
Ascending-Price Mechanism for General Multi-Sided Markets
Dvir Gilor

The Open University of Israel,
Raanana, Israel
dvir@gilor.com

Rica Gonen
The Open University of Israel,

Raanana, Israel
ricagonen@gmail.com

Erel Segal-Halevi
Ariel University,

Ariel, Israel
erelsgl@gmail.com

ABSTRACT
We present an ascending-price mechanism for a multi-sided market
with a variety of participants, such as manufacturers, logistics agents,
insurance providers, and assemblers. Each deal in the market may
consist of a combination of agents from separate categories, and dif-
ferent such combinations are simultaneously allowed. This flexibility
lets multiple intersecting markets be resolved as a single global mar-
ket. Our mechanism is obviously-truthful, strongly budget-balanced,
individually rational, and attains almost the optimal gain-from-trade
when the market is sufficiently large. We evaluate the performance
of the suggested mechanism with experiments on real stock market
data and synthetically produced data.

KEYWORDS
Multi-Sided Markets, Truthful Auctions, Strong Budget Balance

ACM Reference Format:
Dvir Gilor, Rica Gonen, and Erel Segal-Halevi. 2021. Ascending-Price Mech-
anism for General Multi-Sided Markets. In Appears at the 3rd Games, Agents,
and Incentives Workshop (GAIW 2021). Held as part of the Workshops at
the 20th International Conference on Autonomous Agents and Multiagent
Systems., London, UK, May 2021, IFAAMAS, 13 pages.

1 INTRODUCTION
The aim of this paper is to automatically arrange the trade in complex
multi-lateral markets. As an example, consider a market for a certain
kind of laptop computer, and assume for simplicity that it is made
of only two components, e.g. CPU and RAM. Even in this simpli-
fied market, there may be several different categories of traders: 1.
Buyers, who are interested in a laptop; 2. Laptop producers, who
produce whole laptops; 3. CPU producers; 4. RAM producers; 5.
Constructors, who construct a laptop from its parts; 6. Transporters,
who take a laptop and bring it to an end consumer. A deal in this
market can take one of two forms:

• A buyer buys a laptop from a laptop-producer, and asks
a transporter to transport it to his/her place. This involves
traders of categories 1, 2 and 6.
• A buyer buys CPU, RAMs and a construction service, and

has the final product transported. This involves traders of
categories 1, 3, 4, 5 and 6.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Appears at the 3rd Games, Agents, and Incentives Workshop (GAIW 2021). Held as
part of the Workshops at the 20th International Conference on Autonomous Agents
and Multiagent Systems., Aziz, Ceppi, Dickerson, Hosseini, Lev, Mattei, McElfresh,
Zick (chairs), May 2021, London, UK. © 2021 Copyright held by the owner/author(s).
. . . $ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

In each category there may be many different traders, with poten-
tially different utilities for participating in a deal. Typically, the
value of a buyer is positive and the value of a producer or service-
provider is negative. The main questions of interest for automatically
arranging the trade is who will trade and how much they will pay
(or receive). The answers to these questions should satisfy several
natural requirements(see Section 2 for formal definitions):

(1) Individual rationality (IR): no agent should lose from partici-
pating: the amount paid by a trading agent should be at most as high
as the agent’s value (if the value is negative then the agent should
receive money). A non-trading agent should pay nothing.

(2) Weak budget balance (WBB): the total amount paid by all
agents together should be at least 0, so that the market manager
does not lose money. A stronger requirement called strong budget
balance (SBB) is that the total amount be exactly 0, i.e., the market
manager does not take away money from the market, which might
drive traders away.

(3) High gain-from-trade (GFT): the GFT is the sum of values of
all agents actively participating in the trade. For example, suppose a
certain buyer values a laptop at 1000, the laptop-producer values it
at -700 (the cost of production is 700), the CPU and RAM producers
and constructor value their efforts at -200 each, and the transporter
values the deal at -50 (the cost of transportation is 50). Then, the
GFT from a deal involving categories 1, 2, 6 is 1000 − 700 − 50 =
250, and the GFT from a deal involving categories 1, 3, 4, 5, 6 is
1000 − 200 − 200 − 200 − 50 = 350. Maximizing the GFT implies
that the latter deal is preferred.

(4) Truthfulness: the agents’ values are their private information.
We assume that the agents act strategically to maximize their utility
(assumed to be their value minus the price they pay). Truthfulness
means that such a utility-maximizing agent reports his/her true val-
uation. A stronger requirement called obvious truthfulness [27] is
that, for each agent, the lowest utility he may get by acting truth-
fully is at least as high as the highest utility he may get by acting
non-truthfully.

1.1 Previous Work
The study of truthful market mechanisms started with Vickrey [36].
He considered a market with only one category of traders (buyers),
where the famous second-price auction attains all four desirable
properties: IR, WBB, maximum GFT and truthfulness.

When there are two categories of traders (buyers and sellers), the
natural generalization of Vickrey’s mechanism is no longer WBB
— it may run a deficit. Moreover, Myerson and Satterthwaite [31]
proved that any mechanism that is IR, truthful and maximizes the
GFT must run a deficit. The way out of this impossibility paradox
was found by McAfee [28]. In his seminal paper, he presented the
first double auction (auction for a two-category market) that is IR,

WBB, truthful, and asymptotically maximizes the GFT. By asymp-
totically we mean that its GFT is at least (1 − 1/k) of the optimal
GFT, where k is the number of deals in the optimal trade. Thus,
when k approaches infinity, the GFT approaches the optimum.

McAfee’s mechanism has been extended in various ways. Par-
ticularly relevant to our setting is the extension by Babaioff and
Nisan [5], with multiple categories of traders, arranged in a linear
supply chain. Their model contains a single producer category, a
single consumer category, and several converter categories. Each
deal must involve a single producer, a single consumer, and a single
agent of each converter category. In our laptop example, their model
covers either a market with the chain 1,2,6 or a market with the
chain 1,3,4,5,6, but not a market where both chains are possible. For
this model, they present a mechanism that is IR, WBB, truthful, and
attains asymptotically-optimal GFT

Recently, Gonen and Segal-Halevi [23] considered a multiple-
category market in which, like Babaioff and Nisan [5]’s market, all
deals must be of the same structure, which they call a “recipe”. Their
recipes are more general than the linear supply chains of Babaioff
and Nisan [5], since they are not restricted to a producer-converters-
consumer structure. They present auctions that are IR, SBB, truthful
and asymptotically-optimal, but only for a single-recipe market.

Comparison to other supply-chain mechanisms is presented in
Appendix A.1, and a survey of more recent works on two-sided
markets is presented in Appendix A.2.

1.2 Our Contribution
We study markets with multiple kinds of supply-chains which, fol-
lowing Gonen and Segal-Halevi [23], we call “recipes”. In a general
multi-recipe market, computing the optimal trade — even with-
out strategic considerations — is MAX-SNP-hard (see Appendix
C). In particular, it is NP-hard to compute a trade that attains at
least 94/95 of the optimal GFT. Hence, it is unlikely that a mecha-
nism that runs in polynomial time can be asymptotically-optimal.
In this paper, we focus on a special case in which the optimal
trade can be computed in polynomial-time (Section 3): the case
in which the agent categories can be arranged in a forest (acyclic
graph), and each recipe is a path from a root to a leaf in that
forest. Our laptop market corresponds to a forest with the tree:

1
6

2 3
4

5

We present a randomized ascending
mechanism for such markets (Section 4).
Our mechanism is IR, SBB and obviously-
truthful. Moreover, all these properties
hold universally — for every possible out-
come of the randomization. The expected
GFT of our mechanism is asymptotically-optimal — it approaches
the optimum when the optimal number of deals in all recipes ap-
proaches infinity (See Section 5 for the formal statements). We
evaluate the performance of our mechanism on both real and syn-
thetic data (see Section 6).

Our mechanism extends [23] in the setting of binary recipes,
in which each category participates in each recipe either zero or
one times. Extending [23] to handle non-binary recipes is beyond
the scope of this paper and is the topic of our current research.
Some other possible extensions of our mechanism are discussed in

Appendix D. In particular, we explain why the limitation to acyclic
graphs is economically reasonable.

2 FORMAL DEFINITIONS
2.1 Agents and Categories
A market is defined by a set of agents grouped into different cat-
egories. N is the set of agents, G is the set of agent categories,
and Nд is the set of agents in category д ∈ G. The categories are
pairwise-disjoint, that is, each agent belongs to a single category, so
N = ⊔д∈GNд .

Each deal in the market requires a certain combination of traders.
We call a subset of agents that can accomplish a single deal a
procurement-set (PS).

A recipe is a vector of size |G |, denoted by r := (rд)д∈G , where
rд ∈ Z+ for all д ∈ G. It describes the number of agents of each
category that should be in each PS: each PS should contain r1 agents
of category 1, r2 agents of category 2, and so on. The set of recipes
available in the market is denoted by R.

