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ABSTRACT
The stable marriage problem (SMP) is a mathematical abstraction
of two-sided matching markets with many practical applications
including matching resident doctors to hospitals and students to
schools. Several preference models have been considered in the
context of SMPs, including orders with ties, incompleteness, and
uncertainty. Yet, behavioral aspects of human decision making, in-
cluding the similarity and compromise effects, which are captured
by psychological choice models, have so far been neglected. We
introduce Behavioral Stable Marriage Problems (BSMPs), bringing to-
gether the formalism of matching with cognitive models of decision
making to account for the impact of well known behavioral devia-
tions from rationality on core notions of SMPs, such as, stability
and fairness. We show that proposal-based approaches are affected
by contextual effects and propose novel ILP and local-search-based
methods to efficiently find optimally stable and fair matchings for
BSMPs.
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1 INTRODUCTION
The stable marriage problem (SMP) has a wide variety of appli-
cations in the context of two-sided markets, including matching
doctors to hospitals and students to schools [32]. Typically, 𝑛 men
and 𝑛 women express their preferences, via a strict total order, over
the members of the other sex. Solving an SMP typically means
finding a matching between men and women satisfying certain
properties, such as, stability, where no man and woman who are
not married to each other would both prefer each other to their
partners or to being single. Another desirable property is fairness,
aiming at a balance between the satisfaction of the two groups
[17]. A rich literature has been developed for SMPs [17], and many
variants have been studied, including when there is uncertainty in
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the preferences [2] or where preferences are expressed according
to multiple attributes [7].

We explore the connection between how people make choices,
the process of matching, and the notions of stability and fairness.
We assume that the preferences of each agent are encapsulated
via a Multi-alternative Decision Field Theory (MDFT) model [29],
that is, by a dynamic cognitive model of choice, capable of cap-
turing behavioral aspects of human decision making. We choose
this model for several reasons. MDFT belongs to a family of mod-
els based on the principle of accumulation to threshold, by which
deliberation consists in a cumulative gathering of evidence until
a certain threshold is reached. Among many proposed cognitive
models, MDFT has been shown to capture choice behavior more
accurately in human studies. Moreover, unlike other models, e.g.
those proposed by Erev et al. [11], MDFT is designed to handle
scenarios with more than two options and where preferences are
expressed in terms of multiple attributes. Other cognitive mod-
els, see for example [11, 35], rely heavily on strong psychological
assumptions and directly incorporate behavioral observations in
their implementation. In contrast, MDFT strikes a balance between
the expressiveness of the underlying preference structure and its
psychological underpinnings. In fact, within an MDFT, the initial
evaluations of the options is expressed as an aggregation over fea-
tures, and the MDFT models how this aggregation builds over time
as separate components. Hence, an MDFT model is an appealing
combination of cardinal preferences with psychological processes.
This is an attractive feature from the point of view of integration
with AI algorithms, and with matching procedures in particular.
One of the core characteristics of MDFT is that choices may change
based on the particular subset presented at any given point. This
raises questions for classical matching algorithms, such as Gale-
Shapley [12], a proposal based method where an agent is selecting
alternatives to propose to from an increasingly smaller subset.

From an AI point of view, we extend the state of the art on
SMPs by introducing, to best of our knowledge, the first framework
that incorporates simultaneously multi-attribute preferences with
uncertainty and cognitive modeling of bounded-rationality. From a
cognitive science perspective, our work provides a psychologically
grounded computational model of how humans may respond in
the context of matching procedures.

Contribution. We define a novel problem at the intersection of
matching theory and cognitive theories of preferences: the Be-
havioral Stable Matching Problems (BSMP). This novel approach
allows us to study the impact of behavioral effects and the MDFT
choice model on proposal based matching algorithms. To account
for this algorithmic integration of MDFT models into matching pro-
cedures, we propose two novel algorithms for finding maximally
stable matchings, based on local search and ILP: an ILP method



for finding fair matchings, and a local search method for finding
matchings with maximal fairness for a specified threshold of sta-
bility. We validate our algorithms on an experimental evaluation
of the proposed methods in terms of efficiency and of the stability
and fairness of the returned matchings.

2 MULTIALTERNATIVE DECISION FIELD
THEORY (MDFT)

MDFT [5] models preferential choice as an accumulative process in
which the decision maker attends to a specific attribute at each time
to derive comparisons among options and update his preferences ac-
cordingly. Ultimately the accumulation of those preferences forms
the decision maker’s choice. In MDFT an agent is confronted with
multiple options and equipped with an initial personal evaluation
for them according to different criteria, called attributes. For ex-
ample, a student who needs to choose a main course among those
offered by the cafeteria will have in mind an initial evaluation of the
options in terms of how tasty and healthy they look. More formally,
MDFT, in its basic formulation [30], is composed of the following
elements.

Personal Evaluation: Given set of options 𝑂 = {𝑜1, . . . , 𝑜𝑘 }
and set of attributes 𝐴 = {𝐴1, . . . , 𝐴𝐽 }, the subjective value of
option 𝑜𝑖 on attribute 𝐴 𝑗 is denoted by𝑚𝑖 𝑗 and stored in matrixM.
In our example, let us assume that the cafeteria options are Salad
(S), Burrito (B) and Vegetable pasta (V). Matrix M, containing the
student’s preferences, could be defined as shown in Figure 1 (left),
where rows correspond to the options (𝑆, 𝐵,𝑉 ) and the columns to
the attributes 𝑇𝑎𝑠𝑡𝑒 and 𝐻𝑒𝑎𝑙𝑡ℎ.

Figure 1: Evaluation (M), Contrast (C) and Feedback (S) ma-
trix.

