinuity at
p = p̃. Then one of two things is true:

1. There is a δ > 0 such that for all ε > 0

E [s(Qp̃, Rp̃)] > E [s(Qp̃−ε, Rp̃−ε)] + δ. (12)

2. There is a δ > 0 such that for all ε > 0

E [s(Qp̃, Rp̃)] < E [s(Qp̃+ε, Rp̃+ε)]− δ. (13)

We derive contradictions from these two cases separately.
1. Imagine that the expert believes that under the optimal action, O is dis-

tributed according to Rp̃−ε. Then for small enough ε, the expert prefers submit-
ting Qp̃ over submitting Qp̃−ε, because of the following.

E [s(Qp̃, Rp̃−ε)] = (p̃− ε)s(Qp̃, ωH) + (1− (p̃− ε))s(Qp̃, ωL) (14)
ε→0→ p̃s(Qp̃, ωH) + (1− p̃)s(Qp̃, ωL) (15)

= E [s(Qp̃, Rp̃)] . (16)

This means that there exists an ε > 0 such that

E [s(Qp̃, Rp̃−ε)] > E [s(Qp̃, Rp̃)]− δ/2 > E [s(Qp̃−ε, Rp̃−ε)] + δ/2. (17)

This contradicts propriety.
2. This case is actually a little harder. We need the fact that s(Qp, ωH) is

monotonically increasing in p and s(Qp, ωL) is monotonically decreasing i p, i.e.
that for all p2 > p1 it is s(Qp2 , ωH) ≥ s(Qp1 , ωH) and s(Qp2 , ωL) ≤ s(Qp1 , ωL).
This in turn can be shown by contradiction with different cases. For instance,
imagine there were some p2 > p1 s.t. s(Qp2 , ωH) < s(Qp1 , ωH) and s(Qp2 , ωL) <
s(Qp1 , ωL). Then the expert always prefers submitting Qp1 over submitting Qp2 ,
even when the true distribution is Qp2 . Because s(Qp, ωH) and s(Qp, ωL) are
monotone in p ∈ (0, 1), they are bounded on every [a, b] with 0 < a ≤ b < 1.

With this, we can make a similar argument as above. Imagine that the expert
believes that under the optimal action, O is distributed according to Rp̃. Then for
small enough ε, the expert prefers submitting Qp̃+ε over submitting Qp̃, because
of the following.

E [s(Qp̃, Rp̃)] = p̃s(Qp̃+ε, ωH) + (1− p̃)s(Qp̃+ε, ωL) (18)
ε→0← p̃s(Qp̃+ε, ωH) + (1− p̃)s(Qp̃+ε, ωL) (19)

+ ε(s(Qp̃+ε, ωH)− s(Qp̃+ε, ωL)) (20)

= E [s(Qp̃+ε, Rp̃+ε)] . (21)
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The line in the middle is due to the boundedness of s(Qp̃+ε, ωH) and s(Qp̃+ε, ωL),

which implies that ε(s(Qp̃+ε, ωH) − s(Qp̃+ε, ωL))
ε→0→ 0. This means that there

exists an ε > 0 such that

E [s(Qp̃+ε, Rp̃)] > E [s(Qp̃+ε, Rp̃+ε)]− δ/2 > E [s(Qp̃, Rp̃)] + δ/2. (22)

This contradicts propriety again. We conclude that for any proper DSR s, the
term E [s(Qp, Op)] must be continuous in p. �

C Proof of Lemma 2

Lemma 2. Let s be a proper DSR and Pa, P̂a ∈ ∆(Ω). Then if

min
ω∈Ω

u(ω) < EPa [u(O)] = EP̂a
[u(O)] < max

ω∈Ω
u(ω) (7)

and supp(Pa) ⊆ supp(P̂a), it must be the case that

EPa
[s(Pa, O)] = EPa

[
s(P̂a, O)

]
.

Proof. If EPa [u(O)] = µ = EP̂a
[u(O)] and supp(Pa) ⊆ supp(P̂a), there is a P ′a

and a p ∈ (0, 1] s.t. P̂a = pPa + (1− p)P ′a and EP ′a [u(O)] = µ. Then

EP̂a

[
s(P̂a, O)

]
= pEPa

[
s(P̂a, O)

]
+ (1− p)EP ′a

[
s(P̂a, O)

]
(23)

≤
s is proper

pEPa

[
s(P̂a, O)

]
+ (1− p)EP ′a [s(P ′a, O)] (24)

≤
s is proper

pEPa
[s(Pa, O)] + (1− p)EP ′a [s(P ′a, O)] (25)

=
Lemma 1

EP̂a

[
s(P̂a, O)

]
. (26)

Because the expression at the beginning is the same as the expression in the end,
the ≤-inequalities in the middle must be equalities. Therefore, because p > 0, it

must be the case that EPa
[s(Pa, O)] = EPa

[
s(P̂a, O)

]
. �

D Proof of Lemma 3

Lemma 3. Let s : R × Ω → R be a proper DSR; ω1, ω2 ∈ Ω be two outcomes
with u(ω1) = u(ω2); and µ̂ ∈ R be a non-extreme report, i.e., a report with
minω∈Ω u(ω) < µ̂ < maxω∈Ω u(ω). Then s(µ̂, ω1) = s(µ̂, ω2).