In the market of McAfee [28] each deal requires one buyer
and one seller, so there is a single recipe and R = {(1, 1)}. In
our initial laptop-market example there are two recipes and R =
{(1, 1, 0, 0, 0, 1); (1, 0, 1, 1, 1, 1)}. The first one corresponds to deals
with a buyer, a producer and a transporter, and the second one corre-
sponds to deals with a buyer, a CPU producer, a RAM producer, a
constructor and a transporter. In this paper we assume that recipes
are binary, i.e., rд ∈ {0, 1} for every recipe r and every д ∈ G.

Each agent i ∈ N has a value vi ∈ Z, which represents the
material gain of an agent from participating in the trade. It may be
positive, negative or zero. In a two-sided market for a certain good,
the value of a buyer is typically positive, while the value of a seller
is typically negative and represents the cost of producing the good.
However, our model is general and allows the values of different
agents in the same category to have different signs. For simplicity,
we assume that all the vi are integer numbers, e.g., all valuations
may be given in cents. We also assume that there are publicly known
bounds on the possible valuations: for some sufficiently large V ,
−V < vi < V for all i ∈ N .

The agents are quasi-linear in money: the utility of agent i partici-
pating in some PS and paying pi is ui := vi − pi .

2.2 Trades and Gains
The gain-from-trade of a procurement-set S , denoted GFT (S), is the
sum of values of all agents in S:

GFT(S) :=
∑
i ∈S

vi .

In a standard two-sided market, the GFT of a PS with a buyer b and
a seller s is vb −vs , since the seller’s value is −vs .

Given a market (N ,G, r), a trade is a collection of pairwise-
disjoint procurement-sets. I.e, it is a collection of agent subsets,
S1, . . . , Sk ⊆ N , such that for each j ∈ [k], the composition of
agents in Sj corresponds to some recipe r ∈ R. The total GFT is the
sum of the GFT of all procurement-sets participating in the trade:

GFT(S1, . . . , Sk) :=
k∑
j=1

GFT(Sj)

A trade is called optimal if its GFT is maximum over all trades.
The value of agent i given trade S = (S1, . . . , Sk), denoted vi (S),

is either vi or 0: it is vi if i ∈ Sj for some j ∈ [k], and 0 otherwise.

2.3 Mechanisms
The definitions below cover only the notions used in the present
paper. For a more complete treatment of mechanisms and their
properties see [32].

A deterministic direct mechanism is a function that takes as input a
vector b containing agent bids, and returns as output a trade S(b) and
a price-vector p(b). The utility of each agent i, given a deterministic
mechanism and a bid vector b, is ui (b) := vi (S(b)) − pi (b).

A deterministic direct mechanism is truthful if the utility of every
agent i is maximized when the agent bids vi , for any fixed bids of
the other agents. Formally, for every vector b = (b1, . . . ,bn), denote
by b|bi←x the vector (b1, . . . ,bi−1,x ,bi+1, . . . ,bn). A mechanism
is truthful if for every agent i and b:

ui (b|bi←vi) ≥ ui (b).

A deterministic direct mechanism is individually-rational (IR)
if the utility of every agent i when the agent bids vi is at least 0,
regardless of the bids of the other agents:

ui (b|bi←vi) ≥ 0.

A randomized direct mechanism is a lottery over deterministic
direct mechanisms. In other words, it is a mechanism in which the
functions S and p may depend not only on the bids but also on some
random variables.

A randomized direct mechanism is called universally-truthful if
it is a lottery over truthful deterministic direct mechanisms. In a
universally-truthful randomized mechanism, the utility of agent i
is maximized when the agent bids vi , regardless of the bids of the
other agents, and regardless of the random variable values. Similarly,
a randomized direct mechanism is universally-IR if it is a lottery
over IR deterministic direct mechanisms.

A mechanism is called obviously truthful if for every agent i and
vectors b, b′:

ui (b|bi←vi) ≥ ui (b′).

In other words, the lowest utility the agent can get when reporting
truthfully is at least as high as the highest utility the agent can get
when reporting untruthfully, where “lowest” and ”highest” are w.r.t.
all possible reports of the other agents. This is a very strong property
that is not satisfied by non-trivial direct mechanisms. However, an
analogous property is satisfied by some sequential mechanisms.

In a deterministic sequential mechanism, at each time, an agent
has to choose an action from a prespecified set of actions. In order
to give meaning to the notion of truthfulness, we assume that the
“action” is an answer to a query on the agent’s value: at time t , the
designer presents a function qt to some agent i, and the agent is
expected to reveal qt (vi). Our mechanisms will only use Boolean
functions such as “is vi > 2?”. Based on the agents’ answers so far,
the designer may decide to continue asking queries, or to end. When
the mechanism ends, the designer examines the vector of answers a,
and determines the trade S(a) and the price-vector p(a).

Given an answer vector a and an agent i, denote by a|ai←x the
vector in which the answer of agent i to any function qt is qt (x)

N1

N2 N3

N4

(a)

N1

N2 N3 ∧ N4

(b)

N1

N2 ∪ (N3 ∧ N4)

(c)

Figure 1: Examples of trees in a recipe-forest.

Table 1: an example market.

Category Agents’ values

N1: buyers 17, 14, 13, 9, 6, 2
N2: sellers -4, -5, -8, -10
N3: A-producers -1, -3, -5
N4: B-producers -1, -4, -6

(and the answers of other agents remain as in a). A deterministic
sequential mechanism is called obviously truthful if, at any step
during the execution, and for any two vectors a and a′ consistent
with the history of answers up to the current step:

ui (a|ai←vi) ≥ ui (a′).

In other words, the lowest utility the agent can get by answering
truthfully, according to vi , is at least as high as the highest utility he
can get by answering untruthfully.

A deterministic direct mechanism is a special case of a determin-
istic sequential mechanism in which there is only one step of queries
and the queries are “what is your value?”. If such a mechanism is
obviously-truthful, then it is also truthful (set a = a′ = b in the
definition of obvious-truthfulness).

A randomized sequential mechanism is a lottery over determinis-
tic sequential mechanisms; it is called universally obviously-truthful
if it is a lottery over obviously-truthful deterministic sequential
mechanisms.

2.4 Recipe forests
Recall that a forest is an acyclic graph, composed of one or more
trees; a rooted forest is a forest in which, in each tree, one vertex is
denoted as its root.

Definition 2.1. A recipe-set R is called a recipe-forest if there
exists a rooted forest T in which the set of nodes is G, and each
recipe r ∈ R corresponds to a path P from the root of some tree in T
to a leaf of that tree (i.e., rд = 1 for each д ∈ P and rд = 0 for each
д < P).

We use the same letter д to denote both the category index
and the corresponding node in T . As an example, the set R =
{(1, 1, 0, 0), (1, 0, 1, 1)} is a recipe-forest with a single tree shown
in Figure 1(a). The root category is N1. The recipe (1, 1, 0, 0) cor-
responds to a path from N1 to the leaf N2. The recipe (1, 0, 1, 1)
corresponds to a path from N1 through N3 to N4.

3 COMPUTING OPTIMAL TRADE
We first present an algorithm for computing the optimal trade assum-
ing all values are known. We illustrate the algorithm on the market in

Table 2: Optimal trade in that market.

Procurement sets

Buyer 17, A-producer −1, B-producer −1
Buyer 14, seller −4
Buyer 13, seller −5
Buyer 9, A-producer −3, B-producer −4

the Table 1. The algorithm is based on contracting the recipe-forest
down to a single node. Two types of contraction operations are used.

In a vertical contraction, a leaf that is a single child is combined
with its parent in the following way. Suppose the sets of agent val-
ues in the child category are v1 ≥ v2 ≥ . . . ≥ vmv and the agent
values in the parent category are u1 ≥ u2 ≥ . . . ≥ umu . Replace
the parent category by a new category withm := min(mv ,mu) val-
ues: u1 + v1,u2 + v2, . . . ,um + vm . For example, a vertical con-
traction on the tree of Figure 1(a) results in the tree of Figure
1(b), where N3 ∧ N4 denotes the elementwise combination of N3
and N4. In the Table 1 market, N3 ∧ N4 contains the value pairs
{(−1,−1), (−3,−4), (−5,−6)} whose values are {−2,−7,−11}.

The rationale is that the unique root-leaf path that passes through
the parent passes through its child too, and vice-versa. Therefore,
any PS that contains an agent of the parent category must contain an
agent of the child category, and vice-versa. In economic terms, these
two categories are complements. Hence, elementwise combination
of the two categories leads to a market with identical optimal GFT.

In a horizontal contraction, two sibling leaves are combined by
taking the union of their categories in the following way. Suppose the
sets of agent values in the left sibling category are v1, . . . ,vmv and
in the right sibling category areu1, . . . ,umu . Replace both categories
by a new category withm :=mv+mu values:v1, . . . ,vmv ,u1, . . . ,umu .
For example, a horizontal contraction on the tree of Figure 1(b) re-
sults in the tree of Figure 1(c), where N2 ∪ (N3 ∧ N4) denotes the
combination of N2 and N3∧N4. In the Table 1 market, N2∪(N3∧N4)
contains the values {−4,−5,−8,−10} ∪ {−2,−7,−11} whose values
are {−2,−4,−5,−7,−8,−10,−11}.

