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ABSTRACT
We show a prototype of a system that uses multiwinner voting to
suggest resources (such as movies) related to a given query set (such
as a movie that one enjoys). Depending on the voting rule used,
the system can either provide resources very closely related to the
query set or a broader spectrum of options. We test our system both
on synthetic data and on the real-life collection of movie ratings
from the MovieLens dataset.
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1 INTRODUCTION
The idea of multiwinner voting is to provide a committee of can-
didates based on the preferences of the voters. In principle, such
mechanisms have many applications, ranging from choosing par-
liaments, through selecting finalists of competitions, to suggesting
items in Internet stores or services. While the first two types of
applications indeed are quite common in practice, the last one, so
far, was viewed mostly as a theoretical possibility. Our goal is to
change this view. To this end, we design a prototype of a voting-
based search system that given a movie (or, a set of movies), finds
related ones. The crucial element of our system—enabled by the use
of multiwinner voting—is that one may specify to what extent he or
she wants to focus on movies very tightly related to the given one,
and to what extent he or she wants to explore a broader spectrum
of movies that are related in some less obvious ways. Indeed, if
someone is looking for movies exactly like the specified one, then
using focused search is natural. However, if someone is not really
sure what he or she really seeks, or if he or she has already watched
the most related movies, looking at a broader spectrum is more
desirable.

Viewed more formally, our system belongs to the class of non-
personalized recommendation systems based on collaborative fil-
tering. That is, from our point of view the users posing queries
are anonymous and we do not target the results toward particular
individuals, but rather we try to find movies related to the ones
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they ask about. In this sense, we provide more of a search-support
tool than a classical recommendation system.

To find the relationships between the movies, we use a dataset
of movie ratings (in our case, the MovieLens dataset [16]). Such a
dataset consists of a set of agents who rate the movies on a scale
between one and five stars (where one is the lowest score and five
is the highest). For each movie we consider which agents enjoyed it
and what other movies these agents liked. More specifically, given
the raw data with movie ratings we form a global election where we
indicate which users liked which movies (we say that a user liked a
movie if he or she gave it at least four stars; in the language of voting
literature, liking a movie corresponds to approving it). Then, given
a query, i.e., either a single movie or a set of movies, we restrict this
election to the agents who liked the movies from the query (and
the movies they liked, except for the ones from the query). Based
on this local election, for each user and each movie that he or she
likes, we determine a utility score which indicates how relevant
the movie is (briefly put, we need to distinguish between movies
that are globally very popular, such as, e.g., The Lord of the Rings,
from the ones that are mostly popular among the agents in the local
election). Finally, we seek a winning committee with respect to one
of the OWA-based multiwinner voting rules discussed by Skowron
et al. [33], and output its contents as our result (see also the works
of Aziz et al. [2] and Bredereck et al. [5]). Since, in general, our
rules are NP-hard to compute, we use approximation algorithms
and heuristics.

OWA-based rules are parameterized by the ordered weighted av-
erage operators of Yager [35] and, depending on the choice of these
operators, they may provide committees of very similar, individ-
ually excellent candidates, or of more diverse ones (see, e.g., the
simulations of Elkind et al. [10] and Faliszewski et al. [13], or the
theoretical analyses of Aziz et al. [2] and Lackner and Skowron
[20? ]). Thus, by choosing the OWA operators appropriately, we
either find movies very closely related to a given query, or those
that form a broader spectrum of related movies. Specifically, we
use a family of operators parameterized by a value 𝑝 ≥ 0, such that
for 𝑝 = 0 we get the most focused results, and for larger 𝑝’s the
results become more broad.

Our Contribution. Our main contribution is designing a voting-
based search system and testing it in the context of selecting movies.
In particular, we show the following results:

(1) Using movie-inspired synthetic data, we show that, indeed,
the rules that are meant to choose closely related movies or
more broad committees, do so.

(2) Using the MovieLens dataset , we show that the greedy al-
gorithm is, on average, superior to simulated annealing for
computing our committees (but simulated annealing also
has positive features).



We also give examples of the answers provided by the system.

Related Work. Regarding multiwinner voting, we point the read-
ers to the overviews of Faliszewski et al. [14] and Lackner and
Skowron [21], and to the work of Elkind et al. [11] (who, in par-
ticular, suggeted multiwinner voting to select movies for planes’
entertainment systems). While multiwinner voting is not yet a
mainstream tool in applications, various researchers have used it
successfully. Examples include means of ensuring fairness in rec-
ommender systems [7] and social media [23], as well as improved
techniques for genetic algorithms [12, 28].