Attention Weights: Attention weights are used to express the
attention allocated to each attribute at a particular time 𝑡 during
the deliberation. We denote them by vectorW(𝑡) where𝑊𝑗 (𝑡) rep-
resents the attention to attribute 𝑗 at time 𝑡 . We adopt the common
simplifying assumption that, at each point in time, the decision
maker attends to only one attribute [29]. Thus,𝑊𝑗 (𝑡) ∈ {0, 1} and∑

𝑗𝑊𝑗 (𝑡) = 1, ∀𝑡, 𝑗 . In our example, where we have two attributes,
at any point in time 𝑡 , we will haveW(𝑡) = [1, 0], orW(𝑡) = [0, 1],
representing that the student is attending to, respectively, 𝑇𝑎𝑠𝑡𝑒 or
𝐻𝑒𝑎𝑙𝑡ℎ. The attention weights change across time according to a
stationary stochastic process with probability distribution p, where
𝑝 𝑗 is the probability of attending to attribute 𝐴 𝑗 . In our example,
defining 𝑝1 = 0.55 and 𝑝2 = 0.45 would mean that at each point in
time, the student will be attending 𝑇𝑎𝑠𝑡𝑒 with probability 0.55 and
𝐻𝑒𝑎𝑙𝑡ℎ with probability 0.45. In other words,𝑇𝑎𝑠𝑡𝑒 matters slightly
more than 𝐻𝑒𝑎𝑙𝑡ℎ to this particular student.

Contrast Matrix: Contrast matrix C is used to compute the
advantage (or disadvantage) of an option with respect to the other
options. In theMDFT literature [4, 6, 29],C is defined by contrasting
the initial evaluation of one alternative against the average of the

evaluations of the others, as shown for the case with three options
in Figure 1 (center).

At any moment in time, each alternative in the choice set is
associated with a valence value. The valence for option 𝑜𝑖 at time
𝑡 , denoted 𝑣𝑖 (𝑡), represents its momentary advantage (or disadvan-
tage) when compared with other options on some attribute under
consideration. The valence vector for 𝑘 options 𝑜1, . . . , 𝑜𝑘 at time 𝑡 ,
denoted by column vector V(𝑡) = [𝑣1 (𝑡), . . . , 𝑣𝑘 (𝑡)]𝑇 , is formed by
V(𝑡) = C×M×W(𝑡). In our example, the valence vector at any time
point in whichW(𝑡) = [1, 0], is V(𝑡) = [1 − 7/2, 5 − 3/2, 2 − 6/2]𝑇 .

In MDFT, preferences for each option are accumulated across
the iterations of the deliberation process until a decision is made.
This is done by using Feedback Matrix S, which defines how the
accumulated preferences affect the preferences computed at the
next iteration. This interaction depends on how similar the options
are in terms of their initial evaluation expressed inM. Intuitively,
the new preference of an option is affected positively and strongly
by the preference it had accumulated so far, while it is strongly
inhibited by the preference of other options which are similar. This
lateral inhibition decreases as the dissimilarity between options
increases. Figure 1 (right) shows S computed for our running ex-
ample following the MDFT standard method described in Hotaling
et al. [19].

At any moment in time, the preference of each alternative is
calculated by P(𝑡 + 1) = S × P(𝑡) + V(𝑡 + 1), where S × P(𝑡) is the
contribution of the past preferences and V(𝑡 + 1) is the valence
computed at that iteration. Starting with P(0) = 0, preferences
are then accumulated for either a fixed number of iterations (and
the option with the highest preference is selected) or until the
preference of an option reaches a given threshold.

Definition 2.1 (Multi-Alternative Decision Theory Model (MDFT
Model)). Given set of options𝑂 = {𝑜1, . . . , 𝑜𝑘 } and set of attributes
𝐴 = {𝐴1, . . . , 𝐴𝐽 }, an MDFT Model is defined by the n-tuple 𝑄 =

⟨M,C, p, S⟩, where: M is the 𝑘 × 𝐽 personal evaluation matrix; C
is the 𝑘 × 𝑘 contrast matrix; p is a probability distribution over
attention weights vectors; and S is the 𝑘 × 𝑘 feedback matrix.

Different runs of the same MDFT model may return different
choices due to the uncertainty on the attention weights distribution.
The model can be run on a subset of options 𝑍 ⊆ 𝑂 of size 𝑘 ′ ≤ 𝑘 ,
by eliminating from M all of the rows corresponding to options
not in 𝑍 and resizing the contrast matrix and the feedback matrix
to size 𝑘 ′. If we run the model a sufficient number of times on the
same set, we obtain a proxy of the choice probability distribution
induced over the options in the set. More formally:

Definition 2.2 (Choice probability distribution induced by an MDFT
model). Given an MDFT model 𝑄 = ⟨M,C, p, S⟩, defined over op-
tions set 𝑂 and with attributes in 𝐴, we define the set of choice
probability distributions {𝑝𝑄

𝑍
|∀𝑍, 𝑍 ⊆ 𝑂}, containing a probability

distribution, denoted 𝑝𝑄
𝑍
, for each subset 𝑍 of 𝑂 , where 𝑝𝑄

𝑍
(𝑧𝑖 ) is

the probability that option 𝑧𝑖 ∈ 𝑍 is chosen when𝑄 is run on subset
of options 𝑍 .

We note that the choice probability distributions induced by
MDFT models may violate the regularity principle, which states
that, when extra options are added to a set, the choice probability of
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each option can only decrease. This allowsMDFT to effectively repli-
cate bounded-rational behaviors observed in humans [6]. Consider
an example involving an agent purchasing a car and considering
the attributes of performance and fuel efficiency. Assume at first
that there are two options, say, A, and B. Assume that A has better
performance but poorer efficiency with respect to B. Behavioral
studies have shown that introducing a third option C, similar to A,
will decrease A’s probability of being chosen and will increase B’s
probability of being selected instead [29]. This is known as the sim-
ilarity effect. Now consider the case in which C is a compromising
option with evaluations lying between those of A and B on both
attributes. In this case human behavior will be skewed towards
selecting C by the, so called, compromise effect [5].

3 STABLE MARRIAGE PROBLEMS (SMPS)
In a stable marriage problem (SMP), we are given a set of 𝑛 men
𝑀 = {𝑚1, . . . ,𝑚𝑛}, and a set of 𝑛 women𝑊 = {𝑤1, . . . ,𝑤𝑛}, where
each person strictly orders all members of the opposite gender. We
wish to find a one-to-one matching 𝑠 , of size 𝑛 such that every man
𝑚𝑖 and woman𝑤 𝑗 is matched to some partner, and no two people
of opposite sex who would both rather be married to each other
than to their current partners. Such a pair is called a blocking pair.
In this setting, a matching with no blocking pairs always exists and
is said to be stable [24].

The Gale-Shapley Algorithm. The Gale-Shapley Algorithm (GS)
[12] is awell-known algorithm to solve an SMP. It involves a number
of rounds where each un-engaged man “proposes" to his most-
preferred woman to whom he has not yet proposed. Each woman
must accept, if single, or choose between her current partner (if she
has one) and the proposing man. GS returns a stable marriage in
𝑂 (𝑛2).

The pairing generated by GSwithmen proposing is male optimal,
i.e., everyman is paired with his highest ranked feasible partner, and
female-pessimal [17]. Thus, it is desirable to require stable match-
ings to also be fair, for example, by minimizing the sex equality
cost (SEC): 𝑆𝐸𝐶 (𝑠) =| ∑(𝑚,𝑤) ∈𝑠 (𝑝𝑟𝑚 (𝑤)) − ∑

(𝑚,𝑤) ∈𝑠 (𝑝𝑟𝑤 (𝑚)) |,
where 𝑝𝑟𝑥 (𝑦) denotes the position of 𝑦 in 𝑥 ’s preference.

Example 3.1. Consider the following SMP of size 3.
𝑚1 : 𝑤1 > 𝑤2 > 𝑤3 𝑤1 :𝑚1 > 𝑚2 > 𝑚3
𝑚2 : 𝑤2 > 𝑤1 > 𝑤3 𝑤2 :𝑚3 > 𝑚1 > 𝑚2
𝑚3 : 𝑤3 > 𝑤2 > 𝑤1 𝑤3 :𝑚2 > 𝑚1 > 𝑚3

Stable matchings 𝑠𝑚 = {(𝑚1,𝑤1), (𝑚2,𝑤2), (𝑚3,𝑤3)} and 𝑠𝑤 =

{(𝑤1,𝑚1), (𝑤2,𝑚3), (𝑤3, 𝑚2)} are, respectively, male and female
optimal and have a SEC of, respectively, 4 and 3.

Finding a stable matching with minimum SEC is strongly NP-
hard and approximation techniques have been proposed for ex-
ample in Iwama et al. [20]. Local search approaches have been
used extensively in SMPs to tackle variants for which there are no
polynomial stability and/or fairness algorithms [13, 14, 24].

4 RELATEDWORK
The extension of classical SMPs that we present in this paper
involves uncertainty in the preferences, multiple attributes, and
bounded-rationality via a psychologically-grounded model of hu-
man behavior. While, to the best of our knowledge, this is the

first attempt to handle all three of these aspects while maintaining
cognitive plausibility, there is a rich literature on SMP extensions
addressing one or more of them.

Aziz et al. [1] consider SMPs with uncertain pair-wise prefer-
ences. From a knowledge representation point of view, the two
frameworks are closely related. In fact, considering pairwise proba-
bilities is equivalent to considering the choice probabilities induced
on subsets of size two by MDFTs. However, a fundamental differ-
ence is that MDFTs also induce choice probability distributions
over subsets of all other sizes. While this is irrelevant when focus-
ing only on the notion of stability, it plays an important role when
proposal-based methods are considered. The notion of 𝛼-behavioral
stability, which we introduce in Section 5, coincides with that of
possibly stable matching in [1] when 𝛼 > 0. The focus in [1] is on
complexity results and indeed, their hardness results for finding
maximally possibly stable matchings applies here. We concentrate
on experimentally analyzing the behavior of different algorithmic
approaches when preferences are represented via MDFT.

Different models of uncertainty in preferences are also consid-
ered in [2], where the complexity of different problem classes related
to the probability of stability are explored. The closest model to ours
among those studied in [2] is the lottery model, where each agent
expresses his preferences over the opposite group as a probability
distribution over linear orders. This is, however, different from the
preference structure induced by MDFT models which consists of
choice probability distributions over all subsets of members of the
opposite group. The technical focus is also different, since we don’t
focus on complexity issues but rather on the interaction between
realistic behavioral simulations and matching algorithms.

In our MDFT-based framework, the members of one group are
evaluated quantitatively by each member of the opposite group
according to multiple attributes. Preferences expressed via multiple
attributes have been considered before in the literature and, more
recently, in Miyazaki and Okamoto [27] and Chen et al. [7]. In
both of these works the preferences are expressed qualitatively and
consists of collections of linear orders. Moreover, the concepts of
stability they define maintain the preference lists corresponding
to different attributes separately. In contrast, in our setting the
preferences according to different attributes are merged by the
deliberation simulation into a choice or choice probabilities with
the intent of replicating human behavior.

In this work we are concerned with matching that are both stable
and fair. This area has received new attention recently with the
growing conversation around fairness and equitability in AI sys-
tems [22, 31]. This has resulted in recent works on new algorithms
for different definitions of fairness [8], besides the sex equality we
consider here, including parameterized complexity of matchings
with minimal egalitarian cost [15]. Other work has focused on the
complexity of sex equal stable matchings through the use of fair
procedures, where not all proposals happen on one side [13, 36, 37]
as well as complexity for preference models other than MDFT in-
cluding bounded lists [26] and in the general case [20]. While all
these works focus on various forms of stability, equity, and prefer-
ence model, none of them has investigated these concepts using
a choice model as complex as MDFT and the resulting preference
structures nor considered the behavioral aspects.
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𝐴1 𝐴2
8 2
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 𝑀𝑤2 =


𝐴1 𝐴2
2 8
8 2
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𝑀𝑚1 =


𝐴1 𝐴2
8 2
2 8

 𝑀𝑚2 =


𝐴1 𝐴2
2 8
8 2


Figure 2: A behavioral profile. Attention weights probability
fixed at 𝑝 (𝐴1) = 0.55 and 𝑝 (𝐴2) = 0.45.

Finally, worth mentioning, is a recent work applying DFT (that is,
MDFT for binary choices) to mimic the decision-making processes
involving multiple agents [23]. In particular, the authors present a
version of DFT which accounts for forgetting to model multi-agent
decision-making and the stability of a decision under the dynamics
of opinion formation. While based on the same behavioral model,
the framework described in [23] is quite different from ours, as it
considers a hierarchical network model of social choice rather than
matching in two sided markets. Furthermore, the combination be-
tween DFT and AI techniques has been investigated in [25], where
the authors designed a sequential procedure that uses DFT and soft
constraints to model decision making over a set of interdependent
choices. While using the same psychological model, the framework
in [25] does not consider a multi-agent scenario and only explores
the interplay between modeling choices using a DFT model and
propagating their effects via constraint-based inference.

5 BEHAVIORAL STABLE MARRIAGE
PROBLEMS (BSMPS)

In this section we formally define Behavioral Stable Marriage Prob-
lems. We are given a set of 𝑛 men and 𝑛 women. Each women𝑤𝑖

(resp. man𝑚𝑖 ) expresses her (resp. his) preferences over the men
(resp. women) via anMDFTmodel𝑄𝑤𝑖

= ⟨Mwi ,Cwi , pwi , Swi ⟩ (resp.
𝑄𝑚𝑖

= ⟨Mmi ,Cmi , pmi , Smi ⟩). Since, as described in Section 2, we
adopt the standard definitions for contrast and feedback matrices
C and S, we will omit them, for the sake of clarity, in what follows.

Definition 5.1 (Behavioral Profile). A Behavioral Profile is a collec-
tion of 𝑛 men and 𝑛 women, where the preferences of each man and
woman, 𝑥𝑖 , on the members of the opposite group are represented
by an MDFT model 𝑄𝑥𝑖 = ⟨Mxi , pxi ⟩.

We note that each individual can, in principle, use different
attributes to express their preferences over the members of the
other group. However, in all of our examples and experiments we
assume two attributes. For each group member 𝑥𝑖 , his/her model
expresses a (numerical) personal evaluation of each member of
the opposite group with respect to two attributes inMxi , and the
importance of each attribute, pxi (see an example in Figure 2). By
running the MDFT models many times we can approximate the
induced choice probabilities (Def. 2.2). For the profile in Fig. 2 we
have 𝑝𝑄𝑚1

{𝑤1,𝑤2 } (𝑤1) = 0.485, 𝑝𝑄𝑚2
{𝑤1,𝑤2 } (𝑤1) = 0.556, 𝑝𝑄𝑤1

{𝑚1,𝑚2 } (𝑚1) =

0.495, and 𝑝𝑄𝑤2
{𝑚1,𝑚2 } (𝑚1) = 0.562.

As for SMPs, amatching is a one-to-one correspondence between
men and women. However, in our setting, the answer to the ques-
tion whether an individual would break his/her current matching
and elope with another partner becomes probabilistic.

Definition 5.2 (𝛽-blocking). Let 𝐵 be a behavioral profile, and 𝑠
one of its matchings. Consider pair (𝑚,𝑤) ∉ 𝑠 and let 𝑄𝑚 , 𝑄𝑤 , be
the MDFT models of respectively𝑚 and𝑤 , and 𝑠 (𝑚) and 𝑠 (𝑤) be
their respective partners in 𝑠 . We say pair (𝑚,𝑤) is 𝛽-blocking if
𝛽 = 𝑝

𝑄𝑚

{𝑤,𝑠 (𝑚) } (𝑤) × 𝑝
𝑄𝑤

{𝑚,𝑠 (𝑤) } (𝑚).

In other words, we say that pair (𝑚,𝑤), unmatched in 𝑠 , is 𝛽-
blocking if 𝛽 is equal to the joint probability of 𝑚 choosing 𝑤

instead of 𝑠 (𝑚) according to 𝑄𝑚 and of 𝑤 choosing𝑚 instead of
𝑠 (𝑤) according to 𝑄𝑤 . The higher the 𝛽 , the higher the probability
that𝑚 and𝑤 will break the current matching. As an example, pair
(𝑚1,𝑤2) is 0.29-blocking for matching 𝑠 = {(𝑚1,𝑤1), (𝑚2,𝑤2)}
given the behavioral profile in Figure 2.

Definition 5.3 (𝛼-B-stable matching). Let 𝐵 be a behavioral profile,
and 𝑠 one of its matchings. We say that 𝑠 is 𝛼-behaviorally-stable
(abbreviated, 𝛼-B-stable), if ((1− 𝛽1) × . . .× (1− 𝛽ℎ)) ≤ 𝛼 , and 𝛼 is
the minimum value for which this holds, where 𝛽𝑖 is the blocking
probability of pair 𝜋𝑖 , 𝑖 ∈ {1, . . . , ℎ}, un-matched in 𝑠 , and ℎ is the
number of blocking pairs, that is, ℎ = 𝑛 × (𝑛 − 1), if 𝑠 has 𝑛 pairs.

Intuitively, a matching is 𝛼-B-stable if the probability that none
of the unmatched pairs is blocking is smaller than or equal to 𝛼 .
We note that 1-B-stability corresponds to stability in the classical
sense. The notions of 𝛽-blocking pair and 𝛼-B-stability require only
choices over subsets of size 2 for which we can approximate the
induced probabilities. Given the pair-wise probabilities described
earlier, we see that matching 𝑠 = {(𝑚1,𝑤1), (𝑚2,𝑤2)} is 0.514-B-
stable for the profile in Figure 2. We conclude this section with the
formal definition of Behavioral Stable Marriage Problem.

Definition 5.4 (Behavioral StableMarriage Problem (BSMP)). Given
behavioral profile B, the corresponding Behavioral Stable Marriage
Problem (BSMP) is that of finding an 𝛼-B-Stable matching with
maximum 𝛼 .

With abuse of notation, we will use BSMP and behavioral profile,
as well as marriage and matching, interchangeably in what follows.

6 FAIRNESS
Given model 𝑄𝑚 of man 𝑚, we define the probability that 𝑚’s
choices will follow a particular linear order as follows.

Definition 6.1 (Induced probability on linear orders). Consider
MDFT model 𝑄 defined on option set 𝑂 . Let us consider linear
order 𝜔 = 𝜔1 > · · · > 𝜔𝑘 , 𝜔𝑖 ∈ 𝑂 , defined over 𝑂 . Then, the
probability of 𝜔 given 𝑄 is: 𝑝𝑄 (𝜔) = 𝑝

𝑄

𝑂
(𝜔1) × 𝑝

𝑄

{𝑂−{𝜔1 }} (𝜔2) ×

· · · × 𝑝
𝑄

{𝜔𝑘−1,𝜔𝑘 }
(𝜔𝑘−1).

Intuitively, the probability of a linear order is defined as the joint
probability that the first element in the order will be chosen by the
MDFT model among all of the options, the second element will be
chosen by the MDFT model from the remaining options, and so
forth. We now define the expected position as follows.
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Definition 6.2 (Expected position). Consider BSMP 𝐵, man𝑚 and
model 𝑄𝑚 . The expected position of woman𝑤 in𝑚′𝑠 preferences
is defined as follows: 𝐸 [𝑝𝑟𝑚 (𝑤)] =

∑
𝜔 ∈𝐿 (𝑊 ) 𝑝

𝑄𝑚 (𝜔) × 𝑝𝑟𝜔 (𝑤),
where 𝐿(𝑊 ) is the set of linear orders over the set of women𝑊 ,
and 𝑝𝑟𝜔 (𝑤) is the position of woman𝑤 in linear order 𝜔 .

We can now define the sex equality cost for BSMPs.

Definition 6.3 (Sex Equality cost). Given BSMP 𝐵 and matching 𝑠
we define the sex equality cost of 𝑠 as: 𝑆𝐸𝐶 (𝑠) =| ∑(𝑚,𝑤) ∈𝑠 𝐸 [(𝑝𝑟𝑚 (𝑤))]−∑

(𝑚,𝑤) ∈𝑠 𝐸 [(𝑝𝑟𝑤 (𝑚))] | .

Clearly, the lower SEC the more fair the matching. Figure 3
provides two examples of BSMPs and SECs for matchings.

Since computing the expected position of an option is computa-
tionally prohibitive, we obtain an approximation using the MDFT
model to build linear orders. We do this by choosing a first element,
then a second one from the remain set, and so on. By repeating this
process a sufficiently large number of times, we can approximate
the probability of linear orders given the MDFT and, thus, obtain
an approximate value for the expected positions.

7 THE GALE SHAPLEY ALGORITHM AND
BSMPS

In this section we show how, on one hand, GS can be easily adapted
to run on BSMPs while, on the other, behavioral effects may nega-
tively impact the 𝛼-B stability of the matching.

Algorithms B-GS and EB-GS. The Gale Shapley procedure can
be extended in a straightforward way to BSMPs by invoking the
relevant MDFT models when a proposal or an acceptance has to be
made. When man𝑚 is proposing, model 𝑄𝑚 will be run to select
the woman to propose to among the set of women to whom𝑚 has
not proposed yet. Similarly, when woman 𝑤 , currently matched
with, say, man𝑚′ receives a proposal from𝑚, the choice will be
picked by running𝑄𝑤 on the set {𝑚,𝑚′}. We call this variant of GS,
Behavioral Gale Shapley, denoted with B-GS. While it is clear that
B-GS still converges, since the sets of available candidates shrink
by one every time a proposal is made, it is no longer deterministic
and may return different matchings when run on the same BSMP.
This is, of course, a consequence of the non-determinism of the
underlying MDFT models.

We can also define another variant of GS that we call Expected
Behavioral Gale Shapley (EB-GS). We first note that, given a man,
we can extract a linear order from the expected positions of the
women according to his MDFT model (breaking ties if needed).
EB-GS corresponds to running GS on the profile of linear orders
obtained in this fashion.

Impact of Behavioral Effects. We now discuss how contex-
tual effects impact the 𝛼-B-stability of a matching returned by a
proposal-based approach.

Consider the compromise effect, modelling the tendency humans
have to pick an option in the middle when confronted with others
characterized by asymmetric strengths. An instance is shown in
Figure 3(a) where we see that𝑚3 (resp. 𝑤3) is the compromising
option for women𝑤1 and𝑤2 (resp. for men𝑚1 and𝑚2), and is the
preferred option for𝑤3 (resp.𝑚3). When proposals are made and all
options are available,𝑚3 (resp.𝑤3) will be preferred by any woman
(resp. man). However, for𝑚1,𝑚2, 𝑤1 and 𝑤2 every other choice

between two alternatives is between incomparable options, yielding
high uncertainty in the outcome of the MDFT model. As seen in
Figure 3 (a), both B-GS and EB-GS return a matching which is sub-
optimal w.r.t. 𝛼 with high probability. An analogous situation can
be observed for the instance of the similarity effect shown in Figure
3(b). These examples show that, in general, there is no guarantee
that a matching returned by B-GS or EB-GS will be optimal w.r.t.
𝛼-B stability.

In the second column of the tables in Figures 3 we show the
sex equality cost of the matchings. Not surprisingly, there is no
guarantee on the fairness of the matchings returned by B-GS or
EB-GS. However, most importantly, there is also no guarantee on
its "unfairness" (as instead is the case for GS on SMPs) which is
again an effect of the non-determinism injected by the behavioral
models.

Figure 3: Compromise (a) and Similarity effect (b), impact on
GS. Profile (left) and results (right), for 𝛼-B stability value
(𝛼), Sex Equality Cost (SEC) and % of times returned by B-GS
(%B-GS) out of 100 runs. EB-GS result in blue.

8 INTEGER LINEAR PROGRAMS FOR BSMPS
In order to test the efficacy of our algorithms we first developed
integer linear program (ILP) formulations to find solutions that are
maximally 𝛼-B-Stable, which we call B-ILP, as well as a formulation
to find the most fair solution according to the sex equality cost
with no guarantees on stability, FB-ILP. There is a long history of
using ILP formulations for various versions of stable marriage [33]
and matching problems and even SAT encoding [10]. These are
implementations for our simple baselines and optimizing them for
deployment would be an interesting area of future work [28].

Algorithm FB-ILP. For each combination of𝑚𝑖 ∈ 𝑀 and𝑤 𝑗 ∈
𝑊 , |𝑀 | = |𝑊 | = 𝑛, we introduce a binary variable𝑚𝑖𝑤 𝑗 that takes
value 1 if𝑚𝑖 is matched with𝑤 𝑗 and 0 otherwise. We assume that
for FB-ILP we have access to an 𝑛×𝑛 matrix 𝑝𝑜𝑠𝑀 [𝑖, 𝑗] where entry
𝑖, 𝑗 gives us the expected position of𝑤 𝑗 in the ranking of𝑚𝑖 , and
the same matrix is available for the women, denoted 𝑝𝑜𝑠𝑊 .

Recall that finding the solution with lowest sex equality cost re-
quiresminimizing 𝑆𝐸𝐶 = |∑𝑖, 𝑗 ∈𝑛 𝑝𝑜𝑠𝑀 [𝑖, 𝑗]·𝑚𝑖𝑤 𝑗−

∑
𝑖, 𝑗 ∈𝑛 𝑝𝑜𝑠𝑊 [ 𝑗, 𝑖]·

𝑚𝑖𝑤 𝑗 |. We cannot implement this absolute value directly as the
optimization objective in Gurobi [16] as it is non-linear due to the
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presence of the absolute value. Since the SECs are always ≥ 0 we
can overcome this using a standard trick in ILPs using indicator
variables [3]. The SEC objective can be viewed as adding up the to-
tal man cost and the total woman cost, so we add indicator variables
𝑡𝑚𝑐 ≥ 0 and 𝑡𝑤𝑐 ≥ 0 and minimize the difference between these
two quantities. Hence, our full FB-ILP can be written as follows.

min 𝑖𝑛𝑑, 𝑠 .𝑡 .,

(1)
∑

𝑗 ∈𝑛𝑚𝑖𝑤 𝑗 = 1 ∀𝑖 ∈ 𝑛

(2)
∑
𝑖∈𝑛𝑚𝑖𝑤 𝑗 = 1 ∀𝑗 ∈ 𝑛

(3)
∑
𝑖, 𝑗 ∈𝑛𝑚𝑖𝑤 𝑗 = 𝑛

(4)
∑
𝑖, 𝑗 ∈𝑛 𝑝𝑜𝑠𝑀 [𝑖, 𝑗] ·𝑚𝑖𝑤 𝑗 = 𝑡𝑚𝑐

(5)
∑
𝑖, 𝑗 ∈𝑛 𝑝𝑜𝑠𝑊 [ 𝑗, 𝑖] ·𝑚𝑖𝑤 𝑗 = 𝑡𝑤𝑐

(6) 𝑡𝑤𝑐 ≥ 0
(7) 𝑡𝑚𝑐 ≥ 0
(8) 𝑡𝑤𝑐 − 𝑡𝑚𝑐 = 𝑖𝑛𝑑

In the constraints above (1) and (2) ensures that every man𝑚𝑖 has
exactly one match across all possible women and every woman𝑤 𝑗

has one match across all possible men. The redundant constraint (3)
ensures that we have exactly 𝑛 matches, i.e., everyone is matched.
Constraint (4) captures the total cost to the men by multiplying
the expected position by the indicator variables for the matches.
Likewise constraint (5) captures the total woman cost. Constraint
(8) is necessary to ensure that Gurobi handles our absolute value
constraint correctly. We know that both 𝑡𝑚𝑐 ≥ 0 and 𝑡𝑤𝑐 ≥ 0
from constraints (6) and (7), hence when Gurobi uses the Simplex
Algorithm to solve, it will set 𝑡𝑚𝑐 = 𝑖𝑛𝑑 and 𝑡𝑤𝑐 = 0 if 𝑖𝑛𝑑 > 0 and
otherwise we will have 𝑡𝑚𝑐 = 0 and 𝑡𝑚𝑐 = −𝑖𝑛𝑑 . In either case we
have a bounded objective function and we can find a solution if
one exists.

Algorithm B-ILP. To find the optimal 𝛼-B-Stable solution with
B-ILP, we begin with the same setup. For each𝑚𝑖 ∈ 𝑀 and𝑤 𝑗 ∈𝑊
we introduce a binary variable𝑚𝑖𝑤 𝑗 defined as above. In addition,
for B-LPwe assume that for eachman and eachwomanwe are given
an 𝑛 × 𝑛 matrix 𝑃𝑟𝑚𝑖

where entry 𝑃𝑟𝑚𝑖
[ 𝑗, 𝑘] gives the probability

that man 𝑚𝑖 prefers 𝑤 𝑗 to 𝑤𝑘 . This matrix can be computed by
running the BSMP of man𝑚𝑖 a sufficiently large number of times.

There are two interrelated complications with formulating this
probabilistic matching problem as an ILP: first we need the product
of the probabilities which is a convex not linear function, and, sec-
ond, stability is a pairwise notion over a given matching. To deal
with both of these issues we introduce ∀((𝑖, 𝑗), (𝑘, 𝑙)) ∈

((𝑛2)
2
)
possi-

ble combinations of pairs of pairs, an indicator variable𝑚𝑖𝑤 𝑗+𝑚𝑘𝑤𝑙

to indicate that both𝑚𝑖𝑤 𝑗 is matched and𝑚𝑘𝑤𝑙 is also matched.
This allows us to compute the blocking probability of 𝑚𝑖 and
𝑤𝑙 as well as of 𝑚𝑘 and 𝑤 𝑗 . Given the formulation in Aziz et al.
[2], we know that we want to maximize the probability that no
blocking pair exists. Hence for every pair of possible marriages
𝑚𝑖𝑤 𝑗 +𝑚𝑘𝑤𝑙 we can compute the probability that these four in-
dividuals are not involved in blocking pairs by taking the like-
lihood that they swap partners, formally let 𝑏𝑙𝑜𝑐𝑘 [(𝑖 𝑗), (𝑘𝑙)] =

(1 − 𝑃𝑟𝑚𝑖
[𝑙, 𝑗] ∗ 𝑃𝑟𝑤𝑙

[𝑖, 𝑘]) ∗ (1 − 𝑃𝑟𝑚𝑘
[ 𝑗, 𝑙] ∗ 𝑃𝑟𝑤𝑗

[𝑘, 𝑖]). To han-
dle the convex constraint we simply take the log of this quantity
and maximize using an indicator variable we which we implement
using the Gurobi 𝐴𝑛𝑑 constraint. We can write the full program as
follows.

max
∑

∀(𝑖, 𝑗),(𝑘,𝑙) ∈( (
𝑛
2)
2 )

𝑝𝑎𝑖𝑟𝑚𝑖𝑤𝑗+𝑚𝑘𝑤𝑙
∗ 𝑙𝑜𝑔(𝑏𝑙𝑜𝑐𝑘 [(𝑖 𝑗), (𝑘𝑙)]), 𝑠 .𝑡 .,

(1)
∑

𝑗 ∈𝑛𝑚𝑖𝑤 𝑗 = 1 ∀𝑖 ∈ 𝑛

(2)
∑
𝑖∈𝑛𝑚𝑖𝑤 𝑗 = 1 ∀𝑗 ∈ 𝑛

(3)
∑
𝑖, 𝑗 ∈𝑛𝑚𝑖𝑤 𝑗 = 𝑛

(4) 𝐴𝑁𝐷 (𝑚𝑖𝑤 𝑗 ,𝑚𝑘𝑤𝑙 ) = 𝑝𝑎𝑖𝑟𝑚𝑖𝑤𝑗+𝑚𝑘𝑤𝑙
∀(𝑖, 𝑗), (𝑘, 𝑙) ∈

((𝑛2)
2
)

In the constraints above (1) and (2) ensures that every man𝑚𝑖 has
exactly one match across all possible women and every woman𝑤 𝑗

has one match across all possible men. The redundant constraint (3)
ensures that we have exactly 𝑛 matches, i.e., everyone is matched.
Constraint (4) uses the Gurobi [16]𝐴𝑁𝐷 constraint to set the value
of 𝑝𝑎𝑖𝑟_𝑚𝑖𝑤 𝑗 +𝑚𝑘𝑤𝑙 to be 1 if and only if both𝑚𝑖𝑤 𝑗 and𝑚𝑘𝑤𝑙 are
both 1. This allows us to capture all possible pairs of man/woman
pairs and maximize the probability that no blocking pair occurs.

9 LOCAL SEARCH APPROACHES FOR BSMPS
We present two algorithms based on local-search (LS) to find match-
ings with either high 𝛼-B-stability or with both a guaranteed level
of 𝛼-B-stability and a low SEC. LS algorithms do not have any theo-
retical guarantee of returning optimal solutions, but often produce
near-optimal solutions and scale better than complete procedures
[18].

The B-LS algorithm. B-LS, explores the space of matchings to
find one with maximum 𝛼-B-stability starting from a randomly gen-
erated one. Each matching 𝑠 is evaluated by its level 𝛼 of behavioral
stability. When we find a matching, we compute for each non-
matched pair its 𝛽-blocking level. The neighborhood of a matching
𝑠 consists of all the matchings that can be obtained from 𝑠 by rotat-
ing a blocking pair (i.e, swapping partners). In the latter case, the
search restarts from a randomly generated matching. The search
ends after a max number of iterations, returning the matching with
maximum 𝛼 found so far.

Algorithm FB-LS Algorithm FB-LS is designed to take in input
a value 𝛼 and return a matching with the lowest SEC that is also
𝛼-B-stable. Intuitively, FB-LS runs B-LS on the space of matchings
meeting a certain level of fairness. This is done by discarding any
matching that does not meet the fairness requirement while ex-
ploring the neighborhood. In order to use FB-LS, we first run B-LS
on the unconstrained space. This allows us to compute the max-
imum level of 𝛼-B-stability achievable, lets call it 𝛼𝑚𝑎𝑥 . We also
compute the SEC for the matching returned by this run of B-LS,
called 𝑠𝑒𝛼𝑚𝑎𝑥

. We then fix the lowest level of behavioral stability
that we consider reasonable, denoted 𝛼𝑚𝑖𝑛 , with 𝛼𝑚𝑖𝑛 ≤ 𝛼𝑚𝑎𝑥 .
Then FB-LS performs an incremental search where for each SEC
value, 𝑠𝑒 , it launches B-LS to find the a matching with maximum
𝛼-B-stability value, say 𝛼𝑠𝑒 and with SEC cost 𝑠𝑒 . FB-LS starts with
𝑠𝑒 = 𝑠𝑒𝛼𝑚𝑎𝑥

and gradually decreases 𝑠𝑒 until it no longer finds a
matching with behavioral stability 𝛼𝑠𝑒 ≥ 𝛼𝑚𝑖𝑛 .

10 EXPERIMENTAL RESULTS
We generate 100 random BSMPs for each size 𝑛 between 10 and
16 where the M matrices are of size 𝑛 × 2 and contain random
preferences between 0 and 9. Attention weights probabilities are
fixed to 𝑝 ( [0, 1]) = 0.45 and 𝑝 ( [1, 0]) = 0.55.

Figure 4 shows 𝛼-B-Stability and SEC values of matchings re-
turned by the algorithms averaged over the 100 instances. Each
point on the lines represents the size of the problems from 𝑛 = 10
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Figure 4: Average 𝛼-B-Stability (y-axis) and SEC (x-axis)
when varying the number of agents.

to 𝑛 = 15 moving from left to right. For 𝑛 = 16 the ILP formulations
timed-out at 6 hours while B-LS converges at around 340s (see Table
2).

Not surprisingly, the quality of the solutions deteriorates as
we move to larger problem sizes. The average results for B-ILP
(dark blue-line) represent the optimal values for 𝛼-B-stability but
exhibit average high SEC. In contrast, we can see how FB-LS (green
line) allows to find matchings which have low SEC and are at
most 30% less stable than optimal. As predicted, B-GS on average
performs very poorly and remains sub-optimal even if the best
values, instead of the average, are considered (B-GS𝑚𝑎𝑥 (𝛼) ). At
the bottom left corner we see the FB-ILP (red line) collapsed to a
single point, as it always returns extremely unstable matchings of
almost zero SEC. Our results show very small variance in terms
of 𝛼-B-stability, except for B-GS and EB-GS (see Table 3). Table 1
shows instead the SEC results plotted in Figure 4 with their standard
deviations. All algorithms (except FB-ILP not shown since 𝜇 � 0 and
𝜎2 � 0) have significant variance in terms of SEC, likely explained
by the difference in preferences across instances. As expected, FB-LS
exhibits the lowest SEC variance.

On average the pre-processing times to compute the pairwise
choice probabilities and the expected positions ranged between 16s
and 73s and 10.5s and 36s, respectively. In Table 2 we show the
running time for all of the algorithms. The B-GS time corresponds
to running the algorithm 100 times on the same instance. While
B-GS and EB-GS are significantly faster, for each 𝑛 they returned
a maximally behaviorally stable matching only around 30% of the
time. B-ILP and B-LS have comparable running times up to 𝑛 = 16
when B-ILP method doesn’t terminate. The convergence analysis
performed for 𝑛 = 16 is shown in Fig. 5. We can see that, on average,
B-LS plateaus at 500 iterations, corresponding to approximately
340s. It should also be noted that B-ILP, when terminating, always
returns a maximally B-stable matching while B-LS does so around
88% of the time and returns a matching 1.006∗10−6 far from optimal
otherwise.

Our experimental results show that when the goal is to find a
maximally stable matching, B-ILP is a viable and complete option

for smaller problems. If fairness is also considered, then, FB-LS
produces high quality solutions compromising between the two
criteria while scaling well with the size of the problem. This ex-
perimental study has also confirmed the negative impact of the
underlying behavioral models on the quality of solutions returned
by proposal based approaches.

B-ILP FB-LS B-GS𝑚𝑎𝑥 (𝛼) EB-GS

# Agents 𝜇 𝜎2 𝜇 𝜎2 𝜇 𝜎2 𝜇 𝜎2

10 7.1 32.7 5.3 25.3 7.7 35.9 8.4 37.0
11 7.8 29.6 5.5 22.5 8.6 34.2 9.5 53.4
12 8.1 46.2 5.7 31.2 9.3 57.9 9.4 53.5
13 12.3 76.1 7.9 59.0 12.2 81.5 10.8 80.5
14 13.3 73.1 9.3 58.9 13.0 79.2 12.5 77.6
15 14.2 116.80 9.4 84.0 13.4 107.8 14.6 115.6

Table 1: Sex Equality Cost mean (𝜇) and standard deviation
(𝜎2).

Algorithm 10 11 12 13 14 15 16

B-ILP 1.03s 2.74s 3.90s 6.61s 12.6s2 27.05s N/A
B-LS 0.66s 2.01s 4.40s 15.17s 20.93s 24.94s 342s
FB-ILP 0.13s 0.15s 0.18s 0.22s 0.12s 0.12s 0.24s
FB-LS 2.83s 8.81s 35.16s 72.0s 90.223s 120.76s 941s
B-GS 1.93s 2.81s 3.18s 4.04s 4.55s 5.87s 7.2s
EB-GS 0.01s 0.015s 0.017s 0.02s 0.022 0.26 0.028s

Table 2: Average execution time for B-ILP, B-LS and B-GS
when varying the number of agents.

Figure 5: Convergence of B-LS algorithm implementation
with respect to 𝛼-B-Stability when 𝑛 = 16

11 FUTUREWORK
In the future we would like consider the impact of behavioral mod-
els in more complex settings, such one-to-many and many-to-many
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B-ILP FB-LS B-GS𝑚𝑎𝑥 (𝛼) EB-GS

# Agents 𝜇 𝜎2 𝜇 𝜎2 𝜇 𝜎2 𝜇 𝜎2

10 0.0208 5∗10−4 0.0149 3∗10−4 0.0175 5∗10−4 2∗10−14 6∗10−26
11 0.0099 2∗10−4 0.0081 2∗10−4 0.0083 2∗10−4 1∗10−15 1∗10−28
12 0.0041 3∗10−5 0.0034 3∗10−5 0.0023 2∗10−5 2∗10−17 5∗10−32
13 0.0020 5∗10−6 0.0016 4∗10−6 0.0009 2∗10−6 5∗10−29 2∗10−55
14 0.0009 3∗10−6 0.0008 2∗10−6 0.0005 2∗10−6 8∗10−50 4∗10−97
15 0.0004 3∗10−7 0.0002 2∗10−7 0.0001 5∗10−8 3∗10−50 5∗10−98

Table 3: 𝛼-B-Stability

matching problems by studying their integration with other match-
ing algorithms such as the Boston Mechanism [21] and other ap-
plied matching mechanisms. We also plan to investigate further
the interplay between fairness and behavioral modeling in algo-
rithms targeting fairness both at the matching and the procedural
level [9, 37] and in methods proposed to achieve fairness over time
which ties particularly well with the concept of repeated choices
underlying the MDFT models [34].
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