The rationale is that, for every path from the root to one leaf
there exists a path from the root to the other leaf, and vice-versa.
Therefore, in any PS that contains an agent of one leaf-category, this
agent can be replaced with an agent from the other leaf-category. In
economic terms, these categories are substitutes. Therefore, uniting
them leads to a market with the same optimal GFT.

In any tree with two or more vertices, there is a leaf that is either a
single child or has a sibling leaf (for example, any leaf farthest from
the root). Therefore, any tree admits either a vertical or a horizontal
contraction, and it is possible to contract any tree to a single node.
For example, a vertical contraction on the tree of Figure 1(c), in the
Table 1 market, yields: {17−2, 14−4, 13−5, 9−7, 6−8, 2−10}. The
optimal trade in this market is the set of all deals with positive values,
which in this case contains four deals with values {15, 10, 8, 2}. This
corresponds to an optimal trade with k = 4 deals, shown at the Table
2.

If the forest has two or more trees, then all contracted trees can
be further combined using a horizontal contraction to a single node.
The process is shown as Algorithm 1.

Algorithm 1 Find the optimal GFT.

Input: A set of categories G, a set of traders Nд for all д ∈ G,
and a recipe-forest R based on a forest T .
For each agent i ∈ ∪дNд , the value vi is public knowledge.

Output: Optimal trade in the market.
1. If T has a single vertex д:

Return all agents in Nд with a positive value: {i ∈ Nд |vi > 0}
2. Else, if T has two roots without children дl and дs :

Do a horizontal contraction of дl into дs . Go back to step 1.
3. Else, if there is a leaf дl that is a single child of its parent дp :

Do a vertical contraction of дl into дp . Go back to step 1.
4. Else, there is a leaf дl with a sibling leaf дs :

Do a horizontal contraction of дl into дs . Go back to step 1.

Algorithm 2 Ascending prices mechanism.

Input: A market N , a set of categories G and a recipe-forest R.
Output: Strongly-budget-balanced trade.
1. Initialization: Let Mд := Nд for each д ∈ G.

Determine initial price-vector p:
For each non-leaf д, set pд := −V ;
For each leaf д, set: pд := −V (MAXDEPTH − DEPTH(д) + 1);

2. Using Algorithm 3, select a set G∗ ⊆ G of categories.
3. For each д∗ ∈ G∗, ask each agent in i ∈ Mд∗ whether vi > pд∗.

(a) If an agent i ∈ Mд∗ answers “no”, then
Remove i from Mд∗ and go back to step 2.

(b) If all agents in Mд∗ for all д∗ ∈ G∗ answer “yes”, then
for all д∗ ∈ G∗, let pд∗ := pд∗ + 1.

(c) If after the increase
∑
д∈G pд · rд = 0 for some r ∈ R, then

go on to step 4.
(d) else go back to step 3.

4. Determine final trade using Algorithm 4.

4 ASCENDING AUCTION MECHANISM
4.1 General Description
The ascending-price auction is a randomized sequential mechanism.
The general scheme is presented as Algorithm 2. For each category
д, the auctioneer maintains a price pд , and a subset Mд ⊆ Nд of all
agents that are “in the market” (that is, their value is higher than
the current price of their category). At each iteration, the auctioneer
chooses a subset of the prices, and increases each price pд in this
subset by 1. After each increase, the auctioneer asks each agent in
turn, in a pre-specified order (e.g. by their index), whether their
value is still higher than the price. An agent who answers “no” is
permanently removed from the market. After each increase, the
auctioneer computes the sum of prices of the categories in each
recipe, defined as: Prices-sum(r) :=

∑
д∈G pд . When this sum equals

0, the auction ends and the remaining agents trade in the final prices.
To flesh out this scheme, we need to explain (a) how the prices

are initialized, (b) how the set of prices to increase is selected, and
(c) how the final trade is determined.

(a) An important challenge in determining the prices is that the
sum of prices must be the same for all recipes r ∈ R, so that the
price-sum crosses 0 for all recipes simultaneously, and all deals are

Algorithm 3 Find a set of prices to increase.

Input: A set of categories G, a set of remaining traders Mд for
all д ∈ G, and a recipe-forest R based on a forest T .

Output: A subset of G denoting categories
whose price should be increased.

0. Initialization: For each category д ∈ G, letmд := |Mд | = the
number of agents of Nд who are in the market.

1. If T contains two or more trees,
Recursively run Algorithm 3 on each individual tree T ′;

Denote the outcome by IT ′ .
Return

⋃
T ′∈T IT ′ .

2. Let д0 be the category at the root of the single tree.
Let cд0 :=

∑
д′∈CHILDREN(д0)mд′ .

3. Ifmд0 > cд0 [or д0 has no children at all],
then return the singleton {д0}.

4. Else (cд0 ≥ mд0), for each child д′ of д0:
Recursively run Algorithm 3 on the sub-tree rooted at д′;

Denote the outcome by Iд′ .
Return

⋃
д′∈child (д0) Iд′ .

Algorithm 4 Determine a feasible trade.

Input: A set of categories G,
a set of remaining traders Mд for all д ∈ G,
and a recipe-forest R based on a forest T .

Output: A set of PSs with remaining traders,
each of which corresponds to a recipe in R.

1. If T has a single vertex д:
Return Mд — the set of traders remaining in category д.

2. If T has two roots without children дl and дs :
Do a horizontal contraction of дl into дs . Go back to step 1.

3. Otherwise, pick an arbitrary leaf category дl ∈ T .
4. If дl is a single child of its parent дp ∈ T :

Perform a randomized vertical contraction of дl and дp .
Go back to step 1.

5. Otherwise, дl has a sibling дs ∈ T :
Perform a horizontal contraction of дl and дs .
Go back to step 1.

simultaneously SBB. For the initial prices, this challenge is handled
by the initialization of Algorithm 2: the price of each non-leaf
category is set to −V , and the price of each leaf category is set to a
number which is at most −V , computed such that the price-sum in
each path from a root to a leaf is the same.

(b) Selecting which prices to increase is handled by Algorithm 3.
It is a recursive algorithm: if the forest contains only a single category
(a root with no children), then of course this category is selected.
Otherwise, in each tree, either its root category or its children are
selected for increase. The selection is based on the number of agents
of each category д who are currently in the market. We denote this
number bymд := |MG |.

We denote the root category of a tree by д0. The algorithm first
comparesmд0 to the sum of themд for all children of д0 (which is
denoted by cд0). Ifmд0 is larger, then the price selected for increase
is the price of д0; Otherwise (cд0 is larger or equal), the prices to

increase are the prices of children categories: for each child category,
Algorithm 3 is used recursively to choose a subset of prices to
increase, and all returned sets are combined. It is easy to prove by
induction that the resulting subset contains exactly one price for
each path from a root to a leaf. Therefore, all prices in the subset
are increased simultaneously by one unit, and the price-sum in all
recipes remains equal.

Consider again the tree of Figure 1(a), and suppose the numbers
of remaining traders in the four categories are 6, 4, 3, 3. Initially the
algorithm compares m1 to m2 +m3; since the latter is larger, the
algorithm recursively checks the subtrees rooted at д = 2 and д = 3.
In the former there is only one category so it is returned; in the
latter, there is one child д = 4. Since m3 ≤ m4, the child д = 4 is
selected. The final set of prices to increase is {p2,p4}. If the counts
werem1 = 6,m2 = 3,m3 = 2,m4 = 2 instead, then the set of prices
to increase would be {p1}. Note that in both cases, a single price is
increased in each recipe.

The equality of price-sums is preserved by the price-increase. The
price-sum increases by 1 at each step, so at some point it reaches 0.
At that point, the auction stops.

(c) Once the auction ends, the final trade has to be computed. At
this stage, it is possible that in some recipes, the numbers of traders
remaining in the market are not balanced. In order to construct an
integer number of procurement-sets of each recipe, some agents
must be removed from the trade. The traders to remove must be
selected at random and not by their value, since selecting traders
by value might make the mechanism non-truthful. To this end, we
replace the vertical contraction operation with a randomized vertical
contraction. A leaf that is a single child is combined with its parent
in the following way. Denote the leaf and parent category by l and p
respectively, and let Mi be the set of traders remaining in category i.
Let nmin := min(|Ml |, |Mp |) = the integer number of procurement-
sets that can be constructed from the agents in both categories. For
each д ∈ {l ,p} if |Mд | > nmin then choose |Mд | − nmin agents
uniformly at random and remove them from Mд . Then perform a
vertical contraction with the remaining agents.

The horizontal contractions can be performed deterministically,
as no traders should be removed. The process of determining the
final trade is summarized as Algorithm 4.

4.2 Example Run
We illustrate Algorithm 2 using the example in Table 1, where
the recipe set is R = {(1, 1, 0, 0), (1, 0, 1, 1)} and the recipe-forest
contains the single tree shown in Figure 1(a). The execution is shown
in Table 3.

Step 1. The initialization step ensures that (a) the initial sum of
prices is the same in each recipe; (b) the price in each category is
lower than the lowest possible value of an agent in this category,
which we denoted by −V . In the example, the initial prices are
−V ,−2V ,−V ,−V , and the price-sum of all recipes is −3V .

Step 2. The categories whose price should be increased are deter-
mined using Algorithm 3. In the example, the numbers of remaining
traders are 6, 4, 3, 3. Since 6 < 4 + 3, the price of the root category
(the buyers) is not increased. In the first branch, the seller-price is
selected for increase. In the second branch, there is a tie between

Table 3: Execution of Algorithm 2 on market from Table 1

Category counts G∗ Price-increase stops when New prices Price-sum

[Initialization] −V ,−2V ,−V ,−V −3V
6, 4, 3, 3 2, 4 B-producer −6 exits −V ,−V − 6,−V ,−6 −2V − 6
6, 4, 3, 2 2, 3 A-producer −5 exits −V ,−11,−5,−6 −V − 11
6, 4, 2, 2 2, 4 seller −10 exits −V ,−10,−5,−5 −V − 10
6, 3, 2, 2 1 buyer 2 exits 2,−10,−5,−5 −8
5, 3, 2, 2 2, 4 B-producer −4 exits 2,−9,−5,−4 −7
5, 3, 2, 1 2, 3 seller −8 exits 2,−8,−4,−4 −6
5, 2, 2, 1 1 buyer 6 exits 6,−8,−4,−4 −2
4, 2, 2, 1 2, 3 A-producer −3 exits 6,−7,−3,−4 −1
4, 2, 1, 1 1 price-sum crosses zero 7,−7,−3,−4 0

the A-producer and the B-producer, which is broken in favor of the
child. Therefore, the chosen set G∗ is {2, 4} = {seller, B-producer}.

Step 3. The auctioneer increases the prices of each category д∗ ∈
G∗ by 1/rд∗ , until one agent of some category д∗ ∈ G∗ indicates that
his value is not higher than the price, and leaves the trade. The price
never skips any agent’s integer value, because the initial category
price was a big negative integer number (−V) and the increment is
done always by 1/rд so the category price visits every integer from
−V to the current category price. In the example, the first agent who
answers “no” is B-producer −6. While p4 has increased to −6, p2
has increased to −V − 6, so the price-sum in all recipes remains the
same: −2V − 6. After B-producer −6 is removed, we return to step
2 to choose a new set of prices to increase. The algorithm keeps
executing steps 2 and 3 as described in Table 3. Finally, while the
algorithm increases p1, before buyer 9 exits the trade, the price-sum
in all recipes becomes 0 and the algorithm proceeds to step 4.

Step 4. The final trade is determined by Algorithm 4. In the ex-
ample, a randomized vertical contraction is first done between the
A-producers and B-producers. Since there is one A-producer −1 and
one B-producer −1, none of them has to be removed, and the com-
bined category now has a single pair. Next, a horizontal contraction
is done between the pair of producers and the remaining two sellers.
This results in a combined category of size 3. Finally, a randomized
vertical contraction is done between this combined category and the
buyers’ category. Since there are 4 remaining buyers, but only 3 sets
in the child category, one of the buyers is chosen at random and
removed from trade. Finally, three deals are made: two deals follow
the recipe (1, 1, 0, 0) and involve a buyer and a seller, and one deal
follows the recipe (1, 0, 1, 1) and involves a buyer, an A-producer
and a B-producer.

5 ASCENDING AUCTION PROPERTIES
Due to space constraints, most proofs are in Appendix B.

A crucial feature of our mechanism is that the price-sum along
each path from the same node to a leaf is constant.

LEMMA 5.1. Throughout Algorithm 2, for any category д ∈ G,
the price-sum along any path from д to a leaf is the same for all
paths.

The economic properties of the auction are summarized in the
following theorems.

THEOREM 5.2. Algorithm 2 is universally strongly budget bal-
anced, individually-rational and obviously truthful.

PROOF. Given a fixed priority-ordering on the agents, consider
the deterministic variant of the algorithm in which, in step 3 of Algo-
rithm 4, instead of the randomized vertical contraction, the removed
agents in each category are selected deterministically by the fixed
agent ordering. Algorithm 2 is a lottery on such deterministic mech-
anisms, where the agent ordering is selected uniformly at random.
Therefore, to prove that the randomized mechanism satisfies a prop-
erty universally, it is sufficient to prove that each such deterministic
variant satisfies this property.

Strong budget balance holds since by Lemma 5.1 (applied to
the root category), the price-sum for all recipes remains the same
throughout the execution, and the algorithm stops whenever this sum
becomes 0. Individual rationality holds since i ∈ Nд may remain
in the market only if vi ≥ pд . To prove obvious-truthfulness, we
consider an agent i ∈ Nд who is asked whether vi > pд , and check
the two possible cases:

• Case 1: vi > pд . If the agent answers truthfully “yes”, then
his lowest possible utility is 0 (since the mechanism is IR). If
the agent answers untruthfully “no”, then his highest possible
utility is 0 since he is immediately removed from trade and
cannot return.
• Case 2: vi ≤ pд . If the agent answers truthfully “no”, then

his lowest possible utility is 0 (since he is removed from trade
immediately). If the agent answers untruthfully “yes”, then
his highest possible utility is 0, since the utility is vi −pд and
the price can only increase.

In both cases, the lowest possible utility of a truthful agent is at least
the highest possible utility of a non-truthful agent. □

We now show that the ascending auction attains an asymptotically
optimal GFT. The analysis assumes that the valuations are generic
— the sum of valuations in every subset of agents is unique. In
particular, the optimal trade is unique. This is a relatively mild
assumption, since every instance can be modified to have generic
valuations, as explained by Babaioff and Walsh [7].

First, choose a sufficiently large constantW ≥ n + 1 and replace
each value vi by 2W ·vi . This scaling obviously has no effect on the
optimal or the actual trade. Then, arbitrarily assign a unique integer
index i ∈ {1, . . . ,n} to every agent, and set v ′i := 2W · vi + 2i .

Now the sum of valuations in every agent subset is unique, since
the n least significant bits in its binary representation are unique.
Moreover, for every subset I ⊆ N ,

∑
i ∈I v

′
i ≈ 2W

∑
i ∈I vi plus some

“noise” smaller than 2n+1 ≤ 2W .
Therefore, the optimal trade in the new instance corresponds to

one of the optimal trades in the original instance, with the GFT
multiplied by 2W . If the constantW is sufficiently large, the “noise”
has a negligible effect on the GFT.

Definition 5.3. (a) The number of deals in the optimal trade is
denoted by k .

(b) For each recipe r ∈ R, the number of deals in the optimal trade
corresponding to r is denoted by kr (so k =

∑
r∈R kr).

(c) The smallest positive number of deals of a single recipe in the
optimal trade is denoted by kmin := minr∈R,kr>0 kr.

THEOREM 5.4. The expected GFT of the ascending-price auc-
tion of Section 4 is at least 1 − 1/kmin of the optimal GFT.

To prove Theorem 5.4 we need several definitions. For every
category д ∈ G:

(*) kд := the number of deals in the optimal trade containing an
agent from Nд (equivalently: the number of deals whose recipe-path
passes through д). If д is the root category then kд = k. If д is any
non-leaf category then

kд =
∑

д′ is a child of д

kд′ . (1)

In the Table 3 market, kд for categories 1,2,3,4 equals 4, 2, 2, 2 re-
spectively.

(*) vд,kд := the value of the kд-th highest trader in Nд — the
lowest value of a trader that participates in the optimal trade. In
the Table 3 market, vд,kд for categories 1,2,3,4 equals 9,−5,−3,−4
respectively. Note that, in any path from the root to a leaf, the sum of
vд,kд is positive — otherwise we could remove the PS composed of
the agents corresponding to this path, and get a trade with a higher
GFT.

(*) vд,kд+1 := the highest value of a trader that does not partic-
ipate in the optimal trade (or −V if no such trader exists). In the
Table 3 market, vд,kд+1 for categories 1,2,3,4 equals 6,−8,−5,−6
respectively. Note that, in any path from the root to a leaf, the sum
of vд,kд+1 is at most 0 — otherwise we could add the corresponding
PS and get a trade with a higher GFT.

Recall that, during the auction, mд := |Mд | = the number of
agents of category д currently in the market (whose value is larger
than pд), and

cд :=
∑

д′ is a child of д

mд′ . (2)

When the algorithm starts, mд ≥ kд for all д ∈ G, since all partici-
pants of the optimal trade are in the market. Similarly, cд ≥ kд . In
contrast to equation (1), mд and cд need not be equal. By adding
dummy agents with value −V + 1 to some categories, we can guar-
antee that, when the algorithm starts, mд = cд for all non-leaf
categories д ∈ G. For example, in the Table 3 market it is sufficient
to add a buyer with value −V + 1. This addition does not affect the
optimal trade, since no PS in the optimal trade would contain agents
with such low values. It does not affect the actual trade either, since
the price-sum is negative as long as there are dummy agents in the
market. Once mд = cд , we show that these values remain close to
each other throughout the algorithm:

LEMMA 5.5. For all non-leaf categories д ∈ G,

cд ≤ mд ≤ cд + 1.

Definition 5.6. Given a price-vector p, a subset G ′ ⊆ G is called:
(a) Cheap — if pд ≤ vд,kд+1 for all д ∈ G ′;
(b) Expensive — if pд ≥ vд,kд for all д ∈ G ′.

We apply Definition 5.6 to paths in trees in the recipe-forest
T . Intuitively, in a cheap path, the prices are sufficiently low to
allow the participation of agents not from the optimal trade, while
in an expensive path, the prices are sufficiently high to allow the
participation of agents only from the optimal trade.

Lemmas B.1 - B.5 show some cases when Cheap and Expensive
paths can and cannot exist in certain forest-trees. These lemmas are
then used to prove Lemma B.6: when Alg. 2 ends,mд ∈ {kд ,kд − 1}

for allд ∈ G. With Lemma B.6, we prove our main theorem. Lemmas
B.1 - B.6 and their proofs appear in Appendix B.3.

PROOF OF THEOREM 5.4. By Lemma B.6, each recipe r ∈ R
with kr = 0 does not participate in the trade at all. For each recipe
r ∈ R with kr > 0, for each category д in r, all kд optimal traders of
д, except maybe the lowest-valued one, participate in the final trade.
Therefore, in the random selection of the final traders (Algorithm 4),
at least kд−1 random deals are performed out of the kд optimal deals.
Hence, the approximation ratio of the GFT coming from recipe r
alone is at least 1 − 1/kr of the optimum. Taking the minimum over
all recipes yields the ratio claimed in the theorem. □

6 EXPERIMENTS
We evaluated the performance of our ascending auction using sim-
ulation experiments. For these preliminary experiments, we used
the recipe-forest R = {(1, 1, 0, 0), (1, 0, 1, 1)}, which contains a sin-
gle tree with only binary recipes and two paths (N1 −→ N2 and
N1 −→ N3 −→ N4). In the future we plan to do experiments with
larger forests and non-binary recipes. For several values of n ≤ 1000,
we constructed a market with n agents of each categoryд. The agents’
values were chosen at random as explained below. For each n, we
made 1000 runs and averaged the results. We split the values among
the categories uniformly at random, so each category has n values.

6.1 Agents’ Values
We conducted two experiments. In the first experiment, the value of
each buyer (root category) was selected uniformly at random from
[1, 1000], and the value of each trader from the other three categories
was selected uniformly at random from [−1,−1000].

In the second experiment, the values were selected based on real
stocks prices on Yahoo’s stock market site using 33 stocks. For each
stock, we collected the prices from every day from the inception of
the stock until September 2020. Every day the stock has 4 values:
Open, Close, High and Low. All price values are multiplied by
1000, so they can be represented as integers, to avoid floating-point
rounding errors. On each stock, we collected all the price values and
used those price values as agents’ values at random. For the non-root
categories, the values were multiplied by −1. There were more than
1000 values for each category.

6.2 Number of Deals and Gain From Trade
In each run, we calculated k (the number of deals in the optimal
trade), kmin, kmax (recipe minimum and maximum number of deals
in the optimal trade), 1 − 1

kmin
(the theoretical lower bound ratio)

and OGFT (the optimal gain-from-trade). We found that the average
value of k was approximately 0.6n. For the ascending-price mech-
anism, we calculated k ′ (the actual number of deals done by the
mechanism), kmin

′, kmax
′ (the actual recipe minimum and maxi-

mum number of deals done by the mechanism) and the GFT (the
actual gain-from-trade of deals done by the mechanism).

6.3 Results and Conclusions
The results from the stock-prices experiment are presented in Table
4 and in Figure 2. The results from the uniform-random experiment

Table 4: Results with stock-market prices and the recipe-forest R = {(1, 1, 0, 0), (1, 0, 1, 1)}.

Optimal Ascending Price
n k kmin kmax 1 − 1

kmin
OGFT k ′ kmin

′ kmax
′ %k ′ GFT %GFT

2 1.11 1.00 1.00 6.592 106323.0 0.48 0.48 0.48 37.24 60563.5 43.473
4 2.27 1.56 1.83 24.051 231902.7 1.49 1.35 1.38 65.02 194877.0 80.655
6 3.43 1.89 2.65 30.710 348117.4 2.56 1.93 2.22 74.39 322155.4 90.531

10 5.78 2.46 4.31 42.567 594618.4 4.84 2.63 3.89 83.53 578495.9 96.269
16 9.32 3.36 6.79 56.172 953490.8 8.34 3.42 6.37 89.46 943732.1 98.473
26 15.19 5.05 10.91 69.904 1563658.4 14.20 4.88 10.50 93.45 1557792.5 99.401
50 29.34 9.49 20.77 83.685 3010702.2 28.33 9.13 20.37 96.56 3007474.9 99.831
100 58.77 18.86 41.35 91.395 6037200.9 57.74 18.50 40.95 98.25 6035460.2 99.953
500 294.16 90.59 206.05 96.664 30271280.7 293.03 91.92 205.66 99.61 30270801.8 99.997

1000 588.46 176.99 411.96 97.440 60588937.5 587.23 178.03 411.59 99.79 60588643.6 99.999

101 102 103
0

50

100

Agents (n)

Pe
rc

en
ta

ge
(%
)

GFT Ratio
k’ Ratio

1 − 1/kmin Ratio

Figure 2: Graph of results from Table 4.

are presented in Appendix in Table 5 and in Figure 3. The highlights
of both experiments are similar:
• The actual number of maximum trades (kmax

′) is very near
kmax − 0.5, and the actual number of trades (k ′) is very near
k − 1. That is, the mechanism loses, on average, half a deal
per recipe, and one deal overall. In contrast, theoretically, the
mechanism might lose up to one deal per recipe (see the proof
of Theorem 5.4)1.
• For the optimal trade, we have k ≈ 3n/5 where approximately
n/5 optimal deals use one recipe and 2n/5 optimal deals use
the other recipe, i.e., kmin ≈ n/5 and kmax ≈ 2n/5. Note
that for small values of n, sometimes there are optimal deals
only in one path of the tree. In such cases kmin = kmax = k.
Therefore, for small n the average of kmin plus the average of
kmax may be larger than the average of k.
• The actual GFT of the ascending auction is much higher than

the theoretical lower bound 1 − 1/kmin of the optimum. For
example, when n = 10 (and kmin ≤ 3), the theoretical lower
bound is less than 50%, but the ascending-price auction attains
more than 95%. It surpasses 99.9% already for n ≥ 100.

1The kmin
′ might be higher than kmin. This happens because in some iterations there

might be zero actual deals in one recipe. In that case, the kmin
′ gets the value of

kmax
′ = k ′ which is the only recipe that has a number of deals greater than 0.

REFERENCES
[1] Lawrence M Ausubel. 2004. An efficient ascending-bid auction for multiple

objects. American Economic Review 94, 5 (2004), 1452–1475.
[2] Lawrence M Ausubel and Paul R Milgrom. 2002. Ascending auctions with

package bidding. Advances in Theoretical Economics 1, 1 (2002).
[3] Moshe Babaioff, Yang Cai, Yannai A Gonczarowski, and Mingfei Zhao. 2018.

The Best of Both Worlds: Asymptotically Efficient Mechanisms with a Guarantee
on the Expected Gains-From-Trade. In Proceedings of the 2018 ACM Conference
on Economics and Computation. ACM, 373–373. arXiv preprint 1802.08023.

[4] Moshe Babaioff, Kira Goldner, and Yannai A Gonczarowski. 2020. Bulow-
Klemperer-Style Results for Welfare Maximization in Two-Sided Markets. In
Proceedings of SODA’20. 2452–2471. arXiv preprint arXiv:1903.06696.

[5] Moshe Babaioff and Noam Nisan. 2004. Concurrent Auctions Across the Supply
Chain. Journal of Artificial Intelligence Research (JAIR) 21 (2004), 595–629.
https://doi.org/10.1613/jair.1316

[6] Moshe Babaioff and WilliamE Walsh. 2006. Incentive Compatible Supply Chain
Auctions. In Multiagent based Supply Chain Management. Vol. 28. Springer
Berlin Heidelberg, 315–350.

[7] Moshe Babaioff and William E. Walsh. 2005. Incentive-compatible, budget-
balanced, yet highly efficient auctions for supply chain formation. Decision
Support Systems 39, 1 (March 2005), 123–149. https://doi.org/10.1016/j.dss.
2004.08.008

[8] Liad Blumrosen and Shahar Dobzinski. 2014. Reallocation mechanisms. In EC.
617–640.

[9] Liad Blumrosen and Shahar Dobzinski. 2018. (Almost) Efficient Mechanisms for
Bilateral Trading. In Working paper.

[10] L. Blumrosen and Y. Mizrahi. 2016. Approximating gains-from-trade in bilateral
trading. In WINE. 400–413.

[11] Johannes Brustle, Yang Cai, Fa Wu, and Mingfei Zhao. 2017. Approx-
imating Gains from Trade in Two-sided Markets via Simple Mechanisms.
arXiv:1706.04637 http://arxiv.org/abs/1706.04637

[12] Brahim Chaib-Draa and Jörg Müller. 2006. Multiagent based supply chain man-
agement. Vol. 28. Springer Science & Business Media.

[13] Rachel R Chen, Robin O Roundy, Rachel Q Zhang, and Ganesh Janakiraman.
2005. Efficient auction mechanisms for supply chain procurement. Management
Science 51, 3 (2005), 467–482.

[14] Miroslav Chlebík and Janka Chlebíková. 2006. Complexity of approximating
bounded variants of optimization problems. Theoretical Computer Science 354, 3
(2006), 320–338.

[15] Riccardo Colini-Baldeschi, Bart de Keijzer, Stefano Leonardi, and Stefano
Turchetta. 2016. Approximately efficient double auctions with strong budget
balance. In SODA. 1424–1443.

[16] Riccardo Colini-Baldeschi, Paul W Goldberg, Bart de Keijzer, Stefano Leonardi,
Tim Roughgarden, and Stefano Turchetta. 2017. Approximately efficient two-
sided combinatorial auctions. In Proceedings of the 2017 ACM Conference on
Economics and Computation. ACM, 591–608.

[17] Marek Cygan. 2013. Improved approximation for 3-dimensional matching via
bounded pathwidth local search. In 2013 IEEE 54th Annual Symposium on Foun-
dations of Computer Science. IEEE, 509–518.

[18] Sven de Vries, James Schummer, and Rakesh V Vohra. 2007. On ascending
Vickrey auctions for heterogeneous objects. Journal of Economic Theory 132, 1
(2007), 95–118.

[19] Gabrielle Demange, David Gale, and Marilda Sotomayor. 1986. Multi-item
auctions. Journal of political economy 94, 4 (1986), 863–872.

[20] P. Dütting, T. Roughgarden, and I. Talgam-Cohen. 2017. Modularity and greed in
double auctions. Games and Economic Behavior 105(C) (2017), 59–83.

https://doi.org/10.1613/jair.1316
https://doi.org/10.1016/j.dss.2004.08.008
https://doi.org/10.1016/j.dss.2004.08.008
https://arxiv.org/abs/1706.04637
http://arxiv.org/abs/1706.04637

[21] Matthias Gerstgrasser, Paul W Goldberg, Bart de Keijzer, Philip Lazos, and Alexan-
der Skopalik. 2019. Multi-unit bilateral trade. In Proceedings of the AAAI’19,
Vol. 33. 1973–1980. arXiv preprint 1811.05130.

[22] Mira Gonen, Rica Gonen, and Pavlov Elan. 2007. Generalized trade reduction
mechanisms. In Proceedings of EC’07. 20–29.

[23] Rica Gonen and Erel Segal-Halevi. 2020. Strongly Budget Balanced Auctions for
Multi-Sided Markets.. In AAAI. 1998–2005.

[24] Atsushi Iwasaki, Etsushi Fujita, Taiki Todo, Miao Yao, and Makoto Yokoo. 2013.
VCG-equivalent in Expectation Mechanism: General Framework for Constructing
Iterative Combinatorial Auction Mechanisms. In Proceedings of the 12th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS
2013) (Department of Informatics, Kyushu University Fukuoka, 819-0395, Japan)
(AAMAS 2013). International Conference on Autonomous Agents and Multiagent
Systems, Japan, 699–706.

[25] Viggo Kann. 1991. Maximum bounded 3-dimensional matching is MAX SNP-
complete. Inform. Process. Lett. 37, 1 (1991), 27–35.

[26] Richard M Karp. 1972. Reducibility among combinatorial problems. In Complex-
ity of computer computations. Springer, 85–103.

[27] Shengwu Li. 2017. Obviously strategy-proof mechanisms. American Economic
Review 107, 11 (2017), 3257–87.

[28] R. Preston McAfee. 1992. A dominant strategy double auction. Journal of
Economic Theory 56, 2 (April 1992), 434–450.

[29] R. P. McAfee. 2008. The Gains from Trade Under Fixed Price Mechanisms.
Applied Economics Research Bulletin 1 (2008).

[30] Debasis Mishra and David C Parkes. 2007. Ascending price Vickrey auctions for
general valuations. Journal of Economic Theory 132, 1 (2007), 335–366.

[31] Roger B. Myerson and Mark A. Satterthwaite. 1983. Efficient mechanisms for
bilateral trading. Journal of Economic Theory 29, 2 (April 1983), 265–281.

[32] Noam Nisan. 2007. Introduction to Mechanism Design (For Computer Scientists).
In Algorithmic Game Theory, Noam Nisan, Tim Roughgarden, Eva Tardos, and
Vijay Vazirani (Eds.). Cambridge University Press, 209–241.

[33] Erel Segal-Halevi, Avinatan Hassidim, and Yonatan Aumann. 2016. SBBA: A
Strongly-Budget-Balanced Double-Auction Mechanism. In Algorithmic Game
Theory, Martin Gairing and Rahul Savani (Eds.). Lecture Notes in Computer
Science, Vol. 9928. Springer Berlin Heidelberg, 260–272. https://doi.org/10.1007/
978-3-662-53354-3_21

[34] Erel Segal-Halevi, Avinatan Hassidim, and Yonatan Aumann. 2018a. MUDA:
A Truthful Multi-Unit Double-Auction Mechanism. In Proceedings of AAAI’18.
AAAI Press. arXiv preprint 1712.06848.

[35] Erel Segal-Halevi, Avinatan Hassidim, and Yonatan Aumann. 2018b. Double Auc-
tions in Markets for Multiple Kinds of Goods. In Proceedings of IJCAI’18. AAAI
Press. Previous name: "MIDA: A Multi Item-type Double-Auction Mechanism".
arXiv preprint: 1604.06210.

[36] William Vickrey. 1961. Counterspeculation, Auctions, and Competitive Sealed
Tenders. Journal of Finance 16, No. 1 (Mar., 1961) (1961), 8–37.

https://doi.org/10.1007/978-3-662-53354-3_21
https://doi.org/10.1007/978-3-662-53354-3_21

APPENDIX
A MORE RELATED WORK
A.1 Supply Chain Management
Chaib-Draa and Müller [12] provide a comprehensive survey of
multiagent methods related to supply-chain management. The most
general supply-chain auction we are aware of is the trade-reduction
mechanism of Babaioff and Walsh [6, 7]. They allow procurement
sets of multiple recipes. Their model differs from ours in several
respects:

(a) They distinguish between “producer markets” and “consumer
markets”, with “goods” moving between markets, and impose con-
straints on the demand and supply of agents in each market. In
contrast, our model is abstract and considers only the general notion
of a “category”, with no specific distinction between producers and
consumers, and does not require the notion of a “good”.

(b) Their “Unique Manufacturing Technology” requirement for-
bids some markets that are covered by our model, such as a market
with one consumer-category and two producer-categories with the
two recipes (1, 1, 0) and (1, 0, 1); see [6] Section 6.

(c) On the other hand, they allow recipes with multiple units, such
as (2, 1, 1, 0, 0, 0) and (2, 1, 0, 2, 1, 1); see [6] Figure 1.

(d) Their auction is WBB and truthful, while ours is SBB and
obviously-truthful.

A.2 Two-Sided Markets
Two-sided markets have been extensively studied since the seminal
work of [28]. Recently, [33] presented a SBB variant of McAfee’s
mechanism, with similar GFT guarantees. Their mechanism may
remove up to one buyer from the optimal trade, and it is the buyer
with the lowest value among the buyers in the optimal trade. [11]
presented two simple mechanism that are IR, truthful, and WBB,
and obtain, in expectation, at least half of the expected GFT of the
second-best efficiency benchmark.

[3] present approximation results for the double-auction setting
and for double-auction with some added constraints on the pairs
of agents who can trade with each other. [20] have studied similar
double-sided setting to that of [3] however their constraints are
applied on each side of the market separately. [4] show a strong
analogue to the result of Bulow-Klemperer for welfare in two-sided
markets rather than revenue in auctions.

[13] consider a supply-chain auction with a sole buyer and sin-
gle item-kind, but there are different producers in different supply-
locations. The buyer needs a different quantity of the item in different
demand-locations. The buyer conducts a reverse auction and has to
pay, in addition to the cost of production, also the cost of transporta-
tion from the supply-locations to the demand-locations. They do not
guarantee SBB. [22] generalized the above settings to a unified trade
reduction procedure.

[29] designs fixed price SBB double auction under the assump-
tions that the buyer’s distribution dominates the seller’s distribution
or that there is exponential distribution. Our result does not assume
knowledge of the distribution of participating categories. Addition-
ally, we also allow for any number of categories in each recipe, as
opposed to two as well as for multiple recipes to simultaneously
trade.

[9, 15, 16] also presents SBB auctions. [9, 15] auctions target
double-sided and [16] target combinatorial markets. However, their
goal is to maximize social welfare as opposed to our goal which
is maximizing gain from trade2. Thus their mechanisms are not
asymptotically-optimal for gain from trade. They also require a prior
on the agents’ valuations. Similarly to [16], [8] present two-sided
combinatorial market solution. [8]’s solution is WBB unlike our
SBB solution and maximize social welfare as opposed to our goal
which is maximizing gain from trade.

[10] present a mechanism that obtains in expectation at least 1/e
of the first-best GFT. However, they assume the buyer’s valuation
is drawn from a distribution satisfying the monotone hazard rate
condition. In contrast our result does not assume knowledge of the
distribution of participating categories, let alone a specific distribu-
tion.

The present work handles multiple categories of agents, but each
agent is single-parametric. An orthogonal line of work ([21], [34],
[35]) remains with two agent categories (buyers and sellers), but
aims to handle multi-parametric agents.

A.3 Iterative One-Sided Auctions
Ascending-price auctions have been developed for various subsets of
combinatorial valuations, such as unit demand [19], homogeneous
goods [1], submodular buyers [2], and general valuations [18, 30].
However, all these auctions are for a single-sided market. This means
that each deal requires only a single strategic agent (the seller is not
strategic and not considered a part of the mechanism). The challenge
in our multi-sided market is that each deal requires multiple strategic
agents. Moreover, in combinatorial ascending auctions, the efficient
outcome is attained only in equilibrium, see e.g. Mishra and Parkes
[30] and Iwasaki et al. [24]. In contrast, our auction attaina an almost-
efficient outcome in dominant strategies.

B PROOFS OF ASCENDING AUCTION
PROPERTIES

For the following proofs, the following notation is used:

• CHILDREN(д) := the child nodes of the node д in its tree.
• PATH(д1 → д2) := the nodes in the path from д1 to д2, inclu-

sive.
• DEPTH(д) := the distance between the node д and the root of

its tree. The depth of a root is defined as 0.
• HEIGHT(д) := the largest distance between the node д and a

leaf of its tree. The height of a leaf is defined as 0.
• DEPTH(д) := the distance between д and the root of its tree.
• MAXDEPTH := maxд is a leaf DEPTH(д).

2When optimizing GFT we optimize the difference between the total value of the sold
items for the buyers and the total value of these items for the sellers. When optimizing
social welfare in a market we optimize the sum of the buying agents’ valuations plus the
sum of the unsold items’ value held by selling agents at the end of trade. Despite their
conceptual similarity, the two objectives are rather different in approximation. In many
cases the social welfare approximation is close to the optimal social welfare solution;
however, the gain from trade approximation may not be within any constant factor of
the optimal gain from trade.

B.1 Lemma 5.1
LEMMA 1. Throughout Algorithm 2, for any category д ∈ G, the

price-sum along any path from д to a leaf is an integer, and it is the
same for all paths.

PROOF. After the initialization step, the price-sum in all paths
from д to a leaf is equal: −V · (MAXDEPTH − DEPTH(д) + 1). The
selection of prices to increase (Algorithm 3) guarantees that, for any
д ∈ G, one of the following holds: either (a) no descendant of д is
selected, or (b) exactly one node is selected in any path from д to a
leaf. Algorithm 2 increases all selected prices simultaneously by the
same amount; therefore the price-sum remains equal. □

B.2 Lemma 5.5
LEMMA 2. For all non-leaf categories д ∈ G,

cд ≤ mд ≤ cд + 1.

PROOF. The proof is by induction on the algorithm steps. Before
the first stepmд = cд so the claim holds.

In each step, if mд = cд then Algorithm 3 never selects pд for
increase. Hence, Algorithm 2 never removes agents from Mд , so
cд ≤ mд still holds. It may remove an agent from a child of д, but
since at most one agent is removed in each step, mд ≤ cд + 1 still
holds after the removal.

If mд = cд + 1, then the algorithm never increases prices and
never removes agents from children of д, so mд ≤ cд + 1 still holds;
it may remove at most one agent from Mд , so cд ≤ mд holds. □

B.3 Lemmas B.1 - B.6
LEMMA B.1. Let д1,д2 be two children of the same node дp ∈ T .

There cannot be simultaneously a cheap path from д1 to a leaf and
an expensive path from д2 to a leaf.

PROOF. Let q1 be the price-sum along the cheap path from д1 to
a leaf, and q2 the price-sum along the expensive path from д2 to a
leaf. By definition of cheap and expensive paths, q1 is the GFT of
a part of non-optimal PS, and q2 is the GFT of a part of an optimal
PS; therefore q1 < q2. In particular, q1 , q2. But since both paths
are children of the same node д, this contradicts Lemma 5.1. □

LEMMA B.2. If mд ≤ kд − 1 for some д ∈ G, then there is an
expensive path from д to a leaf.

PROOF. The fact thatmд ≤ kд − 1 means that pд ≥ vд,kд , so the
condition for an expensive path holds for д itself. To show that it
holds for a path from д to a leaf, we apply induction on HEIGHT(д).
If HEIGHT(д) = 0 (i.e., д itself is a leaf), then the claim is obvious.
Otherwise, by Lemma 5.5,

*.
,

∑
д′ is a child of д

mд′
+/
-
= cд ≤ mд ≤ kд − 1 = *.

,

∑
д′ is a child of д

kд′
+/
-
− 1

Therefore, there is at least one child д′ of д for whichmд′ ≤ kд′ − 1.
Since HEIGHT(д′) < HEIGHT(д), by the induction assumption there
is an expensive path from д′ to a leaf. Prepending д to this path yields
an expensive path from д to a leaf. □

LEMMA B.3. If mд ≥ kд + 1 for some д ∈ G, then there is a
cheap path from д to a leaf.

PROOF. The fact that mд ≥ kд + 1 means that pд ≤ vд,kд+1, so
the condition for a cheap path holds for д itself. To show that it holds
for a path from д to a leaf, we apply induction on HEIGHT(д). If
HEIGHT(д) = 0 then the claim is obvious. Otherwise, there are two
cases.

Case #1: д has a child д′ for which mд′ ≥ kд′ + 1. Then by
the induction assumption there is a cheap path from д′ to a leaf;
prepending д to this path yields a cheap path from д to a leaf.

Case #2: mд′ ≤ kд′ for all children д′ of д. Then cд ≤ kд ≤
mд − 1. By Lemma 5.5 we must in fact have cд = mд − 1 = kд ,
so mд′ = kд′ for all children д′ of д. Now, let us look back at
the history of price-increases made by the algorithm, and identify
the most recent price-increase in a descendant of д (a category
in the subtree below д). Before this price-increase, cд = mд had
necessarily held (since otherwise Algorithm 3 would not have chosen
a descendant of д for increase). So this price-increase must have been
in a child д′ of д, which before this increase hadmд′ = kд′ +1. Since
HEIGHT(д′) < HEIGHT(д), by the induction assumption there was
an cheap path from д′ to a leaf. The price-increase of д′ stopped
at the moment when agent kд′ + 1 was removed from Mд′ , i.e., it
stopped at pд′ = vд′,kд′+1; therefore, the same path from д′ to a leaf
is still cheap. Prepending д to this path yields a cheap path from д to
a leaf. □

LEMMA B.4. If
⌈
mд

⌉
≥ kд + 1 for some д ∈ G, then there is a

cheap path from the root to a leaf (through д).

PROOF. By Lemma B.3 there is a cheap path from д to a leaf.
Therefore, it is sufficient to prove that there is a cheap path from the
root to д. The proof is by induction on DEPTH(д). If DEPTH(д) = 0
(i.e., д itself is the root), then the claim is obvious. Otherwise, let дp
be the parent of д. Otherwise, let дp be the parent of д.

Case #1: mдp ≥ kдp + 1. Since DEPTH(дp) < DEPTH(д), by
the induction assumption there is a cheap path from the root to дp ;
appending д to this path yields a cheap path from the root to д.

Case #2:mдp ≤ kдp . Lemma 5.5 implies:∑
д′ is a child of дp

mд′ = cдp ≤ mдp ≤ kдp =
∑

д′ is a child of дp

kд′

Removing from both sides the term corresponding to д (which is a
child of дp) yields:

*.
,

∑
д′,д is a child of дp

mд′
+/
-
≤
*.
,

∑
д′,д is a child of дp

kд′
+/
-
− 1

Therefore, there is at least one child д′ of дp for whichmд′ ≤ kд′ −1.
By Lemma B.2, there is an expensive path from д′ to a leaf. But
by Lemma B.3, there is a cheap path from д — which is a sibling
of д′ — to a leaf. By Lemma B.1, these two paths cannot exist
simultaneously; hence, Case #2 is not possible. □

LEMMA B.5. If mд ≤ kд − 1 for some д ∈ G, and Algorithm 3
decides to increase the price of д or a descendant of д, then (even
before the increase) there is an expensive path from the root to a leaf
(through д).