For a broad discussion of modern recommendation systems, we
point to the handbook of Ricci et al. [30]; see also the work of
Sarwar et al. [32] for an early discussion of collaborative filtering
methods. As examples of works on movie recommendations, we
mention the papers of Ghosh et al. [15] (which describes a movie
recommendation system using Black’s voting rule with weighted
user preferences), Azaria et al. [1] (which focuses on maximizing
the revenue of the recommender), Choi et al. [9] (which discusses
recommendations based on movie genres), and Phonexay et al. [27]
(which adapts some techniques from social networks to recommen-
dation systems). While most of this literature considers the most
tightly connected movies, there are works on recommendation sys-
tems that focus on diversifying the results (see, e.g., the work of
Kim et al. [19]).

So far, we have not found studies whose results we could directly
compare to ours (except, of course, for those looking for the most
related movies). We continue to seek such related work and means
of validating our results.

2 PRELIMINARIES
LetR+ denote the set of nonnegative real numbers, and for a positive
integer 𝑖 , let [𝑖] denote the set {1, . . . , 𝑖}.

Utility and Approval Elections. Let 𝑅 = {𝑟1, . . . , 𝑟𝑚} be a set of
resources and let 𝑁 = {1, . . . , 𝑛} be a set of agents (in other papers,
the resources are often referred to as the candidates and the agents
are often referred to as the voters). Each agent 𝑖 has a utility function
𝑢𝑖 : 𝑅 → R+, which specifies how much he or she appreciates each
resource. We assume that the utilities are comparable among the
agents and that the utility of zero means that an agent is completely
uninterested in a given resource. We do not normalize utility values,
so, for example, some agent may be far more excited about the
resources than some other one. Committees are sets of resources,
typically of a given size 𝑘 . For a committee 𝑆 = {𝑠1, . . . , 𝑠𝑘 } and an
agent 𝑖 , by 𝑢𝑖 (𝑆) we mean the vector (𝑢𝑖 (𝑠1), . . . , 𝑢𝑖 (𝑠𝑡 )), where the
utilities appear in some fixed order over the resources (this order
will never be relevant for our discussion). Wewrite𝑈 = (𝑢1, . . . , 𝑢𝑛)
to denote a collection of utility functions, referred to as a utility
profile. A utility election 𝐸 = (𝑅,𝑈 ) consists of a set of resources
and a utility profile over these resources (a utility profile implicitly
specifies the set of agents). An approval election is a utility election
where each utility is either 1, meaning that an agent approves a
resource, or 0, meaning that he or she does not approve it. For
approval elections we typically denote the utility profile as 𝐴 =

(𝑎1, . . . , 𝑎𝑛) and call it an approval profile. For a resource 𝑟𝑡 , we
write 𝐴(𝑟𝑡 ) to denote the set of agents that approve it.

OWA Operators. An ordered weighted average (OWA) operator
is specified by a vector of nonnegative real numbers, such as 𝜆 =

(𝜆1, . . . , 𝜆𝑘 ), and operates as follows. For a vector 𝑥 = (𝑥1, . . . , 𝑥𝑘 ) ∈
R𝑘 and a vector 𝑥 ′ = (𝑥 ′1, . . . , 𝑥

′
𝑘
) obtained by sorting 𝑥 in the

nonincreasing order, we have:

𝜆(𝑥) = 𝜆1𝑥
′
1 + 𝜆2𝑥

′
2 + · · · + 𝜆𝑘𝑥

′
𝑘
.

For example, operator (1, . . . , 1) means summing up the elements
of the input vector, whereas operator (1, 0, . . . , 0) means taking its
maximum element. OWA operators were introduced by Yager [35].

(OWA-Based) Multiwinner Voting Rules. A multiwinner voting
rule is a function 𝑓 which, given a utility election 𝐸 and an integer 𝑘 ,
returns a family of size-𝑘 winning committees. We focus on OWA-
based rules.

Consider a utility election 𝐸 = (𝑅,𝑈 ), where 𝑅 = {𝑟1, . . . , 𝑟𝑚}
and 𝑈 = (𝑢1, . . . , 𝑢𝑛), and an OWA operator 𝜆 = (𝜆1, . . . , 𝜆𝑘 ). Let
𝑆 be a size-𝑘 committee. We define the 𝜆-score of a committee
𝑆 in election 𝐸 to be 𝜆-𝑠𝑐𝑜𝑟𝑒𝐸 (𝑆) =

∑𝑛
𝑖=1 𝜆(𝑢𝑖 (𝑆)). We say that a

multiwinner rule 𝑓 is OWA-based if there is a family Λ = (𝜆 (𝑘) )𝑘≥1
of OWA operators, one for each committee size 𝑘 , such that for
each election 𝐸 and each committee size 𝑘 , 𝑓 (𝐸, 𝑘) consists exactly
of those size-𝑘 committees 𝑆 for which 𝜆 (𝑘) -𝑠𝑐𝑜𝑟𝑒𝐸 (𝑆) is highest.

HUV Rules. We are particularly interested in the rules that use
OWA operators of the followig form, where 𝑝 ≥ 0:

𝜆𝑝 = (1, 1/2𝑝 , 1/3𝑝 , . . .),

and we refer to them as 𝑝-Harmonic Utility Voting rules (𝑝-HUV
rules). The name stems from the fact that for 𝑝 = 1, their OWA
operators sum up to harmonic numbers. Let us consider three
special cases:

(1) For a committee size 𝑘 , the 0-HUV rule chooses 𝑘 resources
with the highest total utility; indeed, its OWA operator is
(1, . . . , 1). Under approval elections, 0-HUV is the classic
Multiwinner Approval Voting rule (AV).

(2) The 1-HUV rule uses OWA operators (1, 1/2, 1/3, . . .); for ap-
proval elections this is the Proportional Approval Voting rule
(PAV) of Thiele [34].

(3) Abusing the notation,∞-HUV is a rule that uses OWA oper-
ators (1, 0, . . . , 0); for approval elections it is the Chamberlin–
Courant rule (CC); see the works of Chamberlin and Courant
[8], Procaccia et al. [29], and Betzler et al. [4].

In the approval voting setting, these three rules correspond to
the three main principles of choosing committees. AV chooses
individually excellent resources, i.e., those that are appreciated by
the largest number of agents; PAV chooses committees that, in a
certain formal sense, proportionally represent the preferences of
the agents [2, 6], and CC (∞-HUV) focuses on diversity, i.e., it seeks
a committee so that as many agents as possible appreciate at least
one item in the committee. For a more detailed description of these
principles, see the overview of Faliszewski et al. [14]; for a focus
on approval rules, see the survey of Lackner and Skowron [21] and
their work on the opposition between AV and CC [22].

We proceed under two premises. The first one is that the 0-HUV,
1-HUV, and ∞-HUV rules extend the principles of individual excel-
lence, proportionality, and diversity to the setting of utility elections



(the visualizations of Elkind et al. [10] support this view). The sec-
ond one is that for 𝑝 > 1, the rule 𝑝-HUV provides committees that
achieve various levels of compromise between those of 1-HUV and
∞-HUV (this is supported by the results of Faliszewski et al. [13];
we do not consider 𝑝 values between 0 and 1).

Computing HUV Committees. Unfortunately, for each 𝑝 > 0 it is
NP-hard to tell if there is a committee with at least a given score
under the 𝑝-HUV rule [3, 33] and, as a consequence, no polynomial-
time algorithms are known for these rules (for 0-HUV it suffices
to sort the candidates in terms of their total utilities and, up to tie-
breaking, take top 𝑘 ones). We consider two ways of circumventing
this issue:

(1) We use the standard greedy algorithm: To compute a 𝑝-HUV
committee of size-𝑘 (for some 𝑝 > 0), we start with an
empty committee and perform 𝑘 iterations, where in each
iteration we extend the committee with a single resource that
maximizes its 𝑝-HUV score. A classic result on submodular
optimization shows that the committees computed this way
are guaranteed to achieve at least 1 − 1/𝑒 fraction of the
highest possible score [24].

(2) We use the simulated annealing heuristic, as implemented
in the simanneal library, version 0.5.0. We set the number of
steps to 50 000 and the temperature to vary between 9900
and 0.6.

In principle, we could also use the formulations of 𝑝-HUV rules as
integer linear programs (ILPs), provided, e.g., by Skowron et al. [33]
and Peters and Lackner [26]. Yet, given the sizes of our elections this
would be quite infeasible (e.g., for the movie Alice in Wonderland
(1951)we obtain an election with 32’783 resources and 5’339 agents).

3 SYSTEM DESIGN
Let us now describe our voting-based search system. The main
idea is that for a query set of resources (such as a set of movies
that someone enjoys) we form an election that regards related
resources and whose winning committee is our result. Depending
on the voting rule used, the result may contain resources either
very closely or only somewhat loosely connected to those from
the query. The system consists of three main components, the data
model, the search model, and voting.

3.1 Data Model
The data model is responsible for converting domain-specific raw
data into what we call a global (approval) election. For example,
the raw data may consist of information how various people rate
movies, or what products they buy in some store, or it may be gen-
erated using some statistical model of preferences (which, indeed,
we will do to test our system in a controlled environment).

The global election stores our full knowledge of the domain. The
interpretation is that the agents are the users who have interacted
with some resources and they approve those for which the interac-
tion was positive (for example, if they enjoyed a particular movie).
Lack of an approval either means that the interaction was negative
or that there was no interaction (while we could distinguish these
two cases, we find using basic approval elections to be simpler).

The algorithm for forming the global election is the only domain-
specific part of our model. Below we provide an example how such
an algorithm may work.

Example 3.1. Consider the MovieLens 25M dataset [16]. It con-
tains 25’000’095 ratings of 62’423 movies, provided by 162’541 users
(so, on average, each user rated almost 154 movies). Each rating is
on the scale from one to five stars (the higher, the better) and was
provided between January of 1995 and November of 2019 on the
MovieLens website. We form a global election where each user is
an agent, each movie is a resource, and a user approves a movie if
he or she gave it at least four stars. We remove from consideration
those movies that were approved by fewer than 20 agents.

3.2 Search Model
The search model is responsible for forming a local (utility) election,
specific to a particular query. The idea is that this election’s win-
ning committees would form our result sets. We first form a local
approval election and then, if desired, we derive more fine-grained
utilities for the agents.

Let 𝐸 = (𝑅,𝐴) be the global approval election, where 𝐴 =

(𝑎1, . . . , 𝑎𝑛), and let 𝑄 ⊆ 𝑅 be the query set. Let 𝑁 = {1, . . . , 𝑛}
be the set of agents present in 𝐸 and let 𝑁local be a subset of 𝑁
containing those agents who approve at least one member of 𝑄
(while we could use other criteria, we focus on singleton query
sets for which it is not relevant). Then, let 𝑅local consist of those
resources that are approved by the agents from 𝑁local , except those
from the query:

𝑅local = {𝑟 ∈ 𝑅 | (∃𝑖 ∈ 𝑁local) [𝑎𝑖 (𝑟 ) = 1]} \𝑄.

Finally, let 𝐴local be the approval profile of the agents from 𝑁local ,
restricted to the resources from𝑅local , and let 𝐸local = (𝑅local, 𝐴local)
be our local approval election. Intuitively, it contains the knowledge
about exactly those resources that were appealing to (some of) the
agents that also enjoyed members of 𝑄 . Unfortunately, as shown
below, it may be insufficient to provide relevant search results.

Example 3.2. Consider the MovieLens global election from Exam-
ple 3.1 and let the query set 𝑄 consist of a single movie, Hot Shots!
(a 1991 parody of the Top Gun (1986) movie, full of quirky/absurd
humor). The five most-approved movies in the local approval elec-
tion for 𝑄 are: (1) The Matrix (1999), (2) Back to the Future (1985),
(3) Fight Club (1999), (4) Pulp Fiction (1994), and (5) Lord of the Rings:
The Fellowship of the Ring (2001). This is also the winning committee
under the AV rule with 𝑘 = 5. Neither of these movies has much to
do with Hot Shots!, and they were selected because they are globally
very popular (indeed, we expect many more readers of this paper
to have heard of these five movies than of the one from the query
set). Such globally popular movies are also popular among people
enjoying Hot Shots!.

To address the above issue, we derive a local utility election
𝐸util = (𝑅util,𝑈util), where 𝑅util = 𝑅local , which promotes those
resources that are more particular to a given query. To this end,
we use the term frequency-inverse document frequency (TF-IDF)
mechanism.



Table 1: Results provided by our system for the movie Hot Shots! (see Examples 3.1, 3.4, and 3.6).

exact algorithm simulated annealing greedy algorithm
# 0-HUV 1-HUV 2-HUV 1-HUV 2-HUV

1. The Naked Gun 2 1/2 (1991) Hot Shots! Part Deux (1993) Hot Shots! Part Deux (1993) The Naked Gun 2 1/2 (1991) The Naked Gun 2 1/2 (1991)
2. Hot Shots! Part Deux (1993) The Loaded Weapon 1 (1993) The Loaded Weapon 1 (1993) Hot Shots! Part Deux (1993) The Loaded Weapon 1 (1993)
3. Top Secret (1984) The Naked Gun 2 1/2 (1991) The Villain (1979) The Loaded Weapon 1 (1993) Major League II (1994)
4. The Naked Gun (1988) Cannonball Run II (1984) Top Secret (1984) Major League II (1994) Yamakasi (2001)
5. The Loaded Weapon 1 (1993) Top Secret (1984) Ernest Goes to Jail (1990) Top Secret (1984) Hot Shots! Part Deux (1993)
6. Police Academy (1984) Nothing to Lose (1997) Last Boy Scout, The (1991) Yamakasi (2001) To Be or Not to Be (1983)
7. The Last Boy Scout (1991) Dragnet (1987) Dragnet x(1987) Hudson Hawk (1991) Hudson Hawk (1991)
8. Commando (1985) Major League II (1994) Freaked (1993) To Be or Not to Be (1983) Freaked (1993)
9. Hudson Hawk (1991) Yamakasi (2001) Major League II (1994) City of Violence (2006) Top Secret (1984)
10. Twins (1988) Coffee Town (2013) Yamakasi (2001) Dragnet (1987) City of Violence (2006)

TF-IDF. This is a standard heuristic introduced by Jones [17, 18]
to evaluate how specific is a given term 𝑡 for a document 𝑑 from a
document corpus 𝐷 (for further information on TF-IDF see, e.g., the
works of Robertson andWalker [31] and Ounis [25]). The main idea
is that the specificity value of 𝑡 in 𝑑 is proportional to the frequency
of 𝑡 in 𝑑 (term frequency; TF ) and inversely proportional to the
frequency of 𝑡 in all the documents 𝐷 (inverse document frequency;
IDF ).

Given our global election 𝐸 = (𝑅,𝐴) and the approval local
election 𝐸local = (𝑅local, 𝐴local), we implement the TF-IDF idea as
follows. We interpret the resources as the terms, and we take the
document corpus to consist of two “documents,” election 𝐸local and
election 𝐸 ′ = (𝑅local, 𝐴′), where 𝐴′ is the approval profile for those
agents from the global election that do not appear in 𝐸local . Let 𝑛
be the total number of agents. For a resource 𝑟 ∈ 𝑅local , we let its
term frequency component be the number of agents that approve
it in the local election, i.e., tf (𝑟 ) = |𝐴local (𝑟 ) |. We let 𝑟 ’s inverse
document frequency be idf (𝑟 ) = ln (𝑛/|𝐴(𝑟 ) |) . Finally, to balance
the TF and IDF components, we assume we have some constant 𝛾
and we define:

tf-idf𝛾 (𝑟 ) = tf (𝑟 )𝛾 idf (𝑟 ) = |𝐴local (𝑟 ) |
𝐴(𝑟 ) ln𝛾 ·

(
𝑛ln𝛾

)
.

Example 3.3. Consider three resources, 𝑟1, 𝑟2, and 𝑟3, where:
|𝐴local (𝑟1) | = 1, |𝐴(𝑟1) | = 2, |𝐴local (𝑟2) | = 10, |𝐴(𝑟2) | = 20, and
|𝐴local (𝑟3) | = 100, |𝐴(𝑟3) | = 2000. If we focused on the number of
approvals in the local election (by taking ln𝛾 = 0), then we would
view 𝑟3 as the most relevant resource. This would be unintuitive as
only a small fraction of 𝑟3’s approvals come from the agents who en-
joy the items in the query set. For 𝛾 ≈ 2.78 (i.e., ln𝛾 = 1), we would
focus on the ratios |𝐴′ (𝑟𝑖 ) |/|𝐴(𝑟𝑖 ) |, so 𝑟1 and 𝑟2 would be equally
relevant, and 𝑟3 would come third. This is more appealing, but still
unsatisfying as, generally, 𝑟2 is more popular than 𝑟1. By taking, e.g.,
𝛾 = 2 (i.e., ln𝛾 ≈ 0.69) we would focus on ratios |𝐴′ (𝑟𝑖 ) |/|𝐴(𝑟𝑖 ) |0.69

and, indeed, 𝑟2 would be the most relevant resource, followed by 𝑟1
and 𝑟2.

We have found that𝛾 = 2 works best for our scenario (we discuss
the process of choosing this value in Section 4.1).

Example 3.4. Consider the same setting as in Example 3.2, but
take five movies with the highest TF-IDF value (for 𝛾 = 2). We
obtain: (1) The Naked Gun 2 1/2 (1991), (2) Hot Shots! Part Deux
(1993), (3) Top Secret! (1984), (4) The Naked Gun (1988), (5) The Loaded

Weapon 1 (1993). All these movies are parodies similar in style to
Hot Shots!.

Local Utility Election. We form the local utility election 𝐸util =

(𝑅util,𝑈util) by setting the utilities as follows. Given an agent 𝑖
from the local approval election and a resource 𝑟 ∈ 𝑅util , if agent 𝑖
approves 𝑟 , then set 𝑢𝑖 (𝑟 ) = tf-idf (𝑟 )/|𝐴local (𝑟 ) |. Otherwise, set it to
be 0. This way the utilities assigned to a given resource sum up to
its TF-IDF value.

Example 3.5. By the design of the local utility election, a com-
mittee of size 𝑘 = 5 for the Hot Shots! local utility election would
consist exactly of the five movies listed in Example 3.4.

3.3 Voting
The last component of our system is to compute (an approximation
of) a winning committee under the local utility election under a
given 𝑝-HUV rule. If we are looking for resources that are the most
closely connected to the query set, then we take 𝑝 = 0. For a broader
search, we typically consider 𝑝 ∈ {1, 2, 3, . . .}. Since most of our
rules are NP-hard to compute, we compute our committees either
using the greedy approximation algorithm or simulated annealing.
The greedy algorithm returns the committee orderedwith respect to
the iteration number in which a given resource was added (thus, the
first resource is always the same for a given election, irrespective
of 𝑝). The algorithm based on simulated annealing outputs the
committee in an arbitrary order.

Example 3.6. Consider the local utility election for the Hot Shots!
movie. In Table 1 we show the 𝑝-HUV committees for, 𝑝 ∈ {0, 1, 2},
where for 0-HUV we use the exact algorithm and for the other two
rules we use simulated annealing and the greedy algorithm. Let us
discuss the contents of these committees (for 𝑝 ∈ {1, 2}, we focus
on simulated annealing):

(1) The first six movies selected by 0-HUV are quirky, absurd
comedies, quite in spirit of Hot Shots!; among the next four
movies, three are comedies (one of which is somewhat simi-
lar in spirit to the first six) and one is an action movie.

(2) Except for Yamakasi, all movies selected by 1-HUV are come-
dies of different styles, including four of the same style asHot
Shots!, two action comedies, two family comedies, and one
crime comedy. Yamakasi is an action/drama movie which
stands out from the rest.



Figure 1: Each dot represents a movie in the local election generated for Star Trek III: The Search for Spock (1984) and shows
the relation between the movie’s popularity (its TF value) on the 𝒚 axis and its final TF-IDF score on the 𝒙 axis for various
setting of the parameter 𝜸 . The hue of the dot represents the popularity of the movie in the global election (i.e., the number
of its approvals)

(3) 2-HUV selects even more varied set of comedies than 1-HUV,
including a western comedy, a sci-fi comedy, crime/action
comedies, and family movies. Yet, it also includes Yamakasi.

The reason why Yamakasi is included in our 1-HUV and 2-HUV
committees is simply because, in total, it only received 53 approvals,
of which 27 came from people who enjoyed Hot Shots!. Thus it was
viewed as a very relevant movie for the query. If we replaced the
simple TF-IDF heuristic with a more involved scoring system (pos-
sibly using more information about the movies), we could account
for such situations better.

The committees computed by the greedy algorithm for 1-HUV
and 2-HUV are of comparable quality to those provided by sim-
ulated annealing, although they include eight comedies and two
action movies each.

4 EXPERIMENTS
In this section we present three experiments. The first and the last
one are conducted on the MovieLens dataset, whereas the middle
one uses synthetic data. In the first experiment, we describe our
process of choosing the 𝛾 value for the TF-IDF heuristic. In the
second one, we test if, indeed, 0-HUV rule focuses on resources
very similar to the one from the query set, whereas 𝑝-HUV rules for
𝑝 ∈ {1, 2, 3} seek increasingly more diverse result sets. In the final
experiment, we compare the performances of the greedy algorithm
and simulated annealing.

4.1 Calibrating the TF-IDF Metric
Before we describe our formal procedure for choosing the 𝛾 pa-
rameter, let us explore its meaning. Intuitively, 𝛾 is used to give
more weight to the IDF component relative to the TF one. In other
words, replacing 𝛾 with a larger value more strongly diminishes
the TF-IDF values of the globally more popular movies than of the
less popular ones (i.e., those with fewer approvals in the global
election). This balance is visualised in Figure 1, where we consider
the movie Star Trek III: The Search for Spock (1984), and for each
movie in the local approval election we draw a dot showing the
relation between its number of approvals in the local election (i.e.,
its TF value), on the 𝑦 axis, and its final TF-IDF value, on the 𝑥 axis,
for several values of 𝛾 . The hue of the dot represents the number of
approvals of the movie in the global election. The top ten movies
according to TF-IDF (for a given 𝛾 ) are the ten rightmost dots in the

respective diagram. Note that the higher the𝛾 is, the more dots with
low TF value appear to the right and have higher chance of being
among top ten movies. For 𝛾 = 1.2, quite a few generally popular
items (with darker hue) make it to the top ten, simply because they
are popular overall and not only in the context of the search for
a given query set. For 𝛾 = 2.0, there seems to be a good balance
between the popular and not so popular movies, while for 𝛾 = 2.8
there are only extremely unpopular movies selected for the top ten.

The above argument for using 𝛾 = 2 is based on intuition and
to get a better grounding for the choice, we have performed the
following experiment. Our basic premise is that the 𝛾 value should
be such than when searching for a query set consisting of a single
movie, its most similar movies should appear among the top ten,
with respect to the TF-IDF metric. While deciding what “the most
similar movie” is is quite a subjective issue, we assumed that for
all the movies from the Star Trek series, other Star Trek movies are
the most similar ones. The MovieLens dataset contains fourteen
Star Trek movies (that are approved by at least 20 users) and we list
them, together with their approval counts in the global election, in
Table 2.

Table 2: All the Star Trek movies present in the MovieLens
25M dataset (with at least 20 approvals), together with their
approval counts.

Movie Approval Count

Star Trek: Renegades 27
Star Trek: Nemesis 1904
Star Trek Beyond 1987

Star Trek V: The Final Frontier 2338
Star Trek: Insurrection 3783

Star Trek: The Motion Picture 3785
Star Trek III: The Search for Spock 4732

Star Trek VI: The Undiscovered Country 5358
Star Trek Into Darkness 5621

Star Trek IV: The Voyage Home 7544
Star Trek II: The Wrath of Khan 10669

Star Trek: Generations 10809
Star Trek: First Contact 12396

Star Trek 12854



Figure 2: Analogous to Figure 1 but for the movie Star Trek: Renegades (2015).

Figure 3: The calibration experiment results. Each dot represents the top 10 count value (vertical axis) when searching for a
single movie (hue represents the popularity of the movie, the darker the more approvals the movie has) using TF-IDF with a
given 𝛾 (horizontal axis).

We used each Star Trek movie as a singleton query set, com-
puted its local approval election, ranked the movies from this
election with respect to their TF-IDF values for 𝛾 ∈ {1.2, 1.4, 1.6,
1.8, 2.0, 2.2, 2.4, 2.6, 2.8}, and, for each of these values of𝛾 , calculated
howmany Star Trek movies are among the top ten ones. We present
the results in Figure 3, where each dot corresponds to a Star Trek
movie and the values on the 𝑦 axis specify how many other Star
Trek movies were among top-ten with respect to TF-IDF and the
given value of 𝛾 . Finally, we have averaged these values for each 𝛾
over all the fourteen movies (see Table 3). It turned out that 𝛾 = 2
indeed gave the best results (naturally, doing a more fine-grained
search for the value of 𝛾 might lead to a slightly different outcome,
but we did not feel it would affect the other results in the paper
significantly).