Proof. Choose a p ∈ (0, 1] and ω3 ∈ Ω s.t. the two random variables Y1 =
p ∗ ω1 + (1− p) · ω3 and Y2 = p ∗ ω2 + (1− p) · ω3 both have an expected utility
of µ̂. Then:

ps(µ̂, ω1) + (1− p)s(µ̂, ω3) = E [s(µ̂, Y1)]

=
Lemma 1

E [s(µ̂, Y2)]

= ps(µ̂, ω2) + (1− p)s(µ̂, ω3).

Because p is positive, it follows s(µ̂, ω1) = s(µ̂, ω2) as claimed. �
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E Proof of Theorem 1

Theorem 1. A DSR s : R× R→ R is proper if and only if

s(µ̂, y) = f(µ̂)(y − µ̂) +

∫ µ̂

0

f(x)dx+ C (8)

for some non-negative, non-decreasing f and constant C ∈ R. If this condition
is satisfied, then furthermore, s is right-action proper if f > 0 and strictly proper
w.r.t. the mean if and only if f is strictly increasing.

Proof. “⇐” We first show that the scoring rules of the given structure are strictly
proper w.r.t. the best action and strictly proper w.r.t. the mean if f is strictly
increasing.

We first demonstrate that for whatever action â the expert recommends, he
is (strictly) incentivized to report that action’s mean honestly. So let U = u(Oâ)
be the random variable representing the utility resulting from choosing â and
let µ = E [U ]. Now let d > 0. We show that the expert prefers reporting µ over
reporting µ+ d:

E [s(µ+ d, U)] = s(µ+ d, µ) (27)

= −df(µ+ d) +

∫ µ+d

0

f(x)dx+ C (28)

= s(µ, µ)− df(µ+ d) +

∫ µ+d

µ

f(x)dx (29)

≤
f non-decr.

s(µ, µ)− df(µ+ d) + df(µ+ d) (30)

= s(µ, µ) (31)

= E [s(µ,U)] (32)

For strictly increasing f , the inequality in the middle is strict. The same argu-
ment with a few flipped signs applies if we subtract (rather than add) d in the
report.

It is left to show that it is optimal to recommend the best action. So let
Ua∗ = u(Oa∗) and Ua = u(Oa) with µ := E [Ua] and E [Ua∗ ] = µ + d for some
d > 0. Then the expert prefers recommending a∗ with truthfully reported mean
µ+ d over recommending â with truthfully reported mean µ:

E [s(µ+ d, Ua∗)] = s(µ+ d, µ+ d) (33)

=

∫ µ+d

0

f(x)dx+ C (34)

= s(µ, µ) +

∫ µ+d

µ

f(x)dx (35)

≥
f is non-negative

s(µ, µ) (36)

= E [s(µ,Ua)] . (37)
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If is strictly positive, then the inequality in the second-to-last line is strict and
so s is right-action proper.

“⇒” Let s be a right-action proper DSR. We now show that s is of the form
given in the theorem.

First, we show that s(µ̂, y) is affine in y, i.e., that

s(µ̂, y) = f(µ̂)y − g(µ̂) (38)

for some functions f and g, with f non-negative and non-decreasing. Let µ̂ ∈ R
be a reported mean and letX be a random variable over R with mean µ. Consider
Y = p ∗X + (1− p) ∗ x′ and Y ′ = p ∗ µ+ (1− p) ∗ x′, where p and x′ are such
that both Y and Y ′ have mean µ̂. Then:

pE [s(µ̂,X)] + (1− p)E [s(µ̂, x′)] = E [s(µ̂, Y )] (39)

=
Lemma 1

E [s(µ̂, Y ′)] (40)

= ps(µ̂, x) + (1− p)E [s(µ̂, x′)] . (41)

Hence, even if µ̂ is not the mean of X (µ̂ 6= µ), we have E [s(µ̂,X)] = s(µ̂, µ) for
all µ̂,X. This exactly characterizes s(µ̂, ·) as being affine and therefore of the
form in eq. 38. Further, notice that for s to be proper f has to be non-negative
(otherwise, the expert would always be best off recommending the action with
the lowest expected value) and for f to be right-action proper it has to be strictly
positive.