PROOF. By Lemma B.2, mд ≤ kд − 1 implies that there is an
expensive path from д to a leaf. Therefore, it is sufficient to prove
that there is an expensive path from the root to д. The proof is by

induction on DEPTH(д). If DEPTH(д) = 0 (i.e., д itself is the root),
then the claim is obvious. Otherwise, let дp be the parent of д. There
are two cases.

Case #1:mдp ≤ kдp − 1. Since DEPTH(дp) < DEPTH(д), by the
induction assumption there is an expensive path from root to дp ;
appending д to this path yields an expensive path from root to д.

Case #2:mдp ≥ kдp . The fact that Algorithm 3 decides to increase
the price of д′ or a descendant of it implies that that cдp ≥ mдp .
Therefore:

*.
,

∑
д′ is a child of дp

mд′
+/
-
= cдp ≥ mдp ≥ kдp =

*.
,

∑
д′ is a child of дp

kд′
+/
-

Removing from both sides the term corresponding to д (which is a
child of дp) yields:

*.
,

∑
д′,д is a child of дp

mд′
+/
-
≥
*.
,

∑
д′,д is a child of дp

kд′
+/
-
+ 1

Therefore, there is at least one child д′ of дp for whichmд′ ≥ kд′ +1.
By Lemma B.3, there is a cheap path from д′ to a leaf. But by
Lemma B.2, there is an expensive path from д — which is a sibling
of д′ — to a leaf. By Lemma B.1, these two paths cannot exist
simultaneously; hence, Case #2 is not possible. □

LEMMA B.6. When Alg. 2 ends, mд ∈ {kд ,kд − 1} for all д ∈ G.

PROOF. The proof is by contradiction.
First, suppose that mд ≥ kд + 1 for some д ∈ G. By Lemma

B.4, there is a cheap path from the root to a leaf; denote the set of
categories along this path by G ′. The sum of prices of categories
д ∈ G ′ is the GFT of a non-optimal PS, which is negative. As long
as the price-sum is negative, the algorithm does not terminate.

Second, suppose that mд ≤ kд − 2 for some д ∈ G. Since at
most a single agent is removed in each iteration, this means that the
algorithm decided to increase the price of д whilemд was equal to
kд − 1. By Lemma B.5, at that point there existed an expensive path
from the root to a leaf; denote the set of categories along this path by
G ′. The sum of prices of categories д ∈ G ′ is the GFT of an optimal
PS, which is positive. However, the price-sum increases by a single
unit each round, and the algorithm terminates when the price-sum
hits zero, so the price-sum can never be positive. □

C HARDNESS OF GENERAL RECIPE SETS
To illustrate the difficulty of handling general recipe-sets, we prove
that calculating the optimal trade, even without strategic consider-
ations, is MAX-SNP-hard. This implies that, for some constant, it
is hard to compute a constant-factor approximation of the optimal
GFT.

THEOREM C.1. The following problem is MAX-SNP-hard. Given
a set N of agents with known integer valuations, a setG of categories,
a set R of recipes, and an integer C, decide whether there exists a
feasible trade in which the GFT is at least C.

PROOF. The proof is by reduction from 3-dimensional matching,
which is the following decision problem: given a 3-uniform hyper-
graph H = (V ,E) (a hypergraph in which each edge in E contains
3 vertices of V) and a positive integer C, decide whether H has a

101 102 103

0

50

100

Agents (n)

Pe
rc

en
ta

ge
(%
)

GFT Ratio
k’ Ratio

1 − 1/kmin Ratio

Figure 3: Graph of results from Table 5.

matching that contains at least C edges. This problem is known to
be NP-hard [26] and MAX-SNP-hard [25].

Given an instance H = (V ,E) of 3-D matching, construct an
instance of the GFT problem as follows.

• There is a category for each vertex: G = V .
• Each category contains a single agent.
• The value of every agent is 1/3.
• There is a recipe re for each edge e ∈ E, defined as follows:

rei :=

1 i ∈ e,

0 otherwise.

Since H is 3-uniform, each recipe contains exactly 3 ones and the
other elements are zero. Therefore, the GFT of every PS is 3 ·1/3 = 1,
and the GFT of every trade equals the number of trading PS. Since
each category contains a single agent, each category must appear
in at most one PS. Therefore, every feasible trade corresponds to a
matching in H and vice-versa, so the problems are equivalent. □

Note that the best known polytime algorithm for 3-D matching
attains 3/4 of the optimum [17], and it is NP-hard to attain 94/95 of
the optimum [14]. this illustrates the kind of approximation to the
GFT that we can hope to obtain for general recipe-sets. Develop-
ing obviously-truthful mechanisms that attain such constant-factor
approximations is an interesting future work direction.

D DISCUSSION AND FUTURE WORK
The dependence of Theorem 5.4 on kmin may appear weak, but it is
the best possible. Consider a recipe-forest with five categories and
two recipes: (dummy, buyer1, seller1) and (dummy, buyer2, seller2).
The dummy category contains infinitely-many agents with value 0;
the (buyer1, seller1) categories contain kmax pairs with a GFT of
1; the (buyer2, seller2) categories contain kmin pairs with a GFT of
kmax

2. Here, OPT = kmax + kmin ∗ kmax
2. It is clearly equivalent

to two independent two-sided markets: the (buyer1 ,seller1) market
with OPT = kmax and the (buyer2, seller2) market with OPT ≫
kmax. The approximation ratio of any mechanism is dominated by
the ratio on the (buyer2, seller2) market, which by McAfee [28] is at
most 1 − 1/kmin (while our approximation ratio is 1 − 2/(kmin + 1)).

Table 5: Results with random prices and the recipe-forest R = {(1, 1, 0, 0), (1, 0, 1, 1)}.

Optimal Ascending Price

n k kmin kmax 1 − 1
kmin

OGFT k ′ kmin
′ kmax

′ %k ′ GFT %GFT

2 1.13 1.00 1.00 0.596 449.9 0.47 0.47 0.47 41.86 254.7 56.614
4 2.38 1.42 1.79 29.725 1051.0 1.49 1.30 1.33 62.65 833.8 79.329
6 3.58 1.61 2.63 38.233 1665.4 2.61 1.77 2.17 72.87 1468.7 88.191
10 5.92 1.98 4.17 49.647 2776.1 4.91 1.94 3.74 82.99 2630.5 94.756
16 9.52 3.04 6.51 67.148 4581.6 8.53 2.63 6.10 89.58 4488.8 97.974
26 15.48 5.03 10.45 80.139 7640.8 14.48 4.41 10.06 93.49 7578.8 99.188
50 29.97 9.91 20.06 89.911 14847.0 29.00 9.33 19.66 96.74 14818.1 99.805

100 59.65 19.75 39.89 94.939 29613.3 58.66 19.16 39.49 98.34 29597.9 99.948
500 300.02 99.59 200.42 98.995 149554.5 299.02 98.99 200.02 99.66 149551.3 99.997
1000 600.15 199.13 401.01 99.497 299470.6 599.13 198.54 400.59 99.82 299468.9 99.999

Our ascending auction requires acyclic graphs. Economically, the
case where cycles are allowed is not sensible. Consider a recipe-tree
with one parent node and two child nodes. The tree represents two
different recipes, each with a parent node category that complements
a child node category. The two recipes have mutually substitutable
child nodes. Introducing a cycle, i.e., connecting the two child nodes
in the graph to form a recipe, would create categories that simultane-
ously complement and substitute each other. Economically, such a
recipe model is unavailing.

From a theoretical perspective, it may be interesting to study
other natural settings in which the optimal GFT can be computed
efficiently. For example, if every recipe in R has exactly two 1-s and
the other elements are 0, then the optimal GFT can be found using a
maximum-weight matching algorithm. Is it possible to construct an
efficient ascending auction for such cases?

	Abstract
	1 Introduction
	1.1 Previous Work
	1.2 Our Contribution

	2 Formal Definitions
	2.1 Agents and Categories
	2.2 Trades and Gains
	2.3 Mechanisms
	2.4 Recipe forests

	3 Computing Optimal Trade
	4 Ascending Auction Mechanism
	4.1 General Description
	4.2 Example Run

	5 Ascending Auction Properties
	6 Experiments
	6.1 Agents' Values
	6.2 Number of Deals and Gain From Trade
	6.3 Results and Conclusions

	References
	A More Related Work
	A.1 Supply Chain Management
	A.2 Two-Sided Markets
	A.3 Iterative One-Sided Auctions

	B Proofs of Ascending Auction Properties
	B.1 Lemma 5.1
	B.2 Lemma 5.5
	B.3 Lemmas B.1 - B.6

	C Hardness of General Recipe Sets
	D Discussion and Future Work

