
Baseline Strategies for the ANAC Automated Negotiation League
Kotone Ninagawa
Brown University
Providence, RI, USA

kotone_ninagawa@brown.edu

Yasser Mohammad
NEC Datascience Research

Laboratories
Tokyo, Japan

y.mohammad@nec.com

Amy Greenwald
Brown University
Providence, RI, USA

amy_greenwald@brown.edu

ABSTRACT
We present agentKT (agentKiTsune), a finalist in the 2020 Auto-
mated Negotiation League (ANL) of the Automated Negotiating
Agents Competition (ANAC). Specifically, we describe our agent’s
elicitation and negotiation strategies, as well as our approach to
learning the user’s and opponent’s utility functions. The primary
purpose of this paper is to identify core subproblems inherent in
automated negotiation—specifically, ANL—and to provide heuris-
tic solutions to these subproblems that can serve as baselines in
future runs of the competition. Indeed, the ANL organizers are plan-
ning to incorporate our code modules into an upcoming release
of their platform for exactly this reason—so that future develop-
ers can benchmark their proposed solutions against a community
standard. This paper is intended to accompany those code modules,
by providing an English description of these baselines. We hope
this paper will also serve to encourage more AAMAS researchers
to participate in future renditions of ANAC by easing the barrier to
entry, and by clarifying what progress in automated negotiation
means, as something akin to increasing accuracy on a supervised
learning task.

KEYWORDS
Automated bilateral negotiation, preference uncertainty, learning
utility functions
ACM Reference Format:
Kotone Ninagawa, Yasser Mohammad, and Amy Greenwald. 2021. Baseline
Strategies for the ANAC Automated Negotiation League. In Appears at the
3rd Games, Agents, and Incentives Workshop (GAIW 2021). Held as part of
the Workshops at the 20th International Conference on Autonomous Agents
and Multiagent Systems., London, UK, May 2021, IFAAMAS, 9 pages.

1 INTRODUCTION
Negotiation is one of the most prevalent methods for reaching
agreements between self-interested parties. Negotiation research
can be traced back to Nash’s seminal work on bargaining theory [8],
and Rubinstein’s analysis of the alternating offers protocol in the
perfect-information case [10], both major game-theoretic advances.
More recently, the study of automated negotiation has attracted
researchers in multi-agent systems (e.g., [5]) and machine learning

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Appears at the 3rd Games, Agents, and Incentives Workshop (GAIW 2021). Held as part of
theWorkshops at the 20th International Conference onAutonomous Agents andMultiagent
Systems., Aziz, Ceppi, Dickerson, Hosseini, Lev, Mattei, McElfresh, Zick (chairs), May
2021, London, UK. © 2021 Copyright held by the owner/author(s). . . . $ACM ISBN 978-
x-xxxx-xxxx-x/YY/MM

(e.g., [6]). In automated negotiation, autonomous (software) agents
negotiate among themselves, or with human negotiators, on behalf
of their users.

The Automated Negotiation Agent Competition (ANAC) is an
international tournament that serves as a benchmark for evaluating
automated negotiation strategies. In the 2020 Automated Negoti-
ation League (ANL), in particular, the challenge was “to design a
negotiating agent that can elicit preference information from a user
during a negotiation.” In other words, agents represent a user whose
utility function it does not know. The agent is instead given a partial
ranking of outcomes, based on which it can infer its user’s utility
function. Additionally, it may elicit further information about the
utility function by querying the user and incurring an elicitation
cost. On the implementation side, agents run two parallel threads;
one is used to place elicitation queries, and the other, to negotiate.
This way, an agent can elicit information from its user while simul-
taneously negotiating with its negotiation partner, also known as
its opponent.

The negotiation mechanism adopted by ANL is a variant of
Rubinstein’s alternating offers protocol [10] called the Stacked
Alternating Offers Protocol [2]. It involves two agents, who take
turns making offers for a finite number of rounds and/or seconds.
One agent opens the negotiation with an offer, after which the other
agent takes one of the following actions:

(1) Accepts the offer
(2) Responds with a counteroffer, thus rejecting and overriding

the previous offer
(3) Walks away, thus declaring an end to the negotiation, with-

out having reached an agreement

This process repeats until either an agreement or a deadline is
reached. To reach an agreement, both parties must accept the offer.
If no agreement is reached by the deadline, the negotiation fails.

While a game-theoretic analysis of this negotiation mechanism
might prescribe a reasonable strategy for an agent, carrying out
such an analysis is highly non-trivial. Not only is it an incomplete-
information game, in the sense that knowledge of the opponent’s
utility function is limited, the agent does not even have complete
knowledge of its own (i.e., its user’s) utility function. Indeed, de-
riving the game-theoretic equilibria of this negotiation game is a
wide open problem.

As an alternative heuristic, yet tractable, approach, we identify
three core subproblems this game comprises, and present baseline
solutions to each one, which together formed agentKT (agentKiT-
sune), a finalist in ANL 2020. The three core subproblems are: 1. user
modelling: eliciting the user’s preferences in the form of a partial
ranking of outcomes, and learning the user’s utility function from
this partial ranking; 2. opponent modelling: inferring the opponent’s

negotiation strategy and its utility function from its observed be-
havior, namely the offers it places; and 3. developing an empirically
robust negotiation strategy, both for placing and accepting offers.