It is left to show that f must be non-decreasing and that

g(µ) = f(µ)µ−
∫ µ

0

f(x)dx− C (42)

for some C ∈ R. For both of these, we will need a relationship between the rates
at which f and g change. For s(µ̂, µ) to be maximal at µ̂ = µ, it has to be the
case that for all d > 0

s(µ+ d, µ) ≤ s(µ, µ), (43)

which – using eq. 38 – we can rewrite as

g(µ+ d)− g(µ) ≥ µ · (f(µ+ d)− f(µ)). (44)

Similarly, it has to be the case that for d > 0,

s(µ, µ+ d) ≤ s(µ+ d, µ+ d), (45)

which we can rewrite as

g(µ+ d)− g(µ) ≤ (µ+ d) · (f(µ+ d)− f(µ)). (46)

Note that all of these inequalities must be strict if s is to be strictly proper w.r.t.
the mean.
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We now show that f is non-decreasing. From ineq.s 44 and 46, it follows that
for all positive d

µ · (f(µ+ d)− f(µ)) ≤ (µ+ d) · (f(µ+ d)− f(µ)), (47)

which implies that f(µ+ d)− f(µ) ≥ 0 for all d > 0. If s is to be strictly proper
w.r.t. the mean, then this inequality is strict.

Finally, it is left to show that g is structured as described above. By tele-
scoping, for any n ∈ N>0 and any µ̂ ∈ R we can write:

g(µ̂) = g(0) +

n∑
i=1

g

(
iµ̂

n

)
− g

(
(i− 1)µ̂

n

)
. (48)

Since relative to any f , g can only be unique up to a constant, we will write C
instead of g(0). From equations 44 and 46, it follows that

n∑
i=1

(i− 1)µ̂

n

(
f

(
iµ̂

n

)
− f

(
(i− 1)µ̂

n

))
(49)

≤ g(µ̂)− C (50)

≤
n∑
i=1

iµ̂

n

(
f

(
iµ̂

n

)
− f

(
(i− 1)µ̂

n

))
(51)

for all n ∈ N>0.

We would now like to find g by taking the limit w.r.t. n → ∞ of the two
series. To do so, we will rewrite the two sums to interpret them as the (right and
left) Riemann sums of some function.5 It is

n∑
i=1

iµ̂

n

(
f

(
iµ̂

n

)
− f

(
(i− 1)µ̂

n

))
(52)

=
n∑
i=1

iµ̂

n
f

(
iµ̂

n

)
− (i− 1)µ̂

n
f

(
(i− 1)µ̂

n

)
−

n∑
i=1

µ̂

n
f

(
(i− 1)µ̂

n

)
(53)

= µ̂f(µ̂)−
n∑
i=1

µ̂

n
f

(
(i− 1)µ̂

n

)
. (54)

5 In fact, we could immediately interpret them as Riemann sums of the function f−1

for the partition (f
(
iµ̂
n

)
)i=1,...,n. This works out but leads to a number of technical

issues that are cumbersome to deal with: if f is discontinuous, then (f
(
iµ̂
n

)
)i=1,...,n

might not get arbitrarily fine, and f−1 could be empty somewhere between f(0)
and f(µ̂); and if f is constant on some interval, then f−1 contains more than one
element. We can avoid these issues by first re-writing the above sum. This re-writing
corresponds directly to a well-known, very intuitive formula for the integral of the
inverse (e.g., Key, 1994, Theorem 1).
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The last step is due to telescoping of the left-hand sum. Analogously,

n∑
i=1

(i− 1)µ̂

n

(
f

(
iµ̂

n

)
− f

(
(i− 1)µ̂

n

))
(55)

=

n∑
i=1

iµ̂

n
f

(
iµ̂

n

)
− (i− 1)µ̂

n
f

(
(i− 1)µ̂

n

)
−

n∑
i=1

µ̂

n
f

(
iµ̂

n

)
(56)

= µ̂f(µ̂)−
n∑
i=1

µ̂

n
f

(
iµ̂

n

)
. (57)

First note that the subtrahends are the left and right Riemann sums of f
on [0, µ̂]. Because f is non-decreasing on R, it is integrable (e.g. Rudin, 1976,
Theorem 6.9). That is, both the left and right Riemann sum converge to the
integral:

n∑
i=1

µ̂

n
f

(
iµ̂

n

)
→

n→∞

∫ µ̂

0

f(x)dx ←
n→∞

n∑
i=1

µ̂

n
f

(
(i− 1)µ̂

n

)
. (58)

So for n→∞, the lower and upper bound on g(µ̂) converge to the same value.
Hence, g(µ̂) must be that value, i.e.

g(µ̂) = C + µ̂f(µ̂)−
∫ µ̂

0

f(x)dx. (59)

From this, eq. 8 follows as claimed. �


