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ABSTRACT
The deferred acceptance algorithm is an elegant solution to the stable
matching problem that guarantees optimality and truthfulness for
one side of the market. Despite these desirable guarantees, it is
susceptible to strategic misreporting of preferences by the agents
on the other side. We study a novel model of strategic behavior
under the deferred acceptance algorithm: manipulation through an
accomplice. Here, an agent on the proposed-to side (say, a woman)
partners with an agent on the proposing side—an accomplice—to
manipulate on her behalf (possibly at the expense of worsening
his match). We show that the optimal manipulation strategy for
an accomplice comprises of promoting exactly one woman in his
true list (i.e., an inconspicuous manipulation). This structural result
immediately gives a polynomial-time algorithm for computing an
optimal accomplice manipulation. We also study the conditions
under which the manipulated matching is stable with respect to the
true preferences. Our experimental results show that accomplice
manipulation outperforms self manipulation both in terms of the
frequency of occurrence as well as the quality of matched partners.
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1 INTRODUCTION
The deferred acceptance (DA) algorithm [9] is a crowning achieve-
ment of the theory of two-sided matching [18], and forms the back-
bone of a wide array of real-world matching markets such as entry-
level labor markets [21, 24] and school choice [1, 2]. Under this
algorithm, one side of the market (colloquially, the men) makes
proposals to the other side (the women) subject to either immediate
rejection or tentative acceptance. A key property of the DA algorithm
is stability which says that no pair of unmatched agents should prefer
each other over their assigned partners. This property has played
a significant role in the long-term success of several real-world
matching markets [22, 23].
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The attractive stability guarantee of the DA algorithm, however,
comes at the cost of incentives, as any stable matching procedure is
known to be vulnerable to strategic misreporting of preferences [20].
The special proposal-rejection structure of the DA algorithm makes
truth-telling a dominant strategy for the proposing side, i.e., the
men [8, 20], implying that any strategic behavior must occur on the
proposed-to side, i.e., the women. This model of strategic behavior
by a woman—which we call self manipulation—has been the subject
of extensive study in economics and computer science [6–8, 11, 16,
17, 26, 27].

Our interest in this work is in studying a different model of strate-
gic behavior under the DA algorithm called manipulation through an
accomplice [4]. Under this model, a woman reports her preferences
truthfully, but asks an agent on the proposing side (a.k.a. an accom-
plice) to manipulate the outcome on her behalf, possibly worsening
his match in the process.

Such a strategic alliance can naturally arise in the assignment of
students to schools under a school-proposing setup, where a “well-
connected” student could have a school administrator manipulate
on his/her behalf, possibly at a small loss to the school. Similarly,
in a student-proposing setting, schools can strategize by making
themselves appear less attractive to students from low-income back-
grounds (say, by increasing rent of dormitories or requiring students
to purchase expensive uniforms), thus forcing a change in the stu-
dents’ preferences [12]. Yet another justification for accomplice
manipulation comes from thinking about strategic behaviour as a
control problem, wherein a woman can bribe a man to lie on her
behalf. Bribery has been extensively studied in computational social
choice in the context of voting, and our work can be seen as investi-
gating this phenomenon in the two-sided matching framework.

At first glance, manipulation through an accomplice might not
seem any more powerful than self manipulation, as the latter provides
direct control over the preferences of the manipulator. Interestingly,
there exist instances where this intuition turns out to be wrong.

Example 1.1 (Accomplice vs. self). Consider the following pref-
erence profile where the DA outcome is underlined. The notation
“𝑚1 : 𝑤3 𝑤2 𝑤1 𝑤4” denotes that for man𝑚1, the first choice woman
is 𝑤3, the second choice is 𝑤2, and so on.

𝒎1: 𝑤∗
3 𝑤2 𝑤1 𝑤4 𝒘1: 𝑚4 𝑚∗

3 𝑚1 𝑚2

𝑚2: 𝑤1 𝑤∗
4 𝑤2 𝑤3 𝑤2: 𝑚∗

4 𝑚3 𝑚2 𝑚1

𝑚3: 𝑤2 𝑤4 𝑤∗
1 𝑤3 𝑤3: 𝑚3 𝑚∗

1 𝑚2 𝑚4

𝑚4: 𝑤∗
2 𝑤1 𝑤3 𝑤4 𝑤4: 𝑚∗

2 𝑚1 𝑚3 𝑚4

Suppose 𝑤1 seeks to improve her match via manipulation. The
optimal self manipulation strategy for𝑤1 is truth-telling, as𝑚2 is the
only man who proposes to her under the DA algorithm. On the other
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Figure 1: Comparing no-regret accomplice manipulation and
self manipulation against truthful reporting (top) and against
each other (bottom).

hand, 𝑤1 can improve her outcome by asking 𝑚1 to misreport on
her behalf. Indeed, if 𝑚1 misreports by declaring ≻′

𝑚1B 𝑤1 ≻ 𝑤3 ≻
𝑤2 ≻ 𝑤4, then 𝑤1’s match improves from 𝑚2 to 𝑚3 (the new DA
matching is marked by ∗). Notice that the accomplice𝑚1 preserves
his initial match, meaning he does not incur any ‘regret’. □

The above example highlights that accomplice manipulation
could, in principle, have an advantage over self manipulation. How-
ever, it is not a priori clear how frequent such an advantage might be
in a typical matching scenario. To investigate the latter question, we
take a quick experimental detour.

Accomplice manipulation is a viable strategic behavior. We sim-
ulate a two-sided matching scenario for an increasingly larger set
of agents (specifically, 𝑛 ∈ {3, . . . , 40}, where 𝑛 is the number of
men/women) and for each setting, generate 1000 preference profiles
uniformly at random. For each profile, we compute the optimal self
manipulation under the DA algorithm for a fixed woman [26], as
well as the optimal accomplice manipulation by any man (we allow
any man to be chosen as an accomplice as long as he is not worse
off, i.e., a no-regret accomplice manipulation). Figure 1 illustrates
the fraction of instances where accomplice and self manipulation
are strictly more beneficial than truthful reporting, as well as how
they compare against each other.

Example 1.1 and Figure 1 suggest that the incentive for manipu-
lation through an accomplice is not only present but actually more
prevalent than self manipulation. Additionally, as we discuss later
in our experimental results, women are expected to receive better
matches when manipulating through an accomplice (Figure 2). These
promising observations call for a systematic study of the structural
and computational aspects of the accomplice manipulation problem,
which is the focus of our work.

Our contributions. We consider two models of strategic behavior—
no-regret manipulation (wherein the accomplice’s own match doesn’t
worsen upon misreporting) and with-regret manipulation (where the
accomplice could get a worse match)—and make the following
contributions:

• No-regret manipulation: Our main theoretical result (Theorem 4.3)
is that any optimal no-regret accomplice manipulation can be sim-
ulated by promoting exactly one woman in the true preference
list of the accomplice; in other words, the manipulation is in-
conspicuous [27]. This structural finding immediately gives a
polynomial-time algorithm for computing an optimal manipula-
tion (Corollary 2). We also show that the inconspicuous no-regret
strategy results in a matching that is stable with respect to the true
preferences (Corollary 3).

• With-regret manipulation: For the more permissible strategy
space that allows the accomplice to incur regret, the optimal ma-
nipulation strategy once again turns out be inconspicuous (Theo-
rem 5.2). However, in contrast to the no-regret case, the inconspic-
uous with-regret strategy is no longer guaranteed to be stability-
preserving (Example 5.1). Nevertheless, any blocking pair can be
shown to necessarily involve the accomplice (Proposition 2). This
property justifies the use of an accomplice who can be encouraged
to tolerate some regret to benefit a woman.

• Experiments: On the experimental front, we work with prefer-
ences generated uniformly at random, and find that accomplice
manipulation outperforms self manipulation with respect to the
frequency of occurrence, the quality of matched partners, and the
fraction of women who can improve their matches (Section 6).

2 RELATED WORK
The impossibility result of Roth [20] on the conflict between strat-
egyproofness and stability has led to extensive follow-up research.
Much of the earlier work in this direction focused on truncation
manipulation [5, 10, 14, 25], where the misreported preference list
is required to be a prefix of the true list. In the context of accom-
plice manipulation, however, the truncation manipulation problem
becomes trivial. Indeed, for any fixed accomplice, it is easy to see
that a truncation strategy is never better than truthful reporting as the
set of proposals under the former is always a subset of those under
the latter.

The literature on self manipulation via permutation is more recent
and has focused on computational aspects. Teo et al. [26] provided a
polynomial-time algorithm for computing the optimal permutation
manipulation by a woman under the men-proposing DA algorithm.
Vaish and Garg [27] showed that an optimal permutation manipula-
tion is, without loss of generality, inconspicuous. They also studied
conditions under which the manipulated outcome is stable with re-
spect to the true preferences. Deng et al. [7] studied permutation
manipulation by a coalition of women.

Huang [13] has studied (weakly) Pareto improving permutation
manipulation by a coalition of men, revisiting the result of Dubins
and Freedman [8] on the impossibility of manipulations that are
strictly improving for every member of the coalition.

The accomplice manipulation model was proposed by Bendlin
and Hosseini [4], who noted that manipulation through an accom-
plice can be strictly more preferable for the woman than optimal self
manipulation. However, they left the structural and computational
questions open.

Balinski and Sönmez [3] studied a closely related problem in
school choice wherein the students have an incentive to perform
worse on tests, or make themselves appear less preferable to colleges
when the college-optimal algorithm is used. Hatfield et al. [12]
similarly showed that in a student-optimal mechanism, schools have
the incentive to deliberately make themselves look less attractive to
“undesirable” students. For example, a private school that is legally
required to cap its tuition fee for low-income students could make
itself less attractive by increasing the rent in dormitories or requiring
the students to purchase expensive uniforms.
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3 PRELIMINARIES
3.1 Stable Matching Problem

Problem setup. An instance of the stable marriage problem [9] is
specified by the tuple ⟨𝑀,𝑊 , ≻⟩, where 𝑀 is a set of 𝑛 men,𝑊 is a
set of 𝑛 women, and ≻ is a preference profile which consists of the
preference lists of all agents. The preference list of any man𝑚 ∈ 𝑀 ,
denoted by ≻𝑚 , is a strict total order over all women in𝑊 (for any
𝑤 ∈𝑊 , the list ≻𝑤 is defined analogously).

We use the shorthand 𝑤1 ⪰𝑚 𝑤2 to denote ‘either 𝑤1 ≻𝑚 𝑤2
or 𝑤1 =𝑚 𝑤2’ (the latter relation denotes that man 𝑚 is indifferent
between 𝑤1 and 𝑤2), and write ≻−𝑚 to denote the preference lists
of all men and women except man𝑚; thus, ≻= {≻−𝑚, ≻𝑚}.

Stable matchings. A matching is a function 𝜇 : 𝑀 ∪𝑊 → 𝑀 ∪𝑊
such that 𝜇 (𝑚) ∈ 𝑊 for all 𝑚 ∈ 𝑀 , 𝜇 (𝑤) ∈ 𝑀 for all 𝑤 ∈ 𝑊 , and
𝜇 (𝑚) = 𝑤 if and only if 𝜇 (𝑤) =𝑚. A matching 𝜇 admits a blocking
pair with respect to the preference profile ≻ if there is a man-woman
pair (𝑚,𝑤) who prefer each other over their assigned partners under
𝜇, i.e., 𝑤 ≻𝑚 𝜇 (𝑚) and 𝑚 ≻𝑤 𝜇 (𝑤). A stable matching is one that
does not admit any blocking pair. We will write 𝑆≻ to denote the
set of all matchings that are stable with respect to ≻. In addition,
for any pair of matchings 𝜇, 𝜇 ′, we will write 𝜇 ⪰𝑀 𝜇 ′ to denote
𝜇 (𝑚) ⪰𝑚 𝜇 ′(𝑚) for all𝑚 ∈ 𝑀 (and 𝜇 ⪰𝑊 𝜇 ′ for the women).

Deferred acceptance algorithm. Given a preference profile ≻, the
Deferred Acceptance (DA) algorithm of Gale and Shapley [9] pro-
ceeds in rounds. In each round, the algorithm consists of a proposal
phase, where each man who is currently unmatched proposes to
his favorite woman from among those who have not rejected him
yet, followed by a rejection phase where each woman tentatively
accepts her favorite proposal and rejects the rest. The algorithm
terminates when no further proposals can be made. Gale and Shap-
ley [9] showed that given any profile ≻ as input, the DA algorithm
always returns a stable matching as output; we denote this matching
by DA(≻). They also observed that this matching is men-optimal,
i.e., it assigns each man his favorite stable partner among all stable
matchings in 𝑆≻. McVitie and Wilson [19] subsequently showed that
this matching is also women-pessimal.

PROPOSITION 1 ([9, 19]). Let ≻ be a preference profile and let
𝜇 B DA(≻). Then, 𝜇 ∈ 𝑆≻. Furthermore, for any 𝜇 ′ ∈ 𝑆≻, 𝜇 ⪰𝑀 𝜇 ′

and 𝜇 ′ ⪰𝑊 𝜇.

Accomplice manipulation. Under this model of strategic behav-
ior, a woman 𝑤 , instead of misreporting herself, has a man 𝑚 pro-
vide a manipulated preference list, say ≻′

𝑚 , in order to improve her
match. Given a preference profile ≻, we say that 𝑤 can manipu-
late through accomplice 𝑚 if 𝜇 ′(𝑤) ≻𝑤 𝜇 (𝑤), where 𝜇 B DA(≻),
≻′B {≻−𝑚, ≻′

𝑚}, and 𝜇 ′ B DA(≻′). We will often refer to (𝑚,𝑤)
as the manipulating pair (not to be confused with a blocking pair).

Throughout this paper, any manipulation will be assumed to
be optimal unless stated otherwise. That is, there exists no other
list ≻′′

𝑚 for the accomplice 𝑚 such that 𝜇 ′′(𝑤) ≻𝑤 𝜇 ′(𝑤), where
≻′′B {≻−𝑚, ≻′′

𝑚}, and 𝜇 ′′ B DA(≻′′). Note that we assume that
the manipulator has full information about the preferences of other
agents. Extending our results to incomplete or uncertain information
settings is an interesting direction for future research.

No-regret and with-regret manipulation. We say that the accom-
plice 𝑚 incurs regret if his match worsens upon misreporting, i.e.,
𝜇 (𝑚) ≻𝑚 𝜇 ′(𝑚). It is known that the DA algorithm is strategyproof
for the proposing side [8], which means that no man can improve
his match by unilaterally misreporting his preferences. Therefore,
for any man 𝑚 ∈ 𝑀 and for any misreport ≻′

𝑚 , we have that
𝜇 (𝑚) ⪰𝑚 𝜇 ′(𝑚). Thus, equivalently, we say that man 𝑚 incurs
regret if 𝜇 (𝑚) ≠ 𝜇 ′(𝑚).

We will consider two models of accomplice manipulation in this
paper: no-regret manipulation wherein only those misreports ≻′

𝑚 are
allowed under which 𝜇 (𝑚) = 𝜇 ′(𝑚), and with-regret manipulation,
where the accomplice is allowed (but not required) to incur regret.
Thus, any no-regret strategy is also a with-regret strategy. Recall that
the misreport in Example 1.1 was a no-regret manipulation.

Stability relaxations. For any preference profile ≻ and a fixed
man𝑚 ∈ 𝑀 , we say that a matching 𝜇 is𝑚-stable [4] with respect to
≻ if any blocking pair (if one exists) in 𝜇 involves the man𝑚. That is,
for any pair (𝑚′,𝑤 ′) that blocks 𝜇 under ≻, we have𝑚′ =𝑚. Clearly,
a stable matching is also 𝑚-stable. Under accomplice manipulation,
it can be shown that any matching 𝜇 ′ that is stable with respect
to the manipulated profile (in particular, when 𝜇 ′ = DA(≻′)) is 𝑚-
stable with respect to the true profile ≻ (Proposition 2). We note that
Proposition 2 strengthens a result of Bendlin and Hosseini [4] who
proved a similar statement only for a DA matching. The proof of
this result, along with all other omitted proofs, can be found in the
appendix.

PROPOSITION 2. Let ≻ denote the true preference profile. For
any man𝑚, let ≻′B {≻−𝑚, ≻′

𝑚}, and let 𝜇 ′ ∈ 𝑆≻′ be any matching
that is stable with respect to ≻′. Then, 𝜇 ′ is 𝑚-stable with respect to
≻.

3.2 Structural Observations
Push up/push down operations. Note that given a profile ≻, the

preference list of any man𝑚 can be written as ≻𝑚= (≻𝐿
𝑚, 𝜇 (𝑚), ≻𝑅

𝑚),
where 𝜇 = DA(≻) and ≻𝐿

𝑚 (respectively, ≻𝑅
𝑚) is the set of women

that 𝑚 prefers to (respectively, finds less preferable than) 𝜇 (𝑚).
Interestingly, the DA outcome does not change even if each man
𝑚 arbitrarily permutes the parts of his list above and below his
DA-partner 𝜇 (𝑚). This result, due to Huang [13], is recalled below.

PROPOSITION 3 ([13]). Let ≻ be a preference profile and let 𝜇 B
DA(≻). For any man 𝑚 ∈ 𝑀 , let ≻′

𝑚B (𝜋𝐿 (≻𝐿
𝑚), 𝜇 (𝑚), 𝜋𝑅 (≻𝑅

𝑚)),
where 𝜋𝐿 and 𝜋𝑅 are arbitrary permutations of ≻𝐿

𝑚 and ≻𝑅
𝑚 , respec-

tively. Let ≻′B {≻−𝑚, ≻′
𝑚}, and let 𝜇 ′ B DA(≻′). Then, 𝜇 ′ = 𝜇.

Proposition 3 considerably simplifies the structure of accomplice
manipulations that we need to consider. Indeed, we can assume
that any manipulated list ≻′

𝑚 is such that the relative ordering of
agents in the parts above and below 𝜇 ′(𝑚) is the same as under
the true list ≻𝑚 , where 𝜇 ′ B DA(≻′) and ≻′B {≻−𝑚, ≻′

𝑚} are the
post-manipulation DA outcome and preference profile, respectively.

This observation implies that, without loss of generality, any ma-
nipulated list ≻′

𝑚 can be obtained from the true list ≻𝑚 by only
push up and push down operations, wherein a set of women is
pushed up above the true match 𝜇 (𝑚), and another disjoint set is
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pushed below 𝜇 (𝑚). Importantly, no permutation or shuffling op-
eration is required as part of the manipulation. Formally, starting
with the true list ≻𝑚= (≻𝐿

𝑚, 𝜇 (𝑚), ≻𝑅
𝑚), we say that man 𝑚 per-

forms a push up operation for a set 𝑋 ⊆ 𝑊 if the new list is
≻𝑋 ↑
𝑚 B (≻𝐿

𝑚 ∪𝑋, 𝜇 (𝑚), ≻𝑅
𝑚 \𝑋 ). Likewise, a push down operation

of a set 𝑌 ⊆𝑊 results in ≻𝑌 ↓
𝑚 B (≻𝐿

𝑚 \𝑌, 𝜇 (𝑚), ≻𝑅
𝑚 ∪𝑌 ).

For manipulation via push down operations only, Huang [13] has
shown that the resulting matching is weakly improving for all men.
Together, with the fact that the DA algorithm is strategyproof for the
proposing side (in our case the men) [8], we get that the DA partner
of the accomplice remains unchanged after a push down operation.

PROPOSITION 4 ([8, 13]). Let ≻ be the true preference profile
and let 𝜇 B DA(≻). For any subset of women 𝑋 ⊆𝑊 and any fixed
accomplice 𝑚 ∈ 𝑀 , let ≻′B {≻−𝑚, ≻𝑋 ↓

𝑚 } and 𝜇 ′ B DA(≻′). Then,
𝜇 ′ ⪰𝑀 𝜇 and 𝜇 ′(𝑚) = 𝜇 (𝑚).

The effect of push down operations for the proposed-to side is the
exact opposite, as the resulting matching makes all women weakly
worse off.

Lemma 1. Let ≻ be the true preference profile and let 𝜇 B DA(≻).
For any subset of women 𝑋 ⊆ 𝑊 , let ≻′B {≻−𝑚, ≻𝑋 ↓

𝑚 } and 𝜇 ′ B
DA(≻′). Then, 𝜇 ⪰𝑊 𝜇 ′.

Lemma 1 shows that in order to improve the partner of the
woman 𝑤 , the use of push up operations (by the accomplice) is
necessary. However, it is not obvious upfront whether push up alone
suffices; indeed, it is possible that the optimal strategy involves some
combination of push up and push down operations. To this end, our
theoretical results will show that, somewhat surprisingly, pushing
up at most one woman achieves the desired optimal manipulation
(Theorems 4.3 and 5.2). This strategy is known in the literature as
inconspicuous manipulation, which we define next.

Inconspicuous manipulation. Given a profile ≻ of true prefer-
ences and any fixed accomplice𝑚, the manipulated list ≻′

𝑚 is said to
be an inconspicuous manipulation if the list ≻′

𝑚 can be derived from
the true preference list ≻𝑚 by promoting exactly one woman and
making no other changes. The notion of inconspicuous manipula-
tion has been previously studied in the context of self manipulation
(where𝑤 misreports herself), where it was shown that an optimal self
manipulation is, without loss of generality, inconspicuous [7, 27].

4 NO-REGRET ACCOMPLICE
MANIPULATION

Let us start by observing that the DA matching after an arbitrary, i.e.,
not necessarily push up, no-regret accomplice manipulation may not
be stable with respect to the true preferences.

Example 4.1. Consider the following preference profile where
the DA outcome is underlined.
𝑚1 : 𝑤∗

2 𝑤
†
1 𝑤3 𝑤4 𝑤5 𝑤1 : 𝑚

†
1 𝑚3 𝑚∗

2 𝑚4 𝑚5

𝑚2 : 𝑤∗
1 𝑤

†
2 𝑤3 𝑤4 𝑤5 𝑤2 : 𝑚

†
2 𝑚∗

1 𝑚3 𝑚4 𝑚5

𝒎3 : 𝑤1 𝑤
∗,†
3 𝑤4 𝑤2 𝑤5 𝑤3 : 𝑚

∗,†
3 𝑚1 𝑚2 𝑚4 𝑚5

𝑚4 : 𝑤4 𝑤
∗,†
5 𝑤1 𝑤2 𝑤3 𝒘4 : 𝑚

∗,†
5 𝑚3 𝑚1 𝑚2 𝑚4

𝑚5 : 𝑤5 𝑤
∗,†
4 𝑤1 𝑤2 𝑤3 𝑤5 : 𝑚

∗,†
4 𝑚1 𝑚2 𝑚3 𝑚5

Suppose the manipulating pair is (𝑚3,𝑤4). The DA matches after
the accomplice𝑚3 submits the manipulated list ≻′

𝑚3B 𝑤4 ≻ 𝑤3 ≻

𝑤1 ≻ 𝑤2 ≻ 𝑤5 are marked by ∗. The manipulation results in 𝑤4
being matched with her top choice 𝑚5 (i.e., ≻′

𝑚3 is an optimal ma-
nipulation), an improvement over her true match𝑚4. Although𝑚3
does not incur regret, the manipulated matching admits a blocking
pair (𝑚3,𝑤1) with respect to the true preferences. □

Notice that if instead𝑚3 were to submit ≻′′
𝑚3B 𝑤4 ≻ 𝑤1 ≻ 𝑤3 ≻

𝑤2 ≻ 𝑤5 as his preference list in Example 4.1, then the resulting DA
matching (indicated by †) would be stable with respect to the true
preferences while still allowing 𝑤4 to match with 𝑚5 (i.e., ≻′′

𝑚3 is
also optimal). The manipulated list ≻′′

𝑚3 is derived from the true list
≻𝑚3 through a no-regret push up operation. Our first main result of
this section (Theorem 4.2) shows that this is not a coincidence: The
set of all stable matchings with respect to a profile after a no-regret
push up operation is always contained within the stable set of the
true preference profile.

THEOREM 4.2 (NO-REGRET PUSH UP IS STABILITY PRESERV-
ING). Let ≻ be a preference profile, and let 𝜇 B DA(≻). For any
subset of women 𝑋 ⊆𝑊 and any man𝑚, let ≻′B {≻−𝑚, ≻𝑋 ↑

𝑚 }, and
𝜇 ′ B DA(≻′). If𝑚 does not incur regret, then 𝑆≻′ ⊆ 𝑆≻.

A primary consequence of Theorem 4.2 is that the DA matching
after a no-regret accomplice manipulation is weakly preferred over
the true DA outcome by all women, while the opposite is true for the
men.

Corollary 1. Let ≻ be a preference profile and let 𝜇 B DA(≻). For
any man 𝑚, let ≻′B {≻−𝑚, ≻𝑋 ↑

𝑚 } and 𝜇 ′ B DA(≻′). If 𝑚 does not
incur regret, then 𝜇 ′ ⪰𝑊 𝜇 and 𝜇 ⪰𝑀 𝜇 ′.

PROOF. Since 𝑚 does not incur regret, it follows from Theo-
rem 4.2 that 𝜇 ′ ∈ 𝑆≻. Then, from Proposition 1, we have that
𝜇 ′ ⪰𝑊 𝜇 and 𝜇 ⪰𝑀 𝜇 ′. □

As observed in Section 3.2, any manipulation by the accomplice
can be, without loss of generality, assumed to comprise only of push
up and push down operations. We will now show that combining
these operations is not necessary. That is, any manipulation that is
achieved by a combination of push up and push down operations
can be weakly improved by a push up operation alone (Lemma 2).
We note that this result does not require the no-regret assumption,
and applies to the with-regret setting as well.

Lemma 2. Let (𝑚,𝑤) be a manipulating pair and let ≻ be a pref-
erence profile. For any subsets of women 𝑋 ⊆ 𝑊 and 𝑌 ⊆ 𝑊 , let
≻′B {≻−𝑚, ≻𝑋 ↑

𝑚 } denote the preference profile after pushing up the
set 𝑋 , and ≻′′B {≻−𝑚, ≻𝑋 ↑,𝑌 ↓

𝑚 } denote the profile after pushing up
𝑋 and pushing down 𝑌 in the true preference list ≻𝑚 of man 𝑚. Let
𝜇 B DA(≻), 𝜇 ′ B DA(≻′), and 𝜇 ′′ B DA(≻′′). If 𝜇 ′′(𝑤) ≻𝑤 𝜇 (𝑤),
then 𝜇 ′(𝑤) ⪰𝑤 𝜇 ′′(𝑤).

Having narrowed down the strategy space to push up operations
alone, we will now turn our attention to inconspicuous manipulations
(recall that such a manipulation involves promoting exactly one
woman in the accomplice’s true preference list to a higher position).
We will show that any match for the manipulating woman 𝑤 that
can be obtained by pushing up a set of women can also be achieved
by promoting exactly one woman in that set (Lemma 3). In other
words, any no-regret push up operation is, without loss of generality,
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inconspicuous. We note that although Lemma 3 assumes no regret
for the accomplice, the corresponding implication actually holds
even in the with-regret setting (see Lemma 4).

Lemma 3. Let (𝑚,𝑤) be a manipulating pair, and let 𝑋 ⊆𝑊 be an
arbitrary set of women that 𝑚 can push up without incurring regret.
Then, the match for 𝑤 that is obtained by pushing up all women in
𝑋 can also be obtained by pushing up exactly one woman in 𝑋 .

We will now use the foregoing observations to prove our main
result (Theorem 4.3).

THEOREM 4.3. If there is an optimal no-regret accomplice ma-
nipulation, then there is an optimal inconspicuous no-regret accom-
plice manipulation.

PROOF. From Proposition 3 (and subsequent remarks), we know
that any accomplice manipulation can be simulated via push up
and push down operations. Lemma 2 shows that any beneficial
manipulation that is achieved by some combination of pushing up
a set 𝑋 ⊆ 𝑊 and pushing down 𝑌 ⊆ 𝑊 can be weakly improved
by only pushing up 𝑋 . Finally, from Lemma 3, we know that any
match for the manipulating woman 𝑤 that is achieved by pushing
up 𝑋 ⊆𝑊 is also achieved by pushing up exactly one woman in 𝑋 ,
thus establishing the desired inconspicuousness property. □

Theorem 4.3 has some interesting computational and structural
implications. First, the inconspicuousness property implies a straight-
forward polynomial-time algorithm for computing an optimal no-
regret accomplice manipulation (Corollary 2). Second, the DAmatch-
ing resulting from an inconspicuous no-regret manipulation is stable
with respect to the true preferences (Corollary 3). Together, these
results reconcile the seemingly conflicting interests of the manipula-
tor (who wants to compute optimal manipulation efficiently) and the
central planner (who wants the resulting matching to be stable with
respect to the true preferences).

Corollary 2. An optimal no-regret accomplice manipulation strat-
egy can be computed in O(𝑛3) time.

Corollary 3. The DA outcome from an inconspicuous no-regret ac-
complice manipulation is stable with respect to the true preferences.

In summary, recall from Example 4.1 that an arbitrary optimal
no-regret strategy may not be stability-preserving. Nevertheless, any
optimal no-regret strategy admits an equivalent inconspicuous strat-
egy (Theorem 4.3) which indeed preserves stability (Corollary 3).

5 WITH-REGRET ACCOMPLICE
MANIPULATION

No-regret manipulations come at no cost for the accomplice and thus
are a viable strategic behavior (as shown in Figure 1). Yet, a more
permissive strategy space may allow for the accomplice to incur
some regret. Such with-regret manipulations may be justifiable in
practice: An accomplice’s idiosyncratic preference may be tolerant
to a small loss in exchange of gain for the partnering woman, or a
woman may persuade a man to withstand some regret by providing
side-payments.

We will start by illustrating that a with-regret accomplice manip-
ulation can be strictly more beneficial compared to its no-regret and
self manipulation counterparts.

Example 5.1 (With-regret vs. no-regret). Consider the following
preference profile where the DA outcome is underlined.

𝒎1 : 𝑤∗
4 𝑤

†
1 𝑤2 𝑤5 𝑤3 𝒘1 : 𝑚

†
1 𝑚∗

2 𝑚3 𝑚4 𝑚5

𝑚2 : 𝑤2 𝑤4 𝑤∗
1 𝑤

†
5 𝑤3 𝑤2 : 𝑚

∗,†
3 𝑚5 𝑚1 𝑚2 𝑚4

𝑚3 : 𝑤1 𝑤
∗,†
2 𝑤4 𝑤3 𝑤5 𝑤3 : 𝑚2 𝑚∗

5 𝑚1 𝑚
†
4 𝑚3

𝑚4 : 𝑤1 𝑤
†
3 𝑤∗

5 𝑤2 𝑤4 𝑤4 : 𝑚4 𝑚3 𝑚∗
1 𝑚

†
5 𝑚2

𝑚5 : 𝑤1 𝑤
†
4 𝑤∗

3 𝑤5 𝑤2 𝑤5 : 𝑚∗
4 𝑚

†
2 𝑚5 𝑚1 𝑚3

Suppose the manipulating pair is (𝑚1,𝑤1). The DA matching
after 𝑚1 submits the optimal no-regret1 manipulated list ≻′

𝑚1B
𝑤2 ≻ 𝑤4 ≻ 𝑤1 ≻ 𝑤5 ≻ 𝑤3 and the optimal with-regret manipulated
list ≻′′

𝑚1B 𝑤1 ≻ 𝑤4 ≻ 𝑤2 ≻ 𝑤5 ≻ 𝑤3 are marked by ∗ and †,
respectively. Both manipulation strategies improve 𝑤1’s matching
compared to truthful reporting, but𝑤1 strictly prefers the with-regret
outcome. □

Example 5.1 highlights two key differences between optimal
no-regret and with-regret manipulations. First, the matching after
the inconspicuous with-regret manipulation (marked by †) admits
a blocking pair (𝑚1,𝑤4) with respect to the true profile ≻. This
is in contrast to the no-regret case which is stability preserving
(Theorem 4.2). Second, in contrast to Corollary 1, an optimal with-
regret manipulation is not guaranteed to weakly improve or worsen
the matching for all agents on one side; indeed the women 𝑤3 and
𝑤5 are strictly worse off while 𝑤1 is strictly better off. Similarly, the
man𝑚1 is strictly worse off while𝑚4 and𝑚5 strictly improve.

The primary distinction between no-regret and with-regret ma-
nipulation lies in the push up operations. If pushing up a set of
women does not cause regret for the accomplice, then pushing up
any subset thereof does not either. By contrast, if by pushing up a
set of women the accomplice incurs regret, then there exists exactly
one woman in that set who causes the same level of regret when
pushed up individually. As previously mentioned, with-regret push
up operations do not uniformly affect all men and all women (in
contrast to Corollary 1). Moreover, the set of attained matchings
after a with-regret manipulation are no longer stable with respect
to true preferences (in contrast to Theorem 4.2), which makes the
analysis challenging.

Despite these structural differences, we are able to prove an ana-
logue of Lemma 3 for with-regret push up operations (Lemma 4).
Our proof of this result relies on the fact that all proposals that occur
when the accomplice pushes up a set of women are contained in the
union of sets of proposals that occur when pushing up individual
women in that set. This is relatively easy to prove for the no-regret
case, since the DA matchings after these push up operations are all
stable with respect to true preferences (Theorem 4.2). Although we
cannot rely on the same stability result for the with-regret case, we
circumvent the issue by reasoning about the sets of proposals in
greater detail. The full proof of Lemma 4, along with an extensive
discussion, is deferred to the appendix.
1To see why ≻′

𝑚1 is an optimal no-regret manipulation, note that the woman-optimal
stable matching (with respect to ≻) matches 𝑤1 with𝑚2. From Theorem 4.3 and Corol-
lary 3, an optimal no-regret manipulation is, without loss of generality, stability preserv-
ing, and from Proposition 1,𝑚2 is the best stable partner for 𝑤2.
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Figure 2: Comparing no-regret accomplice and self manipula-
tion in terms of the improvement in the rank of the matched
partner of 𝑤 . The solid bars, whiskers, and dots denote the in-
terquartile range, range excluding outliers, and outliers, respec-
tively.

Lemma 4. Let (𝑚,𝑤) be a manipulating pair, and let 𝑋 ⊆𝑊 be an
arbitrary set of women that 𝑚 can push up (while incurring regret).
Then, the match for 𝑤 that is obtained by pushing up all women in
𝑋 can also be obtained by pushing up exactly one woman in 𝑋 .

Subsequently, an optimal with-regret manipulation is, without
loss of generality, inconspicuous. The proof is similar to that of the
no-regret case (Theorem 4.3) with the only difference being the use
of Lemma 4 in place of Lemma 3.

THEOREM 5.2. If there is an optimal with-regret accomplice
manipulation, then there is an optimal inconspicuous with-regret
accomplice manipulation.

Theorem 5.2 immediately implies a polynomial-time algorithm
for computing an optimal with-regret accomplice manipulation.
Moreover, the DA outcome from any inconspicuous with-regret ac-
complice manipulation is 𝑚-stable with respect to the true prefer-
ences (Proposition 2).

Corollary 4. An optimal with-regret accomplice manipulation strat-
egy can be computed in O(𝑛3) time.

6 EXPERIMENTAL RESULTS
In addition to the experiments described in Section 1, we performed
a series of simulations to analyze the performance of accomplice
manipulation. As for the previous experimental setup, we generated
1000 profiles uniformly at random for each value of 𝑛 ∈ {3, . . . , 40}
(where 𝑛 is the number of men/women) and allowed any man to be
chosen as an accomplice for each experiment unless stated otherwise.

Comparing the Quality of Partners. We first compare the quality
of partners that a fixed strategic woman 𝑤 is matched with through
no-regret accomplice and self manipulation. Figure 2 illustrates
the distributions of improvement (in terms of rank difference) out
of only those instances where 𝑤 is strictly better off through the
two strategies individually. In other words, the self (respectively,
accomplice) manipulation boxplots only reflect the data for when self
(respectively, accomplice) manipulation is successful. It is evident
that, in expectation, 𝑤 is matched with better partners through no-
regret accomplice manipulation.

The Fraction of Women Who Improve. We additionally compare
the fraction of women who are able to improve through no-regret ac-
complice and self manipulation individually. Teo et al. [26] reported
that 5.06% of women were able to improve using self manipula-
tion when 𝑛 = 8. In our experiment, this value is similarly 4.18%.
However, 9.99% of women are able to improve through no-regret
accomplice manipulation. As illustrated in Figure 3, the fraction
of women who benefit from no-regret accomplice manipulation is
consistently more than double that of self manipulation.

Figure 3: Comparing no-regret accomplice and self manipula-
tion in terms of the fraction of women who benefit.

So far, our experiments have taken the optimistic approach of
allowing the strategic woman to pick any man of her choice as the
accomplice. However, we show that a with-regret strategy outper-
forms self manipulation even when a single accomplice is randomly
chosen in advance, and no-regret accomplice manipulation is, on
average, better than self manipulation when there is a fixed pool of
four or more men to choose from. The complete discussion of this
experiment, along with other experimental results, is deferred to the
appendix.

7 CONCLUDING REMARKS
We showed that accomplice manipulation is a viable strategic behav-
ior that only requires inconspicuous misreporting of preferences and
is frequently more beneficial than the classical self-manipulation
strategy. A natural avenue for future research is to investigate a
setting with multiple accomplices working together to manipulate
the outcome for the strategic woman. Additionally, one can think
of a broader strategy space in which both the accomplice and the
manipulating woman are able to misreport their preference lists
simultaneously. Analyzing the benefits of such coalitional manipula-
tion strategies—with or without regret—on one or both sides, and
studying their structural and algorithmic properties are intriguing
directions for future work.
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[2] Atila Abdulkadiroğlu, Parag A Pathak, Alvin E Roth, and Tayfun Sönmez. 2005.

The Boston Public School Match. American Economic Review 95, 2 (2005),
368–371.

[3] Michel Balinski and Tayfun Sönmez. 1999. A Tale of Two Mechanisms: Student
Placement. Journal of Economic Theory 84, 1 (1999), 73–94.

[4] Theodora Bendlin and Hadi Hosseini. 2019. Partners in Crime: Manipulating the
Deferred Acceptance Algorithm through an Accomplice. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 33. 9917–9918.

[5] Peter Coles and Ran Shorrer. 2014. Optimal Truncation in Matching Markets.
Games and Economic Behavior 87 (2014), 591–615.

[6] Gabrielle Demange, David Gale, and Marilda Sotomayor. 1987. A Further Note
on the Stable Matching Problem. Discrete Applied Mathematics 16, 3 (1987),
217–222.

[7] Yuan Deng, Weiran Shen, and Pingzhong Tang. 2018. Coalitional Permutation
Manipulations in the Gale-Shapley Algorithm. In Proceedings of the 17th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems. 928–936.

[8] Lester E Dubins and David A Freedman. 1981. Machiavelli and the Gale-Shapley
Algorithm. The American Mathematical Monthly 88, 7 (1981), 485–494.

[9] David Gale and Lloyd S Shapley. 1962. College Admissions and the Stability of
Marriage. The American Mathematical Monthly 69, 1 (1962), 9–15.

[10] David Gale and Marilda Sotomayor. 1985. Ms. Machiavelli and the Stable Match-
ing Problem. The American Mathematical Monthly 92, 4 (1985), 261–268.

[11] David Gale and Marilda Sotomayor. 1985. Some Remarks on the Stable Matching
Problem. Discrete Applied Mathematics 11, 3 (1985), 223–232.

[12] John William Hatfield, Fuhito Kojima, and Yusuke Narita. 2016. Improving
Schools through School Choice: A Market Design Approach. Journal of Economic
Theory 166 (2016), 186–211.

[13] Chien-Chung Huang. 2006. Cheating by Men in the Gale-Shapley Stable Matching
Algorithm. In European Symposium on Algorithms. Springer, 418–431.
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Appendix

8 OMITTED MATERIAL FROM SECTIONS 3.1
& 3.2

8.1 Additional Preliminaries
Lattice of stable matchings. Given any preference profile ≻ and

any pair of stable matchings 𝜇, 𝜇 ′ ∈ 𝑆≻, let us define their meet
𝜇∧ B 𝜇 ∧ 𝜇 ′ as follows: For every man𝑚 ∈ 𝑀 ,

𝜇∧ (𝑚) =
{
𝜇 ′(𝑚) if 𝜇 (𝑚) ≻𝑚 𝜇 ′(𝑚)
𝜇 (𝑚) otherwise,

and for every women 𝑤 ∈𝑊 ,

𝜇∧ (𝑤) =
{
𝜇 (𝑤) if 𝜇 (𝑤) ≻𝑤 𝜇 ′(𝑤)
𝜇 ′(𝑤) otherwise.

Similarly, the join 𝜇∨ B 𝜇 ∨ 𝜇 ′ is defined as follows: For every man
𝑚 ∈ 𝑀 ,

𝜇∨ (𝑚) =
{
𝜇 (𝑚) if 𝜇 (𝑚) ≻𝑚 𝜇 ′(𝑚)
𝜇 ′(𝑚) otherwise,

and for every women 𝑤 ∈𝑊 ,

𝜇∨ (𝑤) =
{
𝜇 ′(𝑤) if 𝜇 (𝑤) ≻𝑤 𝜇 ′(𝑤)
𝜇 (𝑤) otherwise.

A well-known result, attributed to John Conway [15], establishes
that the set of stable matchings is closed under meet and join opera-
tions.

PROPOSITION 5 ([15]). Let ≻ be a preference profile and let
𝜇, 𝜇 ′ ∈ 𝑆≻. Then, 𝜇∧, 𝜇∨ ∈ 𝑆≻.

8.2 Self Manipulation vs. No-Regret Accomplice
Manipulation

The self manipulation and no-regret accomplice manipulation strat-
egy spaces are not contained in one another. Example 1.1 shows an
instance where no-regret accomplice manipulation is better than self
manipulation. In Example 8.1, we provide an instance where self
manipulation is better than no-regret accomplice manipulation.

Example 8.1. Consider the following preference profile where
the DA outcome is underlined.

𝑚1: 𝑤2 𝑤3 𝑤∗
1 𝑤4 𝒘1: 𝑚∗

1 𝑚2 𝑚3 𝑚4
𝑚2: 𝑤3 𝑤∗

2 𝑤4 𝑤1 𝑤2: 𝑚∗
2 𝑚3 𝑚4 𝑚1

𝑚3: 𝑤1 𝑤∗
3 𝑤4 𝑤2 𝑤3: 𝑚∗

3 𝑚1 𝑚4 𝑚2
𝑚4: 𝑤1 𝑤∗

4 𝑤2 𝑤3 𝑤4: 𝑚3 𝑚1 𝑚∗
4 𝑚2

Suppose 𝑤1 seeks to improve her match via manipulation. The
optimal self manipulation strategy for 𝑤1 is ≻′

𝑤1=𝑚4 ≻𝑚3 ≻𝑚1 ≻
𝑚2, which allows her to match with her top choice𝑚1 (the new DA
matching is marked by ∗). Regardless of the choice of accomplice,
the optimal no-regret accomplice manipulation strategy, on the other
hand, is truth-telling. □

8.3 Proof of Proposition 2
PROPOSITION 2. Let ≻ denote the true preference profile. For

any man𝑚, let ≻′B {≻−𝑚, ≻′
𝑚}, and let 𝜇 ′ ∈ 𝑆≻′ be any matching

that is stable with respect to ≻′. Then, 𝜇 ′ is 𝑚-stable with respect to
≻.

PROOF. Suppose, for contradiction, that 𝜇 ′ is not𝑚-stable with
respect to ≻. Then, there must exist a man-woman pair (𝑚′,𝑤 ′) that
blocks 𝜇 ′ with respect to ≻ such that 𝑚′ ≠ 𝑚, i.e., 𝑤 ′ ≻𝑚′ 𝜇 ′(𝑚′)
and𝑚′ ≻𝑤′ 𝜇 ′(𝑤 ′). Since𝑚 is the only agent whose preferences dif-
fer between ≻ and ≻′, we have that ≻𝑚′ =≻′

𝑚′ and ≻𝑤′ =≻′
𝑤′ . Thus,

𝑤 ′ ≻′
𝑚′ 𝜇

′(𝑚′) and𝑚′ ≻′
𝑤′ 𝜇

′(𝑤 ′), implying that the pair (𝑚′,𝑤 ′)
blocks 𝜇 ′ with respect to ≻′, which contradicts the assumption that
𝜇 ′ ∈ 𝑆≻′ . Thus, 𝜇 ′ must be𝑚-stable with respect to the true profile
≻. □

8.4 Proof of Lemma 1
Lemma 1. Let ≻ be the true preference profile and let 𝜇 B DA(≻).
For any subset of women 𝑋 ⊆ 𝑊 , let ≻′B {≻−𝑚, ≻𝑋 ↓

𝑚 } and 𝜇 ′ B
DA(≻′). Then, 𝜇 ⪰𝑊 𝜇 ′.

PROOF. Suppose, for contradiction, that there exists a woman
𝑤 ′ such that 𝑚′ ≻𝑤′ 𝜇 (𝑤 ′), where 𝑚′ B 𝜇 ′(𝑤 ′). We infer that
𝑤 ′ ⊁𝑚′ 𝜇 (𝑚′), otherwise the stability of 𝜇 with respect to ≻ is
compromised. Since 𝑚′ ≠ 𝜇 (𝑤 ′), we have that 𝑤 ′ ≠ 𝜇 (𝑚′), and
therefore 𝜇 (𝑚′) ≻𝑚′ 𝑤 ′. However, Proposition 4 guarantees 𝜇 ′ ⪰𝑀
𝜇, thus posing a contradiction. □

9 OMITTED MATERIAL FROM SECTION 4
9.1 Proof of Theorem 4.2

THEOREM 4.2 (NO-REGRET PUSH UP IS STABILITY PRESERV-
ING). Let ≻ be a preference profile, and let 𝜇 B DA(≻). For any
subset of women 𝑋 ⊆𝑊 and any man𝑚, let ≻′B {≻−𝑚, ≻𝑋 ↑

𝑚 }, and
𝜇 ′ B DA(≻′). If𝑚 does not incur regret, then 𝑆≻′ ⊆ 𝑆≻.

PROOF. Suppose, for contradiction, that there exists a matching
𝜙 ∈ 𝑆≻′ \ 𝑆≻. Then, there must be a pair (𝑚′,𝑤 ′) that blocks 𝜙

with respect to ≻. It follows from Proposition 2 that𝑚′ =𝑚. Thus,
𝑤 ′ ≻𝑚 𝜙 (𝑚) and𝑚 ≻𝑤′ 𝜙 (𝑤 ′).

From Proposition 1, we have that 𝜇 ′(𝑚) ⪰′
𝑚 𝜙 (𝑚). Since 𝑚 does

not incur regret, we have 𝜇 (𝑚) = 𝜇 ′(𝑚), and thus, 𝜇 (𝑚) ⪰′
𝑚 𝜙 (𝑚).

All women below 𝜇 (𝑚) in ≻′
𝑚 are also below 𝜇 (𝑚) in ≻𝑚 by the

push up assumption. Since 𝜇 (𝑚) ⪰′
𝑚 𝜙 (𝑚), this implies that all

women below 𝜙 (𝑚) in ≻′
𝑚 are also below 𝜙 (𝑚) in ≻𝑚 . Thus, if

𝜙 (𝑚) ≻′
𝑚 𝑤 ′, then 𝜙 (𝑚) ≻𝑚 𝑤 ′, which contradicts the blocking

pair condition above. Therefore, we must have that 𝑤 ′ ≻′
𝑚 𝜙 (𝑚)

(note that 𝑤 ′ ≠ 𝜙 (𝑚) by the blocking pair condition).
Furthermore, since ≻′

𝑤′ = ≻𝑤′ , the blocking pair condition also
implies that𝑚 ≻′

𝑤′ 𝜙 (𝑤 ′). Combined with the condition𝑤 ′ ≻′
𝑚 𝜙 (𝑚),

this contradicts the assumption that 𝜙 ∈ 𝑆≻′ . Thus, 𝑆≻′ ⊆ 𝑆≻. □

9.2 Proof of Lemma 2
Lemma 2. Let (𝑚,𝑤) be a manipulating pair and let ≻ be a pref-
erence profile. For any subsets of women 𝑋 ⊆ 𝑊 and 𝑌 ⊆ 𝑊 , let
≻′B {≻−𝑚, ≻𝑋 ↑

𝑚 } denote the preference profile after pushing up the
set 𝑋 , and ≻′′B {≻−𝑚, ≻𝑋 ↑,𝑌 ↓

𝑚 } denote the profile after pushing up
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𝑋 and pushing down 𝑌 in the true preference list ≻𝑚 of man 𝑚. Let
𝜇 B DA(≻), 𝜇 ′ B DA(≻′), and 𝜇 ′′ B DA(≻′′). If 𝜇 ′′(𝑤) ≻𝑤 𝜇 (𝑤),
then 𝜇 ′(𝑤) ⪰𝑤 𝜇 ′′(𝑤).

PROOF. Our proof will use case analysis based on whether or not
𝜇 ′(𝑚) = 𝜇 (𝑚).

Case I (when 𝜇 ′(𝑚) = 𝜇 (𝑚)): The list ≻′′
𝑚 can be considered as

being derived from ≻′
𝑚 via a push down operation on the set 𝑌 (see

Figure 4). From Lemma 1, we know that a push down operation is
weakly worse for all women; thus, in particular, we get 𝜇 ′(𝑤) ⪰𝑤

𝜇 ′′(𝑤), as desired. Note that the relative ordering of 𝑋 and 𝑌 above
𝜇 ′(𝑚) in the list ≻′

𝑚 is not important in light of Proposition 3.

≻𝑚 : · · · 𝑌 · · · 𝜇 (𝑚) · · · 𝑋 · · ·

≻′
𝑚 : · · · 𝑋 · · · 𝑌 · · · 𝜇 (𝑚) · · ·

≻′′
𝑚 : · · · 𝑋 · · · 𝜇 (𝑚) · · · 𝑌 · · ·

Figure 4: An illustration of man 𝑚’s preference lists under the
profiles ≻, ≻′, and ≻′′ in the proof of Lemma 2.

Case II (when 𝜇 ′(𝑚) ≠ 𝜇 (𝑚)): Suppose 𝜇 ′(𝑚) ∈ 𝑋 . Then, the list
≻′′
𝑚 can be considered as being derived from ≻′

𝑚 via a permutation
of the women below 𝜇 ′(𝑚) (see Figure 4). By Proposition 3, this
implies that 𝜇 ′ = 𝜇 ′′, and in particular 𝜇 ′(𝑤) = 𝜇 ′′(𝑤), as desired.

Therefore, for the remainder of the proof, let us assume that
𝜇 ′(𝑚) ∉ 𝑋 . Since ≻′

𝑚 is derived from ≻𝑚 via a push up operation
on the set 𝑋 , and since 𝜇 ′(𝑚) ≠ 𝜇 (𝑚) by assumption, we have that
𝜇 (𝑚) ≻𝑚 𝜇 ′(𝑚). By Proposition 3, we can assume, without loss
of generality, that 𝜇 ′(𝑚) is positioned immediately below 𝜇 (𝑚) in
the list ≻𝑚 . By construction, the same property also holds for the
lists ≻′

𝑚 and ≻′′
𝑚 . Thus, ≻′′

𝑚 can be considered as being obtained
from ≻′

𝑚 via a push down operation on the set 𝑌 (note that this
operation is defined with respect to 𝜇 ′(𝑚)). By Lemma 1, we have
𝜇 ′(𝑤) ⪰𝑤 𝜇 ′′(𝑤), as desired. □

9.3 Proof of Lemma 3
Lemma 3. Let (𝑚,𝑤) be a manipulating pair, and let 𝑋 ⊆𝑊 be an
arbitrary set of women that 𝑚 can push up without incurring regret.
Then, the match for 𝑤 that is obtained by pushing up all women in
𝑋 can also be obtained by pushing up exactly one woman in 𝑋 .

Preliminaries for the proof of Lemma 3: Let ≻ be a true pref-
erence profile. Given an accomplice 𝑚 and a set of women 𝑋 =

{𝑤𝑎,𝑤𝑏 ,𝑤𝑐 , . . . } such that 𝜇 (𝑚) ≻𝑚 𝑤𝑥 for all 𝑤𝑥 ∈ 𝑋 , we define
≻𝑎𝑚 as the list derived from ≻𝑚 where 𝑚 pushes up 𝑤𝑎 , ≻𝑏𝑚 as the
list derived from ≻𝑚 where 𝑚 pushes up 𝑤𝑏 , etc., and ≻𝑋𝑚 as the list
where𝑚 pushes up all women in 𝑋 ; the corresponding profiles are
≻𝑎, ≻𝑏 , ≻𝑐 , . . . , ≻𝑋 . Additionally, let 𝜇𝑎 B DA(≻𝑎), 𝜇𝑏 B DA(≻𝑏
), 𝜇𝑐 B DA(≻𝑐 ), . . . , 𝜇𝑋 B DA(≻𝑋 ). Note that the placement of
women being pushed up above 𝜇 (𝑚) in ≻𝑎𝑚, ≻𝑏𝑚, ≻𝑐𝑚, . . . , ≻𝑋𝑚 does
not affect 𝜇𝑎, 𝜇𝑏 , 𝜇𝑐 , . . . , 𝜇𝑋 by Proposition 3.

Example 9.1. Suppose 𝑋 = {𝑤𝑎,𝑤𝑏 }. Figure 5 illustrates the
possible configurations of𝑚’s preference lists under the profiles ≻,
≻𝑎 , ≻𝑏 , and ≻𝑋 .

≻𝑚 : · · · 𝜇 (𝑚) · · · 𝑤𝑎 · · · 𝑤𝑏 · · ·

≻𝑎𝑚 : · · · 𝑤𝑎 · · · 𝜇 (𝑚) · · · 𝑤𝑏 · · ·

≻𝑏𝑚 : · · · 𝑤𝑏 · · · 𝜇 (𝑚) · · · 𝑤𝑎 · · ·

≻𝑋𝑚 : · · · 𝑤𝑎 · · · 𝑤𝑏 · · · 𝜇 (𝑚) · · ·

Figure 5: An illustration of man 𝑚’s preference lists under the
profiles ≻, ≻𝑎 , ≻𝑏 , and ≻𝑋 when 𝑋 = {𝑤𝑎,𝑤𝑏 }.

It can be shown that 𝑚 does not incur regret under any of the
profiles ≻𝑎, ≻𝑏 , and so on (Lemma 5).

Lemma 5. Let 𝑋 = {𝑤𝑎,𝑤𝑏 ,𝑤𝑐 , . . . } be an arbitrary finite set of
women that the accomplice𝑚 can push up without incurring regret.
Then, for every 𝑤𝑥 ∈ 𝑋 ,𝑚 does not incur regret under the matching
𝜇𝑥 B DA(≻𝑥 ), where ≻𝑥B {≻−𝑚, ≻𝑤𝑥 ↑

𝑚 }.

PROOF. We will prove the lemma for the fixed profile ≻𝑎 (an
identical argument works for other profiles).

Suppose, for contradiction, that𝑚 incurs regret in the profile ≻𝑎 .
That is, 𝜇 (𝑚) ≻𝑚 𝜇𝑎 (𝑚) where 𝜇𝑎 B DA(≻𝑎). From Lemma 7 (see
Section 10.1), we get that 𝜇𝑎 (𝑚) = 𝑤𝑎 . Further, using Proposition 3,
we can assume, without loss of generality, that 𝑤𝑎 is positioned
immediately below 𝜇 (𝑚) in the true list ≻𝑚 , and immediately above
it in the manipulated lists ≻𝑎𝑚 , as well as ≻𝑋𝑚 . This implies that the
transition from ≻𝑎𝑚 to ≻𝑋𝑚 is a with-regret push up operation involv-
ing the promotion of 𝑋 \ {𝑤𝑎} (since, according to the list ≻𝑎𝑚 , the
new partner 𝜇 (𝑚) is strictly worse than 𝑤𝑎). Again, from Lemma 7,
it follows that 𝜇𝑋 (𝑚) ∈ 𝑋 \ {𝑤𝑎}. By the no-regret assumption for
the set 𝑋 , we know that 𝜇𝑋 (𝑚) = 𝜇 (𝑚). This, however, is a contra-
diction since all women in 𝑋 \ {𝑤𝑎} are placed below 𝜇 (𝑚) in the
list ≻𝑚 , and hence must be different from it. □

Given any profile ≻, let 𝑃≻ denote the set of all proposals that
occur in the execution of the DA algorithm on ≻. Formally, for
any man 𝑚𝑖 ∈ 𝑀 and woman 𝑤 𝑗 ∈ 𝑊 , the ordered pair (𝑚𝑖 ,𝑤 𝑗 )
belongs to the set 𝑃≻ if 𝑚𝑖 proposes to 𝑤 𝑗 during the execution of
DA algorithm on the profile ≻.

Lemma 6. Let 𝑋 = {𝑤𝑎,𝑤𝑏 ,𝑤𝑐 , . . . } be an arbitrary finite set of
women that the accomplice𝑚 can push up without incurring regret.
Then, any proposal that occurs under ≻𝑋 also occurs under at least
one of the profiles ≻𝑎, ≻𝑏 , ≻𝑐 , . . . .

PROOF. Suppose, for contradiction, that (𝑚1,𝑤1) is the first pro-
posal to occur during the DA execution on ≻𝑋 such that it is not an
element of 𝑃≻𝑎 ∪ 𝑃≻𝑏 ∪ 𝑃≻𝑐 ∪ . . . . Note that the proposals made by
the accomplice𝑚 in 𝑃≻𝑋 are only to the women above and including
𝜇 (𝑚) in ≻𝑚 as well as the women in {𝑤𝑎,𝑤𝑏 ,𝑤𝑐 , . . . }, all of whom
he proposes to in 𝑃≻𝑎 ∪ 𝑃≻𝑏 ∪ 𝑃≻𝑐 ∪ . . . . Thus,𝑚1 ≠𝑚, implying
that𝑚1 is a truthful agent.
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Since men propose in decreasing order of their preference, 𝑚1
must have been rejected by a woman, say 𝑤2, whom he ranks im-
mediately above 𝑤1 in ≻𝑚1 , before proposing to 𝑤1 under ≻𝑋 .
Further, 𝑚1 must propose to 𝑤2 under at least one of the profiles
≻𝑎, ≻𝑏 , ≻𝑐 , . . . , and must not be rejected by her (otherwise, he will
propose to 𝑤1). Thus, 𝑚1 must be matched with 𝑤2 under at least
one of the matchings 𝜇𝑎, 𝜇𝑏 , 𝜇𝑐 , . . . . Without loss of generality, let
us assume that 𝜇𝑎 (𝑚1) = 𝑤2.

Since 𝑤2 is not matched with 𝑚1 under 𝜇𝑋 , she must have re-
ceived a more preferable proposal from some man, say 𝑚2; thus,
𝑚2 ≻𝑤2 𝑚1. Due to our assumption that (𝑚1,𝑤1) is the first pro-
posal during the DA execution on ≻𝑋 that does not occur in 𝑃≻𝑎 ∪
𝑃≻𝑏 ∪ 𝑃≻𝑐 ∪ . . . , 𝑚2 must have proposed to 𝑤2 under at least one
of the profiles ≻𝑎, ≻𝑏 , ≻𝑐 , . . . . Without loss of generality, he pro-
poses under ≻𝑏 . Since women match with their best proposers,
𝜇𝑏 (𝑤2) ⪰𝑤2 𝑚2. This, combined with𝑚2 ≻𝑤2 𝑚1 = 𝜇𝑎 (𝑤2), we get
𝜇𝑏 (𝑤2) ≻𝑤2 𝜇𝑎 (𝑤2).

We infer that𝑚1 does not propose to𝑤2 under ≻𝑏 , since otherwise
𝑤2 (eventually) rejects 𝑚1 causing him to propose to 𝑤1, which
would contradict our assumption that (𝑚1,𝑤1) ∉ 𝑃≻𝑎 ∪𝑃≻𝑏 ∪𝑃≻𝑐 ∪
. . . . Thus, 𝜇𝑏 (𝑚1) ≻𝑚1 𝑤2 = 𝜇𝑎 (𝑚1).

Notice that the profiles ≻𝑎 and ≻𝑏 are obtained from the true
preference profile ≻ by no-regret push up operations. Therefore,
from Lemma 5, we get that the matchings 𝜇𝑎 and 𝜇𝑏 are stable with
respect to the true preference profile (i.e., 𝜇𝑎, 𝜇𝑏 ∈ 𝑆≻).

Now consider the join 𝜇∨ B 𝜇𝑎 ∨ 𝜇𝑏 of the two matchings
with respect to the true preference profile ≻, wherein each man is
associated with his more preferred partner between 𝜇𝑎 and 𝜇𝑏 , and
each woman is associated with her less preferred partner (refer to
Section 8.1 for the relevant definitions). Thus,𝑚1 is associated with
𝜇𝑏 (𝑚1) ≠ 𝑤2 and 𝑤2 is associated with 𝜇𝑎 (𝑤1) =𝑚1. The resulting
assignment 𝜇∨ is not a valid matching, which contradicts the stable
lattice result (Proposition 5). □

We are now ready to prove Lemma 3.

Lemma 3. Let (𝑚,𝑤) be a manipulating pair, and let 𝑋 ⊆𝑊 be an
arbitrary set of women that 𝑚 can push up without incurring regret.
Then, the match for 𝑤 that is obtained by pushing up all women in
𝑋 can also be obtained by pushing up exactly one woman in 𝑋 .

PROOF. Let𝑚𝑋 B 𝜇𝑋 (𝑤), where 𝜇𝑋 B DA(≻𝑋 ). From Lemma 5,
we know that the accomplice𝑚 does not incur regret under any of the
matchings 𝜇𝑎, 𝜇𝑏 , 𝜇𝑐 , . . . , and therefore 𝜇𝑎 (𝑚) = 𝜇𝑏 (𝑚) = 𝜇𝑐 (𝑚) =
· · · = 𝜇 (𝑚). If𝑚𝑋 =𝑚, then the lemma follows trivially since𝑚 is
matched with his 𝜇𝑋 -partner, namely 𝑤 , under each of the match-
ings 𝜇𝑎, 𝜇𝑏 , 𝜇𝑐 , . . . , and therefore the 𝜇𝑋 -partner of 𝑤 can also be
achieved under any of the profiles ≻𝑎, ≻𝑏 , ≻𝑐 , . . . . Thus, for the re-
mainder of the proof, we will assume that𝑚𝑋 ≠𝑚; in other words,
𝑚𝑋 is a truthful agent.

Suppose, for contradiction, that𝑚𝑋 is not matched to𝑤 under any
of the profiles ≻𝑎, ≻𝑏 , ≻𝑐 , . . . . Starting from the profile ≻𝑎 , we can
obtain the profile ≻𝑋 via a no-regret push up operation of the set 𝑋 \
{𝑤𝑎} in the list ≻𝑎𝑚 of the accomplice. Therefore, from Corollary 1,
we have that 𝜇𝑎 (𝑚𝑋 ) ⪰𝑚𝑋

𝜇𝑋 (𝑚𝑋 ) = 𝑤 , where 𝜇𝑎 B DA(≻𝑎).
Since 𝜇𝑎 (𝑚𝑋 ) ≠ 𝑤 by the contradiction assumption, we further
obtain that 𝜇𝑎 (𝑚𝑋 ) ≻𝑚𝑋

𝑤 . By a similar argument, we get that

the women 𝜇𝑏 (𝑚𝑋 ), 𝜇𝑐 (𝑚𝑋 ), . . . are also placed above 𝑤 in the list
≻𝑚𝑋

.
Since 𝑚𝑋 is matched with 𝑤 under 𝜇𝑋 , he must propose to 𝑤

during the execution of DA algorithm on ≻𝑋 , i.e., (𝑚𝑋 ,𝑤) ∈ 𝑃≻𝑋 .
From Lemma 6, we have that (𝑚𝑋 ,𝑤) ∈ 𝑃≻𝑎 ∪ 𝑃≻𝑏 ∪ 𝑃≻𝑐 . . .. Since
𝑚𝑋 is a truthful agent, his preference list remains unchanged, and
therefore he ranks the women 𝜇𝑎 (𝑚), 𝜇𝑏 (𝑚𝑋 ), 𝜇𝑐 (𝑚𝑋 ), . . . strictly
above 𝑤 under each of the profiles ≻𝑎, ≻𝑏 , ≻𝑐 , . . . . This, however,
poses a contradiction since men propose in decreasing order of their
preference. □

9.4 Proof of Corollary 2
Corollary 2. An optimal no-regret accomplice manipulation strat-
egy can be computed in O(𝑛3) time.

PROOF. (sketch) The algorithm simply promotes each woman
that is below 𝜇 (𝑚) in the accomplice’s true preference list to some
position above 𝜇 (𝑚) and checks the DA outcome. The total number
of such checks is O(𝑛), and for each check, running the DA algorithm
takes O(𝑛2) time. □

9.5 Proof of Corollary 3
Corollary 3. The DA outcome from an inconspicuous no-regret ac-
complice manipulation is stable with respect to the true preferences.

PROOF. (sketch) An inconspicuous manipulation is a special
case of a push up operation, which was shown in Theorem 4.2 to be
stability preserving. □

10 OMITTED MATERIAL FROM SECTION 5
10.1 Proof of Theorem 5.2

THEOREM 5.2. If there is an optimal with-regret accomplice
manipulation, then there is an optimal inconspicuous with-regret
accomplice manipulation.

Recall from Lemma 3 that the match for the manipulating woman
𝑤 obtained by a no-regret push up operation of a set 𝑋 ⊆𝑊 by the
accomplice can also be achieved by pushing up exactly one woman
in 𝑋 . The following result (Lemma 4) establishes the with-regret
analogue of this result.

Lemma 4. Let (𝑚,𝑤) be a manipulating pair, and let 𝑋 ⊆𝑊 be an
arbitrary set of women that 𝑚 can push up (while incurring regret).
Then, the match for 𝑤 that is obtained by pushing up all women in
𝑋 can also be obtained by pushing up exactly one woman in 𝑋 .

Preliminaries for the proof of Lemma 4: The relevant notation is
similar to that used in the proof of Lemma 3, which we recall below
for the sake of completeness.

Let ≻ be a true preference profile. Given an accomplice 𝑚 and
a set of women 𝑋 = {𝑤𝑎,𝑤𝑏 ,𝑤𝑐 , . . . } such that 𝜇 (𝑚) ≻𝑚 𝑤𝑥 for
all 𝑤𝑥 ∈ 𝑋 , we define ≻𝑎𝑚 as the list derived from ≻𝑚 where 𝑚

pushes up 𝑤𝑎 , ≻𝑏𝑚 as the list derived from ≻𝑚 where 𝑚 pushes up
𝑤𝑏 , etc., and ≻𝑋𝑚 as the list where 𝑚 pushes up all women in 𝑋 ;
the corresponding profiles are ≻𝑎, ≻𝑏 , ≻𝑐 , . . . , ≻𝑋 . Additionally, let
𝜇𝑎 B DA(≻𝑎), 𝜇𝑏 B DA(≻𝑏 ), 𝜇𝑐 B DA(≻𝑐 ), . . . , 𝜇𝑋 B DA(≻𝑋 ).

We will now show that under a with-regret push up operation,
the DA algorithm matches the accomplice to one of the women he
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pushes up (Lemma 7). In particular, if the accomplice promotes only
one woman and incurs regret, then he must be matched to her in the
resulting matching.

Lemma 7. Let ≻ be a true preference profile and 𝜇 B DA(≻). For
any fixed man 𝑚 and any subset 𝑋 ⊆𝑊 of women, let ≻′B {≻−𝑚
, ≻𝑋 ↑

𝑚 } denote the preference profile after pushing up the women in
𝑋 in ≻𝑚 and let 𝜇 ′ B DA(≻′). If 𝑚 incurs regret (i.e., if 𝜇 (𝑚) ≻𝑚
𝜇 ′(𝑚)), then 𝜇 ′(𝑚) ∈ 𝑋 .

PROOF. Suppose, for contradiction, that 𝜇 ′(𝑚) ∉ 𝑋 . Because of
Proposition 3, without loss of generality, we have that the set 𝑋
is placed immediately below 𝜇 (𝑚) in the true list ≻𝑚 . By strate-
gyproofness of the DA algorithm,𝑚 cannot be matched under 𝜇 ′ to
any woman who, according to his true list, is preferred over 𝜇 (𝑚),
i.e., 𝜇 ′(𝑚) ∉ {𝑧 ∈ 𝑊 : 𝑧 ≻𝑚 𝜇 (𝑚)}. By the contradiction assump-
tion, 𝑚 cannot be matched with any woman in 𝑋 , and because of
the with-regret assumption,𝑚 cannot be matched with 𝜇 (𝑚) either.
Therefore, the woman 𝑦 B 𝜇 ′(𝑚) must be such that 𝜇 (𝑚) ≻′

𝑚 𝑦,
which, by the push up assumption, implies that 𝜇 (𝑚) ≻𝑚 𝑦.

Once again, due to Proposition 3. we can assume, without loss
of generality, that 𝑦 is placed immediately below the set 𝑋 in the
true list ≻𝑚 . This, in turn, implies that 𝑦 is immediately below 𝜇 (𝑚)
in the manipulated list ≻𝑋 ↑

𝑚 . Therefore, starting with the list ≻𝑋 ↑
𝑚 ,

one can obtain the true list ≻𝑚 simply by permuting the agents that
are above 𝑦. Proposition 3 would then imply that the partner of
𝑚 does not change in the process, i.e., 𝜇 ′(𝑚) = 𝜇 (𝑚), which is a
contradiction. Hence, we must have 𝜇 ′(𝑚) ∈ 𝑋 . □

Lemma 7 implies that the accomplice 𝑚 matches with some
woman in 𝑋 under the matching 𝜇𝑋 ; say 𝜇𝑋 (𝑚) = 𝑤𝑎 . We will
now show that 𝑚 is matched with 𝑤𝑎 under the matching 𝜇𝑎 as well
(Lemma 8). Notice that in light of Proposition 3, we can assume,
without loss of generality, that in the lists ≻𝑋𝑚 and ≻𝑎𝑚 , the woman𝑤𝑎

is placed immediately above 𝜇 (𝑚). That is, 𝑤𝑎 is the least-preferred
woman in 𝑋 according to the list ≻𝑋𝑚 .

Lemma 8. Let 𝑤𝑎 ∈ 𝑋 be the woman who the accomplice 𝑚

matches with under 𝜇𝑋 . Then, 𝑚 also matches with 𝑤𝑎 under 𝜇𝑎 ,
where 𝜇𝑎 B DA(≻𝑎) and ≻𝑎B {≻−𝑚, ≻𝑤𝑎↑

𝑚 }.

PROOF. Starting with the profile ≻𝑋 , we can obtain ≻𝑎 by push-
ing down all women in 𝑋 \ {𝑤𝑎} (recall from the aforementioned ob-
servation that 𝑤𝑎 is the least-preferred woman in 𝑋 according to the
list ≻𝑋𝑚). Then, from Proposition 4, we get that 𝜇𝑎 (𝑚) = 𝜇𝑋 (𝑚). □

From Lemma 8, it follows that ≻𝑎 is a with-regret profile. By
contrast, Lemma 9 will show that the rest of the profiles ≻𝑏 , ≻𝑐 . . .

do not cause regret for the accomplice.

Lemma 9. Let 𝑤𝑎 ∈ 𝑋 be the woman who the accomplice 𝑚

matches with under 𝜇𝑋 . Then, for any 𝑤𝑧 ∈ 𝑋 \ {𝑤𝑎}, 𝑚 does
not incur regret under the profile ≻𝑧B {≻−𝑚, ≻𝑤𝑧 ↑

𝑚 }.

PROOF. Let 𝑋̃ B 𝑋 \ {𝑤𝑎}, and let ≻𝑋̃B {≻−𝑚, ≻𝑋 ↑
𝑚 } be the

profile where𝑚 pushes up all women in 𝑋̃ starting from the true list
≻𝑚 .

We claim that 𝑚 must match with the woman 𝜇 (𝑚) under the
matching 𝜇𝑋̃ B DA(≻𝑋̃ ). Indeed, if that is not the case, then pro-
moting 𝑋̃ is a with-regret push up operation. Then, from Lemma 7,

the man 𝑚 must be matched with some woman in 𝑋̃ under 𝜇𝑋̃ . This,
however, would contradict the strategyproofness of DA algorithm,
as 𝑚 is able to strictly improve in going from the “true” list ≻𝑋𝑚
(where he is matched with 𝑤𝑎 , who is the least-preferred woman in
𝑋 according to the list ≻𝑋𝑚) to the “manipulated” list ≻𝑋̃ (where his
partner is some woman in 𝑋̃ ).

Thus,𝑚 must be matched with the woman 𝜇 (𝑚) under 𝜇𝑋̃ , imply-
ing that promoting 𝑋̃ is a no-regret push up operation. Lemma 5 now
implies that for every𝑤𝑧 ∈ 𝑋̃ , ≻𝑧B {≻−𝑚, ≻𝑤𝑧 ↑

𝑚 } is also a no-regret
profile, as desired. □

It can also be shown that if the accomplice 𝑚 pushes up all
women in 𝑋 \ {𝑤𝑎} simulataneously, then he does not incur regret
(Lemma 10).

Lemma 10. Let ≻𝑋 be the profile obtained by pushing up 𝑋 B
𝑋 \ {𝑤𝑎} in the accomplice 𝑚’s true preference list. Then, 𝑚 does
not incur regret under ≻𝑋 (i.e,𝑚 matches with 𝜇 (𝑚) under ≻𝑋 ).

PROOF. Suppose, for contradiction, that ≻𝑋 is a with-regret pro-
file. Then, from Lemmas 7 and 8, we have that for some 𝑤𝑧 ∈ 𝑋 ,
the profile ≻𝑧B {≻−𝑚, ≻𝑤𝑧 ↑

𝑚 } is also with-regret. This, however,
contradicts the implication of Lemma 9 that ≻𝑧 is no-regret for every
𝑤𝑧 ∈ 𝑋 . □

Recall that given any profile ≻, 𝑃≻ denotes the set of all proposals
that occur in the execution of the DA algorithm on ≻. Formally, for
any man 𝑚𝑖 ∈ 𝑀 and woman 𝑤 𝑗 ∈ 𝑊 , the ordered pair (𝑚𝑖 ,𝑤 𝑗 )
belongs to the set 𝑃≻ if 𝑚𝑖 proposes to 𝑤 𝑗 during the execution of
DA algorithm on the profile ≻. Our next result (Lemma 11) shows
that the set of proposals that occur under a true preference profile ≻
is contained in the set of proposals that occur under a profile ≻′ that
is obtained via a no-regret push up operation on ≻.

Lemma 11. Let ≻ be a preference profile and 𝜇 B DA(≻). For any
fixed man 𝑚, let ≻′= {≻−𝑚, ≻𝑋 ↑

𝑚 } and 𝜇 ′ = DA(≻′) such that 𝑚
does not incur regret (i.e., 𝜇 ′(𝑚) = 𝜇 (𝑚)). Then, 𝑃≻ ⊆ 𝑃≻′ .

PROOF. Since 𝑚 does not incur regret under ≻′, we have that
𝜇 ⪰𝑀 𝜇 ′ (Corollary 1). Under the DA algorithm, men propose in
decreasing order of their preference. Therefore, any proposal made
by a truthful man under ≻ is also made under ≻′. Furthermore, the
push up assumption implies that the accomplice𝑚 proposes to the
women in ≻𝐿

𝑚 (i.e., the woman strictly preferred by 𝑚 over 𝜇 (𝑚)
according to his true list ≻𝑚) under ≻𝑋 as well. □

Let 𝑃≻\≻′ B 𝑃≻ \𝑃≻′ denote the set of proposals that occur under
the profile ≻ but not under ≻′. Our next result (Lemma 12) shows that
the set 𝑃≻𝑧\≻𝑋 , where ≻𝑧 is a no-regret profile obtained by pushing
up some woman 𝑤𝑧 ∈ 𝑋 \ {𝑤𝑎} (as established in Lemma 9), is
contained in the set 𝑃≻.

Lemma 12. For any woman 𝑤𝑧 ∈ 𝑋 \ {𝑤𝑎}, let ≻𝑧 be the no-regret
profile obtained by pushing up 𝑤𝑧 (as discussed in Lemma 9). Then,
𝑃≻𝑧\≻𝑋 ⊆ 𝑃≻.

PROOF. We start by showing that any proposal in 𝑃≻𝑧\≻𝑋 must
occur after 𝑚 proposes to 𝜇 (𝑚) during the DA execution on ≻𝑧 .
Suppose, for contradiction, that this is not true. Then, let (𝑚1,𝑤1) be
the first proposal during the DA execution on ≻𝑧 such that it does not
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belong to 𝑃≻𝑋 and occurs before (𝑚, 𝜇 (𝑚)). Note that the proposals
made by the accomplice 𝑚 before 𝜇 (𝑚) under ≻𝑧 are only to the
women above and including 𝜇 (𝑚) in ≻𝑚 as well as 𝑤𝑧 , all of whom
he also proposes to under ≻𝑧 . Thus,𝑚1 ≠𝑚, implying that𝑚1 is a
truthful agent.

Since men propose in decreasing order of their preference and
it is assumed that (𝑚1,𝑤1) ∉ 𝑃≻𝑋 , 𝑚1 must have been rejected by
𝑤2 B 𝜇𝑋 (𝑚1) under ≻𝑧 before proposing to 𝑤1. Then, under ≻𝑧 ,
𝑤2 must have received a proposal from some man, say 𝑚2, such
that 𝑚2 ≻𝑤2 𝑚1. We assumed (𝑚1,𝑤1) to be the first proposal
during the DA execution on ≻𝑧 to not belong to 𝑃≻𝑋 . Since (𝑚2,𝑤2)
occurs before (𝑚1,𝑤1) under ≻𝑧 , we must have that (𝑚2,𝑤2) also
occurs under ≻𝑋 . We already established that 𝑚2 ≻𝑤2 𝑚1 and know
that women are truthful. Since women match with their favorite
proposers, this implies that 𝑤2 does not match with 𝑚1 under ≻𝑋 .
However, this contradicts the statement that 𝑤2 = 𝜇𝑋 (𝑚1).

We proceed by showing that any proposal that occurs after 𝑚
proposes to 𝜇 (𝑚) during the DA execution on ≻𝑧 must also occur
in 𝑃≻. Suppose, for contradiction, that this is not true. Then, let
(𝑚1,𝑤1) be the last proposal during the DA execution on ≻𝑧 such
that it does not belong to 𝑃≻ and occurs after (𝑚, 𝜇 (𝑚)). We infer
that 𝑤1 accepts and matches with𝑚1 under ≻𝑧 , since otherwise𝑚1
must make additional proposals, contradicting our assumption that
(𝑚1,𝑤1) is the last proposal to not occur in 𝑃≻. Note that 𝑚 does
not propose to anyone after 𝜇 (𝑚) by the no-regret assumption of ≻𝑧 .
Thus,𝑚1 ≠𝑚, implying that𝑚1 is a truthful agent.

Let 𝑚2 be the man 𝑤1 is temporarily engaged to before she re-
ceives a proposal from𝑚1 under ≻𝑋 . We assumed that𝑤2 = 𝜇𝑋 (𝑚1)
which means that 𝑤1 rejects 𝑚2 in favor of 𝑚1 under ≻𝑧 , causing
𝑚2 to propose to the next woman in ≻𝑧𝑚2 , say 𝑤2. Since 𝑃≻ ⊆ 𝑃≻𝑧

(Lemma 11), we know that (𝜇 (𝑤1),𝑤1) ∈ 𝑃≻𝑧 . We also defined
𝑚2 to be 𝑤1’s favorite proposer under ≻𝑧 before matching with𝑚1,
which implies that 𝑚2 ⪰𝑤1 𝜇 (𝑤1). If 𝑤1 ≻𝑚2 𝜇 (𝑚2), then the pair
(𝑚2,𝑤1) blocks 𝜇 with respect to ≻. Thus, we have that 𝜇 (𝑚2) ⪰𝑚2
𝑤1. Note that the accomplice𝑚 does not make any proposals after
(𝑚1,𝑤1) under ≻𝑧 , since (𝑚1,𝑤1) occurs after (𝑚, 𝜇 (𝑚)) and ≻𝑧 is
a no-regret profile. We know that 𝑚2 proposes to 𝑤2 after (𝑚1,𝑤1),
implying that 𝑚2 ≠𝑚. Therefore, 𝜇 (𝑚2) ⪰𝑚2 𝑤1 ≻𝑚2 𝑤2, and 𝑚2
does not propose to 𝑤2 under ≻. However, this contradicts the as-
sumption that (𝑚1,𝑤1) is the last proposal during the DA execution
on ≻𝑋 to not belong to 𝑃≻.

Thus, we have shown that (1) any proposal that belongs to 𝑃≻𝑧\≻𝑋

occurs after (𝑚, 𝜇 (𝑚)) during the DA execution on ≻𝑧 , and (2) any
proposal that occurs after (𝑚, 𝜇 (𝑚)) during the DA execution on ≻𝑧
belongs to 𝑃≻. These two statements imply that 𝑃≻𝑧\≻𝑋 ⊆ 𝑃≻. □

Our next result (Lemma 13) shows that the set 𝑃≻𝑋 \≻𝑋̄ is con-
tained in the set 𝑃≻𝑎 .

Lemma 13. Let ≻𝑋 be the profile obtained by pushing up 𝑋 B
𝑋 \{𝑤𝑎} in the accomplice𝑚’s true preference list. Then, 𝑃≻𝑋 \≻𝑋̄ ⊆
𝑃≻𝑎 .

PROOF. For this proof, let ≻𝑎 be the “true” preference profile.
Remember, from Lemma 10, that𝑚 matches with 𝜇 (𝑚) under ≻𝑋 .
Thus, ≻𝑋 is a with-regret profile with respect to ≻𝑎 , and is obtained
by pushing up 𝑋 B 𝑋 ∪ {𝜇 (𝑚)} in ≻𝑎𝑚 . On the other hand, 𝑚

matches with 𝑤𝑎 under ≻𝑎 and ≻𝑋 (Lemma 8). Thus, ≻𝑋 is a no-
regret profile with respect to ≻𝑎 , and is obtained by pushing up
𝑋 = 𝑋 \ {𝜇 (𝑚)} = 𝑋 \ {𝑤𝑎}.

For any woman𝑤𝑧 ∈ 𝑋 , let ≻𝑎𝑧 be the profile obtained by pushing
up 𝑤𝑧 in ≻𝑎𝑚 . It is easy to see that ≻𝑎𝑧 is a no-regret profile with
respect to ≻𝑎 . Indeed, suppose ≻𝑎𝑧 is with-regret. Then, 𝑚 must
match with 𝑤𝑧 under ≻𝑎𝑧 (Lemma 7). In light of Proposition 3 we
can assume, without loss of generality, that𝑚 ranks the set 𝑋 strictly
above 𝑤𝑎 in the list ≻𝑋𝑚 . Given profile ≻𝑋 , 𝑚 could then manipulate
by submitting ≻𝑎𝑧𝑚 in order to match with 𝑤𝑧 . However, this would
contradict strategyproofness of the DA algorithm since 𝑤𝑧 ≻𝑚 𝑤𝑎 .
Therefore, ≻𝑎𝑧 is no-regret with respect to ≻𝑎 .

Given this observation, from Lemma 12, we get that for any
woman 𝑤𝑧 ∈ 𝑋 = 𝑋 \ {𝜇 (𝑚)}, 𝑃≻𝑎𝑧 \ 𝑃≻𝑋̄ ⊆ 𝑃≻𝑎 . Since𝑚 matches
with 𝑤𝑎 under ≻𝑎𝑧 and ≻𝑋 , we have that ≻𝑎𝑧 is no-regret with
respect to ≻𝑋 . Thus, we invoke Lemma 6 to claim that any proposal
that occurs under ≻𝑋 is contained in 𝑃≻𝑎𝑧1 ∪ 𝑃≻𝑎𝑧2 ∪ · · · ∪ 𝑃≻𝑎𝑧𝑘 ,
where𝑋 B {𝑤𝑧1 ,𝑤𝑧2 , . . . ,𝑤𝑧𝑘 }. Since {𝑃≻𝑎𝑧1 ∪𝑃≻𝑎𝑧2 ∪· · ·∪𝑃≻𝑎𝑧𝑘 }\
𝑃≻𝑋̄ ⊆ 𝑃≻𝑎 , we get that 𝑃≻𝑋 \≻𝑋̄ ⊆ 𝑃≻𝑎 . □

Recall from Lemma 6 that, in the no-regret setting, any proposal
that occurs during the DA execution on the profile ≻𝑋 must also occur
during the DA execution on at least one of the profiles ≻𝑎, ≻𝑏 , ≻𝑐 , . . . .
Our next result (Lemma 14) establishes the with-regret analogue of
this result.

Lemma 14. Let 𝑋 = {𝑤𝑎,𝑤𝑏 ,𝑤𝑐 , . . . } be an arbitrary finite set of
women such that the accomplice 𝑚 incurs regret after pushing up 𝑋 .
Then, any proposal that occurs under ≻𝑋 also occurs under at least
one of the profiles ≻𝑎, ≻𝑏 , ≻𝑐 , . . . .

PROOF. Let ≻𝑋 be the profile after𝑚 pushes up 𝑋 B 𝑋 \ {𝑤𝑎}
in his true preference list. Then, from Lemma 13, we know that
𝑃≻𝑋 \ 𝑃≻𝑋̄ ⊆ 𝑃≻𝑎 . Additionally, from Lemma 10, we know that
≻𝑋 is a no-regret profile. It then follows from Lemma 6 that 𝑃≻𝑋̄ ⊆
𝑃≻𝑏 ∪ 𝑃≻𝑐 ∪ . . . .

Any proposal that occurs under ≻𝑋 is contained in either 𝑃≻𝑋 \
𝑃≻𝑋̄ or 𝑃≻𝑋̄ . By combining the aforementioned observations, we
get that any such proposal is contained in 𝑃≻𝑎 ∪ 𝑃≻𝑏 ∪ 𝑃≻𝑐 ∪ . . . , as
desired. □

We are now ready to prove Lemma 4.

Lemma 4. Let (𝑚,𝑤) be a manipulating pair, and let 𝑋 ⊆𝑊 be an
arbitrary set of women that 𝑚 can push up (while incurring regret).
Then, the match for 𝑤 that is obtained by pushing up all women in
𝑋 can also be obtained by pushing up exactly one woman in 𝑋 .

PROOF. Let 𝑚𝑋 B 𝜇𝑋 (𝑤), where 𝜇𝑋 B DA(≻𝑋 ). We assume
that the accomplice 𝑚 matches with a woman 𝑤𝑎 ∈ 𝑋 (Lemma 7)
under ≻𝑋 . From Lemma 8, we know that he also matches with 𝑤𝑎

under ≻𝑎 . If 𝑚𝑋 = 𝑚, then the lemma follows trivially since 𝑚 is
matched with his 𝜇𝑋 -partner, namely 𝑤 , under the matching 𝜇𝑎 , and
therefore the 𝜇𝑋 -partner of 𝑤 can also be achieved through profile
≻𝑎 . Thus, for the remainder of the proof, we assume that𝑚𝑋 ≠𝑚;
in other words,𝑚𝑋 is a truthful agent.

Suppose, for contradiction, that𝑚𝑋 is not matched to𝑤 under any
of the profiles ≻𝑎, ≻𝑏 , ≻𝑐 , . . . . Starting from the with-regret profile
≻𝑎 (as established in Lemma 8), we can obtain the profile ≻𝑋 via a



Accomplice Manipulation of the Deferred Acceptance Algorithm GAIW’21, May 2021, London, UK

no-regret push up operation of the set 𝑋 \ {𝑤𝑎} in the list ≻𝑎𝑚 of the
accomplice. Therefore, from Corollary 1, we have that 𝜇𝑎 (𝑚𝑋 ) ⪰𝑚𝑋

𝜇𝑋 (𝑚𝑋 ) = 𝑤 , where 𝜇𝑎 B DA(≻𝑎). Since 𝜇𝑎 (𝑚𝑋 ) ≠ 𝑤 by the
contradiction assumption, we further obtain that 𝜇𝑎 (𝑚𝑋 ) ≻𝑚𝑋

𝑤 .
Now, consider the no-regret profiles ≻𝑏 , ≻𝑐 , ≻𝑑 , . . . (as estab-

lished in Lemma 9). Suppose 𝜇𝑋 (𝑚𝑋 ) ≻𝑚𝑋
𝜇𝑏 (𝑚𝑋 ), where 𝜇𝑏 B

DA(≻𝑏 ). Then, since men propose in decreasing order of their pref-
erence, (𝑚𝑋 , 𝜇

𝑏 (𝑚𝑋 )) ∈ 𝑃≻𝑏\≻𝑋 . Lemma 12 consequently implies
that (𝑚𝑋 , 𝜇

𝑏 (𝑚𝑋 )) ∈ 𝑃≻, and thus 𝜇𝑏 (𝑚𝑋 ) ⪰𝑚𝑋
𝜇 (𝑚𝑋 ). Since

𝜇 (𝑚𝑋 ) ⪰𝑚𝑋
𝜇𝑏 (𝑚𝑋 ) by Corollary 1, we infer that 𝜇𝑏 (𝑚𝑋 ) =

𝜇 (𝑚𝑋 ). This, combined with 𝜇𝑋 (𝑚𝑋 ) ≻𝑚𝑋
𝜇𝑏 (𝑚𝑋 ), gets us 𝑤 =

𝜇𝑋 (𝑚𝑋 ) ≻𝑚𝑋
𝜇 (𝑚𝑋 ). From the accomplice manipulation assump-

tion, we also know that 𝑚𝑋 = 𝜇𝑋 (𝑤) ≻𝑤 𝜇 (𝑤). However, this im-
plies that the pair (𝑚𝑋 ,𝑤) blocks 𝜇 with respect to ≻, posing a con-
tradiction. Thus, we have shown that 𝑤 = 𝜇𝑋 (𝑚𝑋 ) ⊁𝑚𝑋

𝜇𝑏 (𝑚𝑋 ).
Since 𝜇𝑏 (𝑚𝑋 ) ≠ 𝑤 by the initial contradiction assumption, we fur-
ther obtain that 𝜇𝑏 (𝑚𝑋 ) ≻𝑚𝑋

𝑤 . By a similar argument, we get that
the women 𝜇𝑐 (𝑚𝑋 ), 𝜇𝑑 (𝑚𝑋 ), . . . are also placed above 𝑤 in the list
≻𝑚𝑋

.
Since𝑚𝑋 is matched with𝑤 under 𝜇𝑋 , he must propose to𝑤 dur-

ing the execution of DA algorithm on ≻𝑋 , i.e., (𝑚𝑋 ,𝑤) ∈ 𝑃≻𝑋 . From
Lemma 14, we have that (𝑚𝑋 ,𝑤) ∈ 𝑃≻𝑎 ∪ 𝑃≻𝑏 ∪ 𝑃≻𝑐 . . .. Since𝑚𝑋

is a truthful agent, his preference list remains unchanged, and there-
fore he ranks the women 𝜇𝑎 (𝑚), 𝜇𝑏 (𝑚𝑋 ), 𝜇𝑐 (𝑚𝑋 ), . . . strictly above
𝑤 under each of the profiles ≻𝑎, ≻𝑏 , ≻𝑐 , . . . . This, however, poses a
contradiction since men propose in decreasing order of their prefer-
ence. □

We are now ready to prove Theorem 5.2.

THEOREM 5.2. If there is an optimal with-regret accomplice
manipulation, then there is an optimal inconspicuous with-regret
accomplice manipulation.

PROOF. From Proposition 3 (and subsequent remarks), we know
that any accomplice manipulation can be simulated via push up
and push down operations. Lemma 2 shows that any beneficial
manipulation that is achieved by some combination of pushing up a
set 𝑋 ⊆𝑊 and pushing down 𝑌 ⊆𝑊 can be weakly improved by
only pushing up 𝑋 ⊆𝑊 . Finally, from Lemma 4, we know that any
match for the manipulating woman 𝑤 that is achieved by pushing
up 𝑋 ⊆𝑊 is also achieved by pushing up exactly one woman in 𝑋 ,
thus establishing the desired inconspicuousness property. □

10.2 Proof of Corollary 4
Corollary 4. An optimal with-regret accomplice manipulation strat-
egy can be computed in O(𝑛3) time.

PROOF. (sketch) The algorithm simply promotes each woman
that is below 𝜇 (𝑚) in the accomplice’s true preference list to some
position above 𝜇 (𝑚) and checks the DA outcome. The total number
of such checks is O(𝑛), and for each check, running the DA algorithm
takes O(𝑛2) time. □

11 OMITTED MATERIAL FROM SECTION 6
Recall from our previous experiments that we generated 1000 pro-
files uniformly at random for each value of 𝑛 ∈ 3, ..., 40 (where

𝑛 is the number of men/women) and allowed any man to be cho-
sen as an accomplice. We follow the same setup for all subsequent
experiments unless stated otherwise.

11.1 Fraction of Women Who Improve (Cont’d)
We revisit the experiment in which we compared the fraction of
women who are able to improve through no-regret accomplice and
self manipulation. In Table 1, we catalog the number of women
who benefit from both strategies when 𝑛 = 20. Not only are there
more instances where at least one woman improves through no-
regret accomplice manipulation, but there are also more instances
where larger numbers of women improve. For example, there are no
instances where more than ten women improve through self manipu-
lation. This is a stark contrast to no-regret accomplice manipulation
through which sixteen women are able to improve in one of the
instances. Interestingly, there are no instances where exactly one
woman improves through no-regret accomplice manipulation. This
is due to the sequence of proposals that occur after a no-regret push
up operation. We formalize this observation in Proposition 6.

PROPOSITION 6. Let ≻ be a preference profile and 𝜇 B DA(≻).
For any man 𝑚, let ≻′B {≻−𝑚, ≻𝑋 ↑

𝑚 } and 𝜇 ′ B DA(≻′). If 𝑚
does not incur regret and 𝜇 ′ ≠ 𝜇, then there exist at least two
distinct women 𝑤 ′,𝑤 ′′ ∈ 𝑊 such that 𝜇 ′(𝑤 ′) ≻𝑤′ 𝜇 (𝑤 ′) and
𝜇 ′(𝑤 ′′) ≻𝑤′′ 𝜇 (𝑤 ′′), and at least two distinct men 𝑚′,𝑚′′ ∈ 𝑀

such that 𝜇 (𝑚′) ≻𝑚′ 𝜇 ′(𝑚′) and 𝜇 (𝑚′′) ≻𝑚′′ 𝜇 ′(𝑚′′).
Before proving Proposition 6, we show that if a man𝑚 performs

a no-regret push up operation such that all the women he pushes
up prefer him less than their original DA partners, then the push up
operation is weak (i.e., the manipulated matching is the same as the
original matching).

Lemma 15. Let ≻ be a preference profile and 𝜇 B DA(≻). For any
man 𝑚, let ≻′= {≻−𝑚, ≻𝑋 ↑

𝑚 } and 𝜇 ′ = DA(≻′) such that𝑚 does not
incur regret. If 𝜇 (𝑤 ′) ≻𝑤′ 𝑚 for all 𝑤 ′ ∈ 𝑋 , then 𝜇 ′ = 𝜇.

PROOF. Since𝑚 does not incur regret after a push up operation,
𝜇 ′ must be stable with respect to the true preferences, i.e., 𝜇 ′ ∈ 𝑆≻
(Theorem 4.2). Additionally, Corollary 1 implies that 𝜇 ′ is weakly
better for all women (i.e., 𝜇 ′ ⪰𝑊 𝜇) and weakly worse for all men
(i.e., 𝜇 ⪰𝑀 𝜇 ′).

Suppose, for contradiction, that 𝜇 ′ ≠ 𝜇. Let 𝑍 B {𝑧 ∈ 𝑊 :
𝜇 ′(𝑧) ≻𝑧 𝜇 (𝑧)} denote the set of women with a strictly more
preferable partner under 𝜇 ′. Thus, by assumption, 𝑍 ≠ ∅. Let
𝑌 B {𝑦 ∈ 𝑀 : 𝜇 ′(𝑦) ∈ 𝑍 } denote the set of men whose 𝜇 ′-partners
are in the set 𝑍 . Note that any man not in 𝑌 has the same partner
under 𝜇 and 𝜇 ′; in particular, 𝑚 ∉ 𝑌 by the no-regret assumption.
Also note that each man in 𝑌 strictly prefers its partner under 𝜇 than
under 𝜇 ′, i.e., 𝜇 ≻𝑌 𝜇 ′ (this is an easy consequence of the stability
of 𝜇 ′ with respect to the true profile ≻) .

Consider the execution of the DA algorithm on the profile ≻′.
Since the men propose in decreasing order of their preference, each
man in 𝑌 must be rejected by his 𝜇-partner during the algorithm.
Let𝑚1 ∈ 𝑌 denote the man who is the earliest to be rejected by his
𝜇-partner (i.e., the woman he is matched to under the matching 𝜇),
say 𝑤1 B 𝜇 (𝑚1). Then, 𝑤1 must have at hand a more preferable
proposal, say𝑚2 (i.e.,𝑚2 ≻𝑤1 𝑚1), that she does not receive under
the execution of DA(≻).
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No. of women who benefit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
No. of instances (accomplice) 307 0 101 102 88 79 88 59 49 54 28 21 11 8 3 1 1 0 0 0 0
No. of instances (self) 411 151 178 128 68 33 20 7 1 2 1 0 0 0 0 0 0 0 0 0 0

Table 1: The number of instances (out of 1000) where a varying numbers of women benefit through no-regret accomplice manipulation
and self manipulation when 𝑛 = 20.

Since𝑚2 is not rejected by his 𝜇-partner yet, we have that𝑤1 ≻′
𝑚2

𝜇 (𝑚2). Now, if 𝑚2 ≠𝑚, then we get 𝑤1 ≻𝑚2 𝜇 (𝑚2), which contra-
dicts the stability of 𝜇 with respect to ≻ as (𝑚2,𝑤2) would constitute
a blocking pair. Otherwise, if 𝑚2 =𝑚, then it must be that 𝑤1 ∈ 𝑋

(since the women in 𝑋 are the only ones who𝑚 proposes to under
≻′ but not under ≻). Then, from the above condition, we will have
𝑚 = 𝑚2 ≻𝑤′ 𝑚1 = 𝜇 (𝑤 ′) for some 𝑤 ′ ∈ 𝑋 , which contradicts the
condition given in the lemma. Hence, 𝜇 = 𝜇 ′, as desired. □

We are now ready to prove Proposition 6.

PROOF OF PROPOSITION 6. Let 𝑋 ⊆ 𝑊 be the set of women
that 𝑚 pushes up. Since it is assumed that 𝜇 ′ ≠ 𝜇, the contrapos-
itive of Lemma 15 implies there exists a woman 𝑤 ′ ∈ 𝑋 such
that 𝜇 (𝑤 ′) ⊁𝑤′ 𝑚. By the push up assumption, 𝜇 (𝑚) ≠ 𝑤 ′; other-
wise 𝑚 would not have been able to push up 𝑤 ′. This implies that
𝑚 ≠ 𝜇 (𝑤 ′) and thus, 𝑚 ≻𝑤′ 𝜇 (𝑤 ′). Since men propose in decreas-
ing order, 𝑚 proposes to 𝑤 ′ under DA(≻′). By no-regret assumption
𝜇 (𝑚) = 𝜇 ′(𝑚), we know that 𝑤 ′ rejects 𝑚 at some point to be
matched with another man𝑚′ such that𝑚′ ≻𝑤′ 𝜇 (𝑤 ′). This implies
that 𝑚′ did not propose to 𝑤 ′ under DA(≻), and thus,𝑚′ is matched
to a more preferred woman under ≻, i.e., 𝜇 (𝑚′) ≻𝑚′ 𝜇 ′(𝑚′).

Now let 𝑚̂ B 𝜇 (𝑤 ′) be 𝑤 ′’s partner under ≻. By Corollary 1, it
must be the case that 𝜇 (𝑚̂) ≻𝑚̂ 𝜇 ′(𝑚̂). Let 𝑤 ′′ B 𝜇 ′(𝑚̂). Following
the same reasoning as above, since 𝜇 (𝑚) = 𝜇 ′(𝑚) and𝑚 ≠ 𝜇 (𝑤 ′′),
we have𝑚 ≻𝑤′′ 𝜇 (𝑤 ′′). The order of proposals under ≻′ indicates
that 𝑤 ′′ rejects 𝑚’s proposal to be matched to a more preferred man
𝑚′′ under DA(≻′), which consequently implies that 𝜇 ′(𝑤 ′′) ≻𝑤′′

𝜇 (𝑤 ′′) while 𝜇 (𝑚′′) ≻𝑚′′ 𝜇 (𝑚′′). Therefore, 𝑤 ′ and 𝑤 ′′’s partners
are strictly improved whereas 𝑚′ and 𝑚′′’s partners are strictly
worsened off under DA(≻′). □

In the same experiment, we additionally computed the fraction of
instances in which it is possible for at least one woman to improve
through no-regret accomplice and self manipulation. The results in
Figure 6 once again suggest that no-regret accomplice strategies are
more prevalent than self manipulation.

Figure 6: Comparing fractions of instances that are manipula-
ble by at least one woman through no-regret accomplice and
self manipulation.

Figure 7: Comparing no-regret accomplice, with-regret accom-
plice (with variable-sized pools of potential accomplices for
both), and self manipulation against truthful reporting when
𝑛 = 40.

11.2 How Much Flexibility is Really Needed in
Choosing the Accomplice?

So far, our experiments have taken the optimistic approach of al-
lowing the strategic woman to pick any man of her choice as the
accomplice. To examine the exact extent of flexibility that this as-
sumption requires, we conduct an experiment where the accomplice
is chosen from a fixed pool of 𝑝 men for some 𝑝 ≤ 𝑛 (for example,
when 𝑝 = 5, we pick the best accomplice from a fixed set of five
men). For 𝑛 = 40, we ran the no-regret accomplice, with-regret
accomplice, and self manipulation strategies on 1000 profiles for
𝑝 ∈ {1, . . . , 40}. The results are presented in Figure 7.

One would expect with-regret accomplice manipulation to out-
perform self manipulation when there is variability in accomplices.
Indeed, the strategic woman could simply ask her top choice man
to place her at the top of his list. However, we observe that, in ex-
pectation, with-regret accomplice manipulation outperforms self
manipulation for every pool size 𝑝 (thus, a with-regret strategy out-
performs self manipulation even when a single accomplice is ran-
domly chosen in advance). Furthermore, the comparatively limited
no-regret accomplice manipulation is also, on average, better than
self manipulation when there are at least four men to choose from.
These observations suggest that the superior performance of accom-
plice manipulation can be achieved even with a modest amount of
flexibility in the choice of the accomplice.

11.3 Regret vs. Improvement
We examine the tradeoff between regret (of the accomplice) and
improvement (of the strategic woman) under the with-regret manip-
ulation model. Rather than allowing any man to be chosen as an
accomplice, we ran the with-regret manipulation strategy on a fixed
woman 𝑤 and recorded the outcomes after individually using each
man as an accomplice. In other words, if there were multiple optimal
strategies for 𝑤 , we chose the one that caused the accomplice to in-
cur the least amount of regret. Figure 8 illustrates the distribution of
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Figure 8: Comparing distributions of improvement for the
strategic woman 𝑤 and regret for the accomplices. The solid
bars, whiskers, and dots denote the interquartile range, range
excluding outliers, and outliers, respectively.

improvement achieved for 𝑤 and regret incurred by the accomplices
in terms of the difference in the ranks of their matched partners
before and after manipulation. Interestingly, the expected regret for
the accomplice is greater than the expected improvement for the
manipulating woman.

12 SUBOPTIMAL ACCOMPLICE
MANIPULATION

We have already shown that any optimal accomplice manipulation
strategy admits an equivalent inconspicuous strategy (Theorems 4.3
and 5.2). Theorem 12.1 strengthens this result by showing that any
beneficial (i.e., optimal or suboptimal) accomplice manipulation ad-
mits an equivalent inconspicuous strategy for both the no-regret and
with-regret settings. In order to prove this, we start by introducing
some new results (Lemmas 16 and 17).

Lemma 16. Let (𝑚,𝑤) be a manipulating pair. Let 𝑋 be a set of
women who𝑚 can push up and 𝜇 (𝑤) be 𝑤’s match after𝑚 pushes
up all women in 𝑋 . Let𝑤 ′ ∈ 𝑋 be the single woman𝑚 needs to push
up to get 𝑤 matched with 𝜇 (𝑤) (as guaranteed by Lemmas 3 and 4).
Then,𝑚 can push up any subset of women in 𝑋 that contains𝑤 ′ (i.e.,
any subset 𝑆 ⊆ 𝑋 such that 𝑤 ′ ∈ 𝑆) to get 𝑤 matched with 𝜇 (𝑤).

PROOF. Let ≻𝑋B {≻−𝑚, ≻𝑋 ↑
𝑚 }, ≻𝑆B {≻−𝑚, ≻𝑆↑𝑚 }, and ≻𝑤′

B

{≻−𝑚, ≻𝑤′↑
𝑚 }. Without loss of generality, ≻𝑆 is derived from ≻𝑋 if

𝑚 pushes down the set 𝑋 \ 𝑆 . Similarly, ≻𝑤′
is derived from ≻𝑆

if 𝑚 pushes down the set 𝑆 \ {𝑤 ′}. From Lemma 1, we get that
𝜇𝑋 ⪰𝑊 𝜇𝑆 and 𝜇𝑆 ⪰𝑊 𝜇𝑤

′
, where 𝜇𝑋 B DA(≻𝑋 ), 𝜇𝑆 B DA(≻𝑆 ),

and 𝜇𝑤
′
B DA(≻𝑤′). Since it is assumed that 𝜇𝑋 (𝑤) = 𝜇𝑤

′ (𝑤), it
must be the case that 𝜇𝑆 (𝑤) = 𝜇𝑋 (𝑤). Thus, 𝑚 can push up any
subset to get 𝑤 matched with 𝜇 (𝑤). □

The next result (Lemma 17) shows that a strictly beneficial ac-
complice manipulation that uses a combination of push up and push
down operations can be achieved through push up operations alone.
This strengthens Lemma 2 which showed that a combination of
push up and push down operations is weakly worse than push up
operations alone.

Lemma 17. Let (𝑚,𝑤) be a manipulating pair, and let ≻ be a
preference profile. For any subsets of women 𝑋 ⊆𝑊 and 𝑌 ⊆𝑊 , let
≻′B {≻−𝑚, ≻𝑋 ↑

𝑚 } denote the preference profile after pushing up the
set 𝑋 and ≻′′B {≻−𝑚, ≻𝑋 ↑,𝑌 ↓

𝑚 } denote the profile after pushing up

𝑋 and pushing down 𝑌 in the true preference list ≻𝑚 of man 𝑚. Let
𝜇 B DA(≻), 𝜇 ′ B DA(≻′), and 𝜇 ′′ B DA(≻′′). If 𝜇 ′′(𝑤) ≻𝑤 𝜇 (𝑤),
then 𝜇 ′′(𝑤) = 𝜇 ′(𝑤).

PROOF. Suppose, for contradiction, that 𝜇 ′′(𝑤) ≠ 𝜇 ′(𝑤). This,
combined with 𝜇 ′(𝑤) ⪰𝑤 𝜇 ′′(𝑤) (Lemma 2), gets us 𝜇 ′(𝑤) ≻𝑤

𝜇 ′′(𝑤). Additionally, we have assumed that 𝜇 ′′(𝑤) ≻𝑤 𝜇 (𝑤), which
gets us 𝜇 ′(𝑤) ≻𝑤 𝜇 (𝑤).

≻𝑚 : · · · 𝑌 · · · 𝜇 (𝑚) · · · 𝑋 · · ·

≻′
𝑚 : · · · 𝑋 · · · 𝑌 · · · 𝜇 (𝑚) · · ·

≻′′
𝑚 : · · · 𝑋 · · · 𝜇 (𝑚) · · · 𝑌 · · ·

≻∗
𝑚 : · · · 𝜇 (𝑚) · · · 𝑋 · · · 𝑌 · · ·

Figure 9: An illustration of man 𝑚’s preference lists under the
profiles ≻, ≻∗, ≻′, and ≻′′ in the proof of Lemma 17.

Now, let 𝑍 B 𝑋 ∪ 𝑌 . Consider a preference profile ≻∗ derived
from the true profile ≻ by pushing down all women in 𝑍 below
𝜇 (𝑚) in the accomplice𝑚’s true preference list (see Figure 9). From
Proposition 4, we have that 𝜇∗ (𝑚) = 𝜇 (𝑚), where 𝜇∗ B DA(≻∗).
This implies that a push up/down operation with respect to 𝜇∗ (𝑚)
is equivalent to the same operation with respect to 𝜇 (𝑚). Therefore,
starting with ≻∗

𝑚 , if 𝑚 pushes up all women in 𝑍 , then we obtain
the profile ≻′. Similarly, starting with ≻∗

𝑚 , if 𝑚 instead pushes up
all women in 𝑋 (respectively, 𝑌 ), then we obtain the profile ≻′′

(respectively, ≻).
Since profile ≻′ is derived from ≻∗ via a push up operation of the

set 𝑍 , Lemma 3 implies that the same match for 𝑤 , namely 𝜇 ′(𝑤),
can be achieved by promoting just one woman, say 𝑤 ′ ∈ 𝑍 , in the
preference list ≻′

𝑚 . Since 𝑋 and 𝑌 are disjoint sets, we have that
either 𝑤 ′ ∈ 𝑋 or 𝑤 ′ ∈ 𝑌 . If 𝑤 ′ ∈ 𝑋 , then from Lemma 16, we
have that 𝜇 ′′(𝑤) = 𝜇 ′(𝑤), contradicting our original assumption.
On the other hand, if 𝑤 ′ ∈ 𝑌 , then again from Lemma 16 we get
𝜇 (𝑤) = 𝜇 ′(𝑤), contradicting the condition 𝜇 ′(𝑤) ≻𝑤 𝜇 (𝑤) that we
showed above. □

THEOREM 12.1. Any beneficial accomplice manipulation is,
without loss of generality, inconspicuous.

PROOF. From Proposition 3 (and the subsequent remarks), we
know that any accomplice manipulation can be simulated via push
up and push down operations. Lemma 17 shows that any beneficial
(i.e., optimal or suboptimal) manipulation that is achieved by some
combination of pushing up a set 𝑋 ⊆𝑊 and pushing down 𝑌 ⊆𝑊

can also be achieved by only pushing up 𝑋 ⊆ 𝑊 . Finally, from
Lemma 3, we know that any match for the manipulating woman 𝑤

that is achieved by pushing up 𝑋 ⊆𝑊 is also achieved by pushing
up exactly one woman in 𝑋 , thus establishing the desired inconspic-
uousness property. □
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