To solve the user modelling problem, our agent’s elicitation
method places carefully constructed queries, each of which gen-
erates comparisons across multiple outcomes. The user’s utility
function is then learned by converting these comparison data into
a regression problem. We do not attempt to model the opponent’s
negotiation strategy, as that would be exceedingly difficult in recent
renditions of ANL, because negotiations are short, and the rules
prohibit learning across negotiations. Instead, we model only the
opponent’s utility function, based on the opponent’s offers. Finally,
our agent’s negotiation strategy, which relies on our estimates of
the user’s and the opponent’s utility functions, is, like most ANAC
agents’, time-dependent [5]. Specifically, it incorporates ideas used
by Atlas3 [12], the winning agent in ANAC 2015.

The purpose of this paper is to formally define the core subprob-
lems that agentKT solves, and to describe its heuristic solutions, so
that they can serve as baselines by which to gauge research progress
in future runs of the competition. Indeed, the ANL organizers are
planning to incorporate our code modules into an upcoming release
of their platform for exactly this reason—so that future developers
can benchmark their proposed solutions against a community stan-
dard. This paper is intended to accompany those code modules, by
providing an English description of these baselines.

This paper is organized as follows. In Section 2, we describe our
agent’s method of inferring its user’s utility function. Section 3
then outlines our agent’s approach to opponent modelling. We
next present our agent’s elicitation method (Section 4). Section 5
describes our agent’s offering and acceptance strategies. Our ac-
ceptance strategy is not original; we did our best to re-implement
the strategy of the winning agent from 2015 [12], and present here
an English description of our understanding of their strategy, as
none was available previously, to our knowledge. In Section 6, we
present a cursory evaluation of our agent’s overall performance.
Demonstrating our agent’s overall success is not our primary goal;
establishing baselines is. Section 7 outlines the ANAC 2020 compe-
tition results.

2 INFERRING THE USER’S UTILITY
FUNCTION

In ANL 2020, agents do not know the user’s utility function, but
are instead given a partial ranking of the user’s preferred outcomes.
This partial ranking always includes two labelled outcomes, 𝜔worst
and 𝜔best, whose utilities are minimal and maximal, and whose
values we assume to be 0 and 1, respectively. Here, we describe how
our agent infers its user’s utility function given this information.

Problem Statement. Let Ω denote the space of outcomes, with
notable outcomes 𝜔worst and 𝜔best, and let 𝑓 : Ω → R denote
the user’s utility function. Given a small, but non-empty, set of
comparison data C = {𝜔𝑖 ≥ 𝜔 ′

𝑖
| 𝑖 = 1, . . . ,𝑚} that includes the

agent’s least and most preferred outcomes, where a pair 𝜔𝑖 ≥ 𝜔 ′
𝑖

indicates that the user prefers outcome 𝜔𝑖 to outcome 𝜔 ′
𝑖
, we aim

to infer an estimate 𝑓 of the user’s true utility function 𝑓 . □
Let 𝐾 denote the total number of issues in a negotiation domain.

For issue 𝑘 ∈ {1, . . . , 𝐾}, let 𝑉𝑘 denote the set of possible values,

with |𝑉𝑘 | = 𝐽𝑘 . For example, if the negotiation domain is “party,” is-
sue 1 is “food for a party,” and the possible food items are pizza, sushi,
pasta, and sandwiches, then𝑉1 = {pizza, sushi, pasta, sandwiches}
and 𝐽1 = 4. We also let 𝜋𝑘 (𝜔) ∈ 𝑉𝑘 be a selection function that
returns the value of issue 𝑘 under outcome 𝜔 . Continuing with our
example, if outcome 𝜔’s value for issue 1 is sushi, then 𝜋1 (𝜔) =

sushi.
In ANL 2020, the agent is also told that its user’s utility function

𝑓 has linear structure. For issue 𝑘 ∈ {1, . . . , 𝐾}, let 𝑓𝑘 : 𝑉𝑘 → [0, 1]
be a function that maps issue 𝑘’s values to utilities. Then 𝑓 is
defined as a convex combination of 𝑓𝑘 ’s, weighted by 𝜃𝑘 ’s, where
𝜃𝑘 ∈ [0, 1] and ∑𝐾

𝑘=1 𝜃𝑘 = 1. That is, 𝑓 (𝜔) =
∑𝐾
𝑘=1 𝜃𝑘 𝑓𝑘 (𝜋𝑘 (𝜔)).

AgentKT estimates the requisite weights using a heuristic by which
it predicts the relative importance of the issues to the user.

If the 𝐾 issues are sorted in ascending order of importance (from
least important to most important) such that 𝜎 (𝑘) denotes the
importance of issue 𝑘 (i.e., its rank in this list), we set

𝜃𝑘 =
1
2𝐾

+ 𝜎 (𝑘) − 1
𝐾 (𝐾 − 1) (1)

This procedure amounts to setting 𝜃𝜎−1 (1) =
1
2𝐾 (for the least impor-

tant issue) and 𝜃𝜎−1 (𝐾) =
3
2𝐾 (for the most important issue), with

the remaining 𝜃𝑘 ’s taking values in between, in uniform increments.
Observe that 𝜃𝑘 ∈ [0, 1] and ∑𝐾

𝑘=1 𝜃𝑘 = 1.
We explain how we set the order of importance of the issues

for our user and for the opponent in Sections 4 and 3, respectively.
Given such an ordering, Figure 1 presents an example of the corre-
sponding 𝜃𝑘 ’s.

Figure 1: Example 𝜃𝑘 ’s when 𝐾 = 5. The order of importance
of the 5 issues, from least to most, is food, drinks, dessert,
location, music.

Regression. Given a set of𝑚 pairwise comparisons, we seek
functions 𝑓𝑘 such that 𝑓 is consistent with the given comparisons.
To find such 𝑓𝑘 , we associate the 𝑖th comparison 𝜔𝑖 ≥ 𝜔 ′

𝑖
with

the constraint 𝑓 (𝜔𝑖) ≥ 𝑓 (𝜔 ′
𝑖
). We then use the COBYLA optimiza-

tion method [9] to minimize the sum of the utility differences of
consecutive outcomes in the partial ranking.

More formally, given 𝜃𝑘 , for all 𝑘 ∈ {1, . . . , 𝐾}, and given the
outcomes 𝜔worst (𝜔best) whose utilities are minimal (maximal),

min
𝑓𝑘 ∈R𝐽𝑘 ,𝑘∈{1,...,𝐾 };𝜖𝑖 ≥0,𝑖∈{1,...,𝑚}

𝑚∑
𝑖=1

𝜖𝑖 (2)

s.t.

𝑓 (𝜔𝑖) + 𝜖𝑖 ≥ 𝑓 (𝜔 ′
𝑖), ∀𝜔𝑖 ≥ 𝜔 ′

𝑖 ,∀𝜖𝑖 ≥ 0, 𝑖 ∈ [𝑚] (3)

𝑓 (𝜔𝑖) =
𝐾∑
𝑘=1

𝜃𝑘 𝑓𝑘 (𝜋𝑘 (𝜔𝑖)), ∀𝑖 ∈ [𝑚] (4)

𝑓𝑘 (𝜋𝑘 (𝜔worst)) = 0, ∀𝑘 ∈ {1, . . . , 𝐾} (5)
𝑓𝑘 (𝜋𝑘 (𝜔best)) = 1, ∀𝑘 ∈ {1, . . . , 𝐾} (6)

The COBYLA optimization package allows the developer to ini-
tialize the decision variables based on their domain knowledge, to
aid the solver. We did not avail ourselves of this opportunity; we
simply initialized the 𝑓𝑘 ’s uniformly at random.

3 INFERRING THE OPPONENT’S UTILITY
FUNCTION

While the structure of the opponent’s utility function 𝑓 ′ is known
to be identical to our own agent’s: i.e., 𝑓 ′(𝜔) = ∑𝐾

𝑘=1 𝜃
′
𝑘
𝑓 ′
𝑘
(𝜋𝑘 (𝜔)),

inferring the opponent’s utility function is harder than inferring
the user’s for two reasons: first, the opponent’s best and worst
outcomes are unknown, and second, the agent is not given a partial
ranking of the opponent’s preferred outcomes.

Problem Statement. Let Ω denote the space of outcomes, and
let 𝑓 : Ω → R denote the user’s utility function. Given an initially
empty set of comparison data C = {𝜔𝑖 ≥ 𝜔 ′

𝑖
| 𝑖 = 1, . . . ,𝑚}, where a

pair 𝜔𝑖 ≥ 𝜔 ′
𝑖
indicates that the user prefers outcome 𝜔𝑖 to outcome

𝜔 ′
𝑖
, we aim to infer an estimate 𝑓 of the opponent’s true utility

function 𝑓 . □
As we do not know the opponent’s best and worst outcomes, we

cannot immediately apply the aforementioned regression solution
that we use to infer the user’s utility function. Instead, agentKT
builds its estimate of the opponent’s utility function using the
information contained in the outcomes the opponent offers during
each round of negotiation. For example, if an agent repeatedly offer
sushi as “food for a party,” it is reasonable to infer that it prefers
sushi.

More specifically, to estimate the opponent’s utility function, we
first create a frequency map of the values in each issue based on
the opponent’s offers. Fix an issue 𝑘 , and let 𝑗 ∈ {1, . . . , 𝐽𝑘 } denote
its values. We write ℎ𝑘 to denote the frequency map for issue 𝑘 ,
where ℎ𝑘 (𝑗) is the number of times value 𝑗 has been proposed by
the opponent so far. We also write 𝑗most ∈ argmax𝑗 ∈{1,...,𝐽𝑘 } ℎ𝑘 (𝑗)
be an issue with the highest frequency. Finally, 𝑍 denotes the sum
of all frequencies except for that of 𝑗most: i.e., 𝑍 =

∑
𝑗≠𝑗most ℎ𝑘 (𝑗).

We now take as our estimate of 𝑓 ′
𝑘
proportional frequencies, as

follows:

𝑓 ′
𝑘
(𝑗) =


1 if 𝑗 = 𝑗most
0 else if 𝑍 = 0
ℎ𝑘 (𝑗)
𝑍

otherwise
. (7)

Figure 2 shows two examples of calculating 𝑓 ′
𝑘
from a frequency

map. The value of 𝑓 ′1 for sandwiches is 1, because it is the value
with the maximum frequency, while 𝑓 ′1 for sushi is 3

24 , because the
frequency of sushi is 3 and the sum of frequencies of everything
but sandwiches is 24.

Similar to how our agent sets the weights 𝜃𝑘 for its own user,
our agent also sets the weights for the opponent using Equation 1.
Thus, it remains only to specify the way in which we determine
the order of importance of the issues to the opponent.

We ascribe greater importance to an issue for the opponent when
we have greater certainty over their preferences for that issue.
Indeed, our importance ordering heuristic is related to entropy.
Formally, we define the importance of issue 𝑘 to the opponent to
be:

imp𝑘 =

∑𝐽𝑘
𝑖=1 𝑓

′
𝑘
(𝑖) ℎ𝑘 (𝑖)∑𝐽𝑘

𝑖=1 ℎ𝑘 (𝑖)
=

∑𝐽𝑘
𝑖=1 𝑓

′
𝑘
(𝑖) ℎ𝑘 (𝑖)

𝑍 + ℎ𝑘 (𝑗most)
. (8)

In Figure 2, we also calculate the imp𝑘 values for food and drinks
from our sample frequency map. Note that normalization factor is
the same for both issues (46), but the agent is more certain about the
opponent’s preferences over issue 1, as the values in the frequency
map are more spread out. Using this formula, issues for which the
agent is more certain about the opponent’s preferences result in
larger imp𝑘 values.

We have thus explained how our agent estimates the values
𝑓 ′
𝑘
(𝑗) of each value 𝑗 of each issue 𝑘 , and how our agent estimates

the weights 𝜃𝑘 for each issue. Combining this information linearly,
agentKT constructs an estimate 𝑓 of the opponent’s utility function.

4 ELICITATION METHOD
The preference elicitation problem, i.e., the search for queries to
place that yield the greatest utility gain, has been a subject of study
for decades (e.g., [4]). The variant of this problem of interest here,
however, is one in which elicitation is coupled with negotiation
(e.g., [3] and [7]). In particular, potential utility gains must be eval-
uated with respect to negotiation outcomes, which depend in turn
on negotiation strategies. Put slightly differently, given a solution
to the problem of inferring the user’s utility function (Section 2),
the elicitation problem asks how to best extend the partial ranking
so that the agent can infer whatever is most relevant about the
user’s utility function to make the negotiation a success.

Recall that, in ANL, agents begin with a partial picture of the
user’s preferences in the form of a ranking 𝑅 of a subset of the
outcomes of size 𝑛. To obtain more information about the user’s
utility function, agents can query the user at some cost. Each such
query sends a single outcome 𝜔 and the current ranking 𝑅, and
receives an updated ranking 𝑅′ that includes 𝜔 , say at position 𝑖 (of
𝑛 + 1): i.e., 𝑅′(𝜔) = 𝑖 . Placing such a query is equivalent to asking
𝑛 comparison questions, each one comparing 𝜔 to one of the 𝑛
outcomes in 𝑅. These 𝑛 additional pairs can be used to update the
agent’s estimate of the user’s utility function using, for example,
the method described in Section 2.

Because more principled approaches that consider elicitation as
a sequential decision problem (e.g., [4]) are too computationally
intensive, we instead describe a popular heuristic approach to the
preference elicitation problem in the negotiation context (e.g., [3]
and [7]), which employs a greedy policy. This policy continually
poses a query that maximizes a quantity called expected value of in-
formation (VOI), as long as the expected VOI exceeds the elicitation
cost. We now define expected VOI.

Figure 2: Example 𝑓 ′
𝑘
and impk derivations of issues with different frequencies (ℎ𝑘 ’s).

Assume an opponent with a fixed negotiation strategy that is
known to the agent.1 Assume further that the agent can compute a
best response to this strategy. Note that this best response varies
with the user’s utility function, and that the agent’s estimate of the
user’s utility function varies with its information about the user,
and hence, the user’s responses to the agent’s queries.

To determine the (myopic2) value of a query, the agent need
only compute the difference between two competing quantities: the
value of its best response to the opponent’s negotiation strategy,
given its current estimate, 𝑓 , of the user’s utility function, say𝑉 ∗ (𝑓);
and the value of its best response to the opponent’s negotiation
strategy, given an updated estimate, 𝑓𝑖 , of the user’s utility function
based on the response to the query (e.g., position 𝑖), say𝑉 ∗ (𝑓𝑖). The
quantity 𝑉 ∗ (𝑓𝑖) −𝑉 ∗ (𝑓) is called the value of information (VOI).

One difficulty with computing VOI is that the response to a
query is not known until after the agent places the query. What
may be known (or possible to estimate), however, is a probabil-
ity distribution 𝑝 over where in the partial ranking the response
might fall. As each possible position 𝑖 gives rise to an alterna-
tive utility function 𝑓𝑖 , we can thus compute the expected value
𝑉 ∗ (𝑝) = ∑𝑛

𝑖=1 𝑝 (𝑅(𝜔) = 𝑖)𝑉 ∗ (𝑓𝑖), and likewise, the expected VOI,
𝑉 ∗ (𝑝) −𝑉 ∗ (𝑓), where 𝑝 (𝑅(𝜔) = 𝑖) denotes the probability outcome
𝜔 lies in position 𝑖 .

Myopic Problem Statement. Compute an optimal query, by
finding one that maximizes (myopic) expected VOI.3 □

AgentKT does not explicitly employ a greedy preference elicita-
tion strategy, or compute VOI per se. One reason for this is, doing
so would require that the agent learn the opponent’s negotiation
strategy, but it is difficult, if not impossible, to accomplish this feat
in ANL. Nonetheless, our agent uses a very basic heuristic elici-
tation method that can be interpreted as roughly approximating
such a greedy policy: it places queries whose information content
we expect to exceed their cost, as determined anecdotally by our
personal experience building negotiation agents for ANL.

1The opponent’s negotiation strategy is not usually known to the agent, but it may
be possible to learn this strategy via repeated negotiations. However, this learning
capability is not available in the current rendition of ANL.
2This approach is heuristic, because it only computes myopic query values. It does not
attempt to evaluate query policies (i.e., sequences of queries). These myopic values are
typically combined with a greedy query policy.
3We refer the reader to [3] and [7] for a more formal treatment of value of information.

In particular, we surmised that a certain 𝐾 + 3 queries are likely
to be high in information content.4 The first 𝐾 of these queries
are used to determine the requisite per-issue weights 𝜃𝑘 (i.e., the
estimated importance of the 𝐾 issues to the user; see Section 2), a
necessary input to our regression module. After issuing these 𝐾
queries, the per-issue weights and the initial partial ranking are fed
to the regression module, to infer an estimate of the user’s utility
function. Then, three additional queries are placed, after each of
which the same per-issue weights and the incrementally expanded
rankings are again fed to the regression module, to improve the
estimate of the user’s utility function. After this fourth call to the
regression module, the resulting utility function estimate is used
throughout the remainder of the negotiation.

It remains to specify these𝐾 +3 queries. AgentKT determines the
first 𝐾 queries as follows: for all 𝑘 ∈ {1 . . . , 𝐾}, the query is almost
𝜔best, except that the value of the 𝑘th issue in 𝜔best, i.e., 𝜋𝑘 (𝜔best),
is replaced with 𝜋𝑘 (𝜔worst). In the example shown in Figure 3, this
amounts to querying the following outcomes:

𝜔change_location, 𝜔change_food,

𝜔change_dessert, 𝜔change_drinks, 𝜔change_music . (9)

The user’s replies to these queries reveal to the agent the relative
importance of the 𝐾 issues. For example, if the user’s preference is
𝜔change_music < 𝜔change_location < 𝜔change_dessert < 𝜔change_drinks <
𝜔change_food, it indicates that changing the value of the issue “music”
from “jazz” to “classical,” as in 𝜔change_music, results in the great-
est decrease in utility, and thus the issue music is most important.
Hence, in this example, the order of importance of the issues is: food
< drinks < dessert < location < music. This order of importance of
the issues of our agent is used to derive the per-issue weights 𝜃𝑘 .

After issuing these 𝐾 queries, agentKT places queries on three
additional outcomes. These outcomes are the first three outcomes
not yet in the partial ranking that agentKT chooses to offer through
the offering strategy described in Section 5. As the elicitation thread
is separate from the negotiation thread, it is not guaranteed, but it
is likely, that these three outcomes are determined by the offering
strategy that is in play during the discussion phase. According
to agentKT ’s current estimate of the user’s utility function, these
outcomes are expected to yield high utility. The agent places these
queries to confirm this suspicion.
4The number three is arbitrary (i.e., it is not experimentally grounded); we did not
have time to optimize this hyperparameter before the 2020 competition.

Figure 3: Example of 𝐾 possible initial queries (i.e., the first 𝐾 of our agent’s 𝐾 + 3 queries).

5 NEGOTIATION STRATEGY
Undertaking a game-theoretic analysis of the negotiation problem
posed by ANL does not appear to be tractable. Were we able to
carry out such an analysis to arrive at a game-theoretic equilibrium,
that equilibrium would provide a prediction about the opponent’s
behavior. There are other ways to make such predictions, such as
learning over the course of repeated negotiations, but repeated
negotiation is not currently a feature of ANL.

Barring much opportunity for immediate success by pursuing ei-
ther of these two more-principled alternatives, our approach was to
do our best to develop a robust heuristic strategy that performs well
empirically: i.e., that negotiates well with the agents that are typical
of ANL, most of which are heuristic time-based strategies [5]. Agen-
tKT thus also employs a time-based strategy, which incorporates
its estimates of both the user’s and the opponent’s utility functions.

AgentKT ’s time-based strategy makes its decisions as a function
of the time 𝑡 , where 𝑡 = (Current Round)/(Total Number of Rounds).
We call the first𝑇 rounds the initial phase, round𝑇 +1 to 𝑡 ≤ 0.5 the
discussion phase, 0.5 < 𝑡 ≤ 0.95 the consideration phase, 0.95 < 𝑡 < 1
the joint preference phase, and 𝑡 = 1 the final round. A summary of
these phases and the agent’s corresponding strategies is shown in
Figure 4.

Initial phase.Our agent is in the process of eliciting information
to estimate its user’s utility function. It always offers 𝜔best, and
does not accept any offers from the opponent.

Discussion phase. Our agent obtains information about the
tendencies in the opponent’s offer and lets the opponent know
about its own preferences. It offers an outcome uniformly at random
from a time-dependent setX = {𝜔 | 𝑓 (𝜔) > 0.95−0.5 · 𝑡2, 𝜔 ∈ Ω},
and does not accept any offers from the opponent.

Consideration phase. Our agent uses its estimates of its user
and the opponent’s utility functions when offering outcomes, and
accepts offers based on the time-dependent threshold developed
in agent Atlas3 [12] from ANAC 2015, which we describe here for
completeness. We could not find this strategy explained in prose
anywhere, so this description derives from our understanding of
the Atlas3 code.

Let 𝑢joint (𝑡) be the expected joint utility of both the agent and
its oppponent at time 𝑡 , with additional time-dependent weight on
its own utility as follows: 𝑢joint (𝑡) = (1.8 − 0.3 · 𝑡2) 𝑓 (𝜔) + 𝑓 ′(𝜔).
As 𝑡 increases from 0 to 1, the weight on its own utility decreases

from 1.8 to 1.5, while the weight on the opponent’s utility remains
1. This weighting ascribes greater weight to the agent’s own utility
at all times 𝑡 ∈ [0, 1], while allowing the relative weight of the
opponent’s utility to increase over time.

Let 𝜔maxJoint (𝑡) be an outcome with the maximum joint utility
𝑢joint, at time 𝑡 . That is, 𝜔maxJoint (𝑡) ∈ argmax𝜔 ∈X 𝑢joint (𝑡). Our
agent offers an outcome uniformly at random from the set Y =

{𝜔 | 𝑓 (𝜔) ≥ f̂ (𝜔maxJoint (𝑡)), 𝜔 ∈ X}.
Figure 5 shows an example of deriving the setY from 𝑓 s and 𝑓 ′s

at times 𝑡 = 0.7 and 𝑡 = 0.9. We can see that outcome 𝜔𝐵 has the
maximum non-weighted joint utility 𝑓 + 𝑓 ′. However, at 𝑡 = 0.7,
𝜔maxJoint = 𝜔𝐷 , since 𝑓 (𝜔𝐷) = 0.98 and large weight is ascribed
to 𝑓 . At 𝑡 = 0.9 though, 𝜔maxJoint = 𝜔𝐵 , because the weight on 𝑓
decreases as 𝑡 increases, so relative to before, more weight is put
on 𝑓 ′. In sum, the size of the set Y increases over time, and our
agent likewise places more generous offers.

The acceptance strategy of Atlas3 is a time-dependent thresh-
olding strategy. In a thresholding strategy, an agent accepts any
offer above a certain threshold 𝑏, which usually derives from its
user’s utility function and time. For Atlas3, this threshold is a linear
function of time, namely 𝑏 = 1 − 𝑡 · (1 − E[𝑢final]), where E[𝑢final]
is the user’s expected final utility. Equivalently, 𝑏 = E[𝑢final] + (1−
E[𝑢final]) (1 − 𝑡). Based on this equation, 𝑏 is initialized to 1 and
then decreases to E[𝑢final] as 𝑡 increases from 0 to 1.

To calculate E[𝑢final], an estimate of E[𝑢final], Atlas3 first con-
structs a prediction 𝑞 ∈ [0, 1] of the likelihood that the opponent
is hardliner (where 𝑞 = 0 indicates low likelihood and 𝑞 = 1 indi-
cates high likelihood). This prediction is based on the estimated
utility of the opponent’s best offer. Specifically, 𝑞 is highest when
the estimated utility of the opponent’s best offer is lower than
our agent’s reservation value, and decreases as the estimated util-
ity of the opponent’s best offer increases. Atlas3 then estimates
its expected final utility assuming it concedes in the final round:
E[𝑢final] = 𝑞𝑢 (CH) + (1 − 𝑞)𝑢 (CC). Here, 𝑢 (HC) is Atlas3’s final
utility when it is a hardliner and the opponent is a conceder, while
𝑢 (CH) is defined symmetrically. The notation 𝑢 (HH) and 𝑢 (CC)
are likewise defined, and

𝑞 =
1

1 + 𝑢 (CH)−𝑢 (HH)
𝑢 (HC)−𝑢 (CC)

. (10)

Figure 4: Summary of phases and corresponding strategies. The blue dots represent agentKT ’s utility of its offers during a
negotiation. The red dots represent the utility of the opponent, for the opponent’s offers, except during the joint phase, where
the opponent’s utility for agentKT ’s offers is also shown. In this negotiation, the opponent is a hardliner.

Figure 5: Sample 𝜔maxJoint and Y derivations.

Let𝜔reserve be the reservation outcome and let𝜔bestOffered be the
outcome with the highest estimated utility so far.Atlas3 instantiates
the variables in Equation 10 as follows:

• 𝑢 (CH) is agentKT ’s final utility when it is a conceder and its
opponent is a hardliner.Atlas3 sets CH equal to themaximum
of 𝑓 (𝜔reserve) and 𝑓 (𝜔bestOffered).

• 𝑢 (HH) is agentKT ’s final utility when both agents are hard-
liners, which is the estimated reservation value 𝑓 (𝜔reserve),
since any such negotiation would end without either party
accepting an offer.

• 𝑢 (HC) is agentKT ’s final utility when it is a hardliner and
its opponent is a conceder. Atlas3 takes this value to be 1,
which is the maximum possible utility of any outcome.

• 𝑢 (CC) is agentKT ’s final utility when both agents are conced-
ers. As either of the two agents can concede first, with equal
probability, Atlas3 takes CC to be equal to 1

2 · CH + 1
2 · HC.

Plugging back in to the formula for 𝑞 (Equation 10) yields:

𝑞 =
1

1 + 2
(
max(𝑓 (𝜔reserve),𝑓 (𝜔bestOffered))−𝑓 (𝜔reserve)

1−max(𝑓 (𝜔reserve),𝑓 (𝜔bestOffered))

)
The fractional term in the denominator is 0 when 𝑓 (𝜔BestOffered) ≤
𝑓 (𝜔reserve), and is otherwise unbounded as 𝑓 (𝜔BestOffered) approaches
1. Therefore, 𝑞 is 1 when 𝑓 (𝜔BestOffered) ≤ 𝑓 (𝜔reserve), and tends to
0 as 𝑓 (𝜔BestOffered) increases.More specifically, when 𝑓 (𝜔BestOffered) >
𝑓 (𝜔reserve), then 𝑞 is a function of where 𝑓 (𝜔BestOffered) lies rela-
tive to the minimum utility 𝑓 (𝜔reserve) and the maximum utility 1.
As 𝑓 (𝜔BestOffered) approaches its minimum, 𝑞 increases, as the op-
ponent is behaving more like a hardliner. But when 𝑓 (𝜔BestOffered)
approaches its maximum, 𝑞 decreases, as the opponent is behaving
more like a conceder. Figure 6 shows two sample 𝑞 derivations
which exemplify this behavior.

Figure 6: Two sample 𝑞 derivations, one per case.

Joint preference phase. Our agent offers outcome 𝜔maxJoint,
and accepts under the same conditions as in the consideration phase.

Final round. Our agent offers outcome 𝜔maxJoint, and accepts
any offer that has a greater utility than its reservation value, which
is estimated by evaluating 𝑓 at the reservation outcome, which the
agent is given.

Rank Agent Name Utility Penalty Score
1 AhBuNe Agent 0.6623472 0.0069614 0.6553858
2 Hamming agent 0.64844519 0 0.64844519
3 Shine agent 0.65906589 0.01867582 0.64039007
4 AgentKT 0.66398437 0.03039321 0.63359116
5 ANGEL party 0.60963705 0 0.60963705

Table 1: Overall ranking of the finalists (the five top-
performing agents) in the ANAC 2020 Automated Negotia-
tion League.

6 EVALUATION
Having described agentKT ’s strategy, we now present two experi-
ments that demonstrate its behavior. As in Figure 4, in the plots in
this section, the blue dots represent agentKT ’s utility, while the red
dots represent the opponent’s utility.

vs. agentKT. In this run (Figure 7), we observe that when run-
ning against itself, agentKT performs very well, achieving a high
individual utility (0.9501 and 0.9088) as well as a high joint utility
(1.8589). This is likely due to the two agents modelling their oppo-
nent’s utility function in the same way the opponent models its
own utility function.

vs. Hardliner In this run (Figure 8), we can see how agentKT
gradually changes its bidding strategy. Although no agreement
is achieved in this negotiation, because the hardliner opponent
only offers and accepts the maximum utility outcome, agentKT
nonetheless eventually finds an outcome that yields high utility
(∼0.78) for both parties.

7 COMPETITION PERFORMANCE
ANAC 2020 was held as part of the 29th International Joint Con-
ference on Artificial Intelligence. Table 1 lists the ranking of all
finalists in the Automated Negotiation League. AgentKT performed
well, earning the 4th highest overall score, which is calculated by
subtracting the agent’s average elicitation penalty from its average
utility. In fact, AgentKT earned the highest average utility value, but
at the same time, it incurred substantially higher elicitation costs
than any of the other agents. This large expense was a result of its
elicitation method, which placed a fixed number of queries, regard-
less of the initial size of the partial ranking. The fact that two of the
five finalists incurred zero elicitation costs suggests that elicitation
was not actually essential to performing well in the competition.
On the contrary, it appears that the initial partial rankings already
contained sufficient information about the user’s utility function.
We would not expect this to be the case in general; on the other
hand, an elicitation method should be flexible enough to recognize
when this is the case and curtail its questioning accordingly.

8 CONCLUSION
The Automated Negotiating Agents Competition (ANAC), like most
competitions of its ilk, is intended to foster research in a domain,
by creating a common problem for researchers to address. The
problem, in the case of ANAC’s Automated Negotiation League,
is to design an agent strategy for a simulated negotiation setting.
The negotiation task alone is notoriously difficult, even without the

added complications posed by mixing in the preference elicitation
task. Consequently, a principled approach to deriving a strategy,
such as solving for an equilibrium of this game, is not likely to
yield fruit in the short term. Alternatively, it is possible to break
this complex problem down into various constituent parts, address
each of those in a principled way, and piece them together to arrive
at a semi-principled overall agent strategy.

The goal of this paper is to describe the constituent parts of the
problem posed by ANL 2020, and to propose baseline heuristics to
solve each of these parts. To this end, we described agentKT, an
automated negotiation agent that was a finalist in this league. The
agent comprises four basic modules. The user’s utility function is
learned by converting a partial ranking of outcomes into compari-
son data, which then defines a regression problem that we solve
using linear programming. A model of the opponent’s utility func-
tion is built by using the opponent’s offers to construct a measure
of uncertainty like entropy. Our elicitation method places a fixed
number of carefully constructed queries, each of which generates
comparisons across multiple outcomes, to be fed to our regressor.
Finally, our negotiation strategy is time-dependent.

As we provide only baseline heuristic solutions for these core
subproblems, there are many directions for future work. For exam-
ple, we are already testing our linear regression method against
alternative linear and non-linear regressors that do not rely on
a heuristic to set the values of the 𝜃𝑘 ’s. Preliminary experiments
show that a linear regression that is not constrained by heuristically-
determined settings of the 𝜃𝑘 ’s—i.e., one that instead directly incor-
porates these weights into the per-value estimates 𝑓𝑘 ’s—performs
more accurately than the linear regression we used in agentKT in
2020. Likewise, a non-linear regression that simultaneously opti-
mizes both 𝑓𝑘 ’s and 𝜃𝑘 ’s also outperforms our method, but only at a
substantially increased computational cost. In future work, we plan
to generalize the inference problem as one of learning a probability
distribution over, instead of a point estimate of, a utility function.
Further, we plan to extend our solution techniques to learn the
opponent’s utility function as well as the user’s.

Future work on the preference elicitation problem includes im-
plementing a variation of the Fast VOI Elicitation algorithm [11] to
decide which outcomes to elicit. Our current method elicits a fixed
number of outcomes, namely initial 𝐾 outcomes and an additional
three outcomes which the agent estimates have high expected util-
ity. In contrast, the Fast VOI Elicitation algorithm computes the
expected VOI of all queries, and then elicits an outcome with max-
imal expected VOI, if its expected VOI is greater than the cost of
elicitation. We hope and expect that these improvements will in-
crease the negotiating power, and ultimately, the utility of agentKT
in future renditions of ANL.

Notably absent from this list of core subproblems is modelling
the opponent’s negotiation strategy [1]; only the opponent’s utility
function is modelled. Modelling the opponent’s behavior is difficult
in the ANL; as negotiations are not repeated, the only opportunity
to learn about their behavior is during one, short negotiation. We
look forward to addressing this problem in future versions of ANL
that incorporate repeated negotiations (e.g., ANL 2021).

While there are many principled ways to envision improving
upon our heuristics, the primary goal of this work was to identify

Figure 7: agentKT vs. agentKT. Agreement is reached in round 191.

Figure 8: agentKT vs. Hardliner. No agreement is reached.

the core subproblems inherent in automated negotation, and to
provide heuristic solutions to these subproblems that can serve
as baselines in future runs of the competition. Indeed, the ANL
organizers are planning to incorporate our code modules into an
upcoming release of their platform for exactly this reason—so that
future developers can benchmark their solutions against a com-
munity standard. This paper is intended to accompany those code
modules, by providing an English description of these baselines.
We hope this paper will also serve to encourage more AAMAS

researchers to participate in future renditions of ANAC by easing
the barrier to entry, and by clarifying what progress in automated
negotiation means, as something akin to increasing accuracy on a
supervised learning task.

REFERENCES
[1] 2016. Learning about the opponent in automated bilateral negotiation: a com-

prehensive survey of opponent modeling techniques. Autonomous Agents and
Multi-Agent Systems 30, 5 (1 Sept. 2016), 849–898. https://doi.org/10.1007/s10458-
015-9309-1

https://doi.org/10.1007/s10458-015-9309-1
https://doi.org/10.1007/s10458-015-9309-1

[2] Reyhan Aydoğan, David Festen, Koen V Hindriks, and Catholijn M Jonker. 2017.
Alternating offers protocols for multilateral negotiation. In Modern Approaches
to Agent-based Complex Automated Negotiation. Springer, 153–167.

[3] Tim Baarslag and Michael Kaisers. 2017. The value of information in automated
negotiation: A decision model for eliciting user preferences. In Proceedings of the
16th Conference on Autonomous Agents and MultiAgent Systems. International
Foundation for Autonomous Agents and Multiagent Systems, 391–400.

[4] Craig Boutilier. 2002. A POMDP formulation of preference elicitation problems.
In AAAI/IAAI. 239–246.

[5] Peyman Faratin, Carles Sierra, and Nick R Jennings. 1998. Negotiation decision
functions for autonomous agents. Robotics and Autonomous Systems 24, 3-4 (1998),
159–182.

[6] Cuihong Li, Joseph Giampapa, and Katia Sycara. 2006. Bilateral negotiation
decisions with uncertain dynamic outside options. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews) 36, 1 (2006), 31–44.

[7] Yasser Mohammad and Shinji Nakadai. 2019. Optimal Value of Information Based
Elicitation During Negotiation. In Proceedings of the 18th International Conference

on Autonomous Agents and MultiAgent Systems (Montreal QC, Canada) (AAMAS
’19). International Foundation for Autonomous Agents and Multiagent Systems,
242–250.

[8] John F Nash Jr. 1950. The bargaining problem. Econometrica: Journal of the
Econometric Society (1950), 155–162.

[9] Michael J. D. Powell. 1994. A Direct Search Optimization Method That Models
the Objective and Constraint Functions by Linear Interpolation. Advances in
Optimization and Numerical Analysis (1994), 51–67. https://doi.org/10.1007/978-
94-015-8330-5_4

[10] Ariel Rubinstein. 1982. Perfect equilibrium in a bargaining model. Econometrica:
Journal of the Econometric Society (1982), 97–109.

[11] Yasser Mohammad Shinji Nakadai. 2018. FastVOI: Efficient Utility Elicitation
During Negotiations. PRIMA 2018: Principles and Practice of Multi-Agnet Systems
11224 (2018), 560–567. https://doi.org/10.1007/978-3-030-03098-8_42

[12] Akiyuki Mori Takayuki Ito. 2016. Atlas3: Anegotiating Agent Based on Expecting
Lower Limit of Concession Function. 169–173.

https://doi.org/10.1007/978-94-015-8330-5_4
https://doi.org/10.1007/978-94-015-8330-5_4
https://doi.org/10.1007/978-3-030-03098-8_42

	Abstract
	1 Introduction
	2 Inferring the User's Utility Function
	3 Inferring the Opponent's Utility Function
	4 Elicitation Method
	5 Negotiation Strategy
	6 Evaluation
	7 Competition Performance
	8 Conclusion
	References