While setting 𝛾 = 2 works well for many movies, it is not as good
a choice for some others. Consider Figure 2 which is analogous to
Figure 1, but for the movie Star Trek: Renegades (2015), which is not
very popular and its local approval election contains relatively few
movies (dots on the diagram). Note that taking 𝛾 = 2 does not seem
to strike the right balance and we would need to choose 𝛾 between
1.2 and 1.6. Nevertheless, we choose the simplicity of choosing a
single value of the 𝛾 parameter for all the movies, at the cost of
getting a few of them wrong.

Table 3: Star Trek TF-IDF calibration results. The relation be-
tween 𝛾 and the average number of Star Trek movies found
in the top 10 results according to TF-IDF when searching for
all the Star Trek movies from MovieLens 25M dataset.

Average top
𝛾 ten count

1.2 3.53
1.4 5.13
1.6 6.07
1.8 6.53

Average top
𝛾 ten count

2.0 6.73
2.2 6.47
2.4 5.73
2.6 3.93
2.8 1.80

4.2 Synthetic Data: Focus Versus Breadth
In the second experiment we generate the global election synthet-
ically, so that it resembles data regarding movies. The point is to
observe the differences between committees computed according to
𝑝-HUV rules for different values of 𝑝 in a controlled environment.

Generating Global Elections. We assume that we have nine main
categories of movies (such as, e.g., a comedy or a thriller) and
each category has nine subcategories (such as, e.g., a romantic
comedy, or a psychological thriller). For each pair of a category
𝑢 ∈ [9] and its subcategory 𝑣 ∈ [9], we generate 25 movies, denoted



𝑢.𝑣 (1), . . . , 𝑢.𝑣 (25). Given a movie 𝑢.𝑣 (𝑖), we set its quality factor
to be 𝑞(𝑖) = − arctan 𝑖−13

10 + 2. That is, for each subcategory the
first movie has the highest quality, about 2.87, and the qualities
of the following movies decrease fairly linearly, down to about
1.12. We also have 𝑛 = 2000 voters. Each voter 𝑖 has a probability
distribution 𝑃𝑖 over the main categories (where we interpret 𝑃𝑖 (𝑢)
as the probability that the voter watches a movie from category 𝑢),
and for each category 𝑢, he or she has probability distribution 𝑃𝑢

𝑖
over its subcategories (interpreted as the conditional probability
that if the voter watches a movie from category 𝑢, then this movie’s
subcategory is 𝑣). For each voter, we choose these distributions as
permutations of:

(0.5, 0.1.0.1.0.1, 0.1, 0.025, 0.025, 0.025, 0.025)

chosen uniformly at random. Intuitively, each voter has his or her
most preferred category, four categories that he or she also quite
enjoys, and four categories that he or she rarely enjoys (the same
applies to subcategories). To generate an approval of a voter 𝑖 we
do as follows:

(1) We choose a category 𝑢 according to distribution 𝑃𝑖 and,
then, a subcategory 𝑣 according to distribution 𝑃𝑢

𝑖
.

(2) We choose a movie among 𝑢.𝑣 (1), . . . , 𝑢.𝑣 (25) with probabil-
ity proportional to its quality factor. The voter approves the
selected movie.

We repeat this process 162 times for each voter, leading to a bit fewer
approvals (due to repetitions in sampling; recall that in MovieLens
the average number of approvals is 154).

While the above-described process of generating a global elec-
tion is certainly quite ad-hoc, we believe that it captures some of
the main features of people’s preferences regarding movies. More
importantly, we can say that two movies are very similar if they
come from the same subcategory, are somewhat similar if they
come from the same category but different subcategories, and are
loosely related otherwise.

1 2 3
4 5 6
7 8 9

1.1 1.2 1.3
1.4 1.5 1.6
1.7 1.8 1.9

Figure 7: Visual arrangement
of the movie categories
and subcategories for the
synthetic experiment.

Running The Experiment.
For each number 𝑝 ∈
{0, 1, 2, 3} and both algo-
rithms for computing ap-
proximate 𝑝-HUV commit-
tee (i.e., the greedy algo-
rithm and simulated an-
nealing) we repeat the fol-
lowing experiment.1 We
generate 100 global elec-
tions as described above,
and for each of them we
compute a committee of

size 𝑘 = 10 for the query set consisting of movie 1.1(13),
i.e., the middle-quality movie from subcategory 1.1 (since the
(sub)categories are, effectively, symmetric, their choice is irrele-
vant). Altogether, 1000 movies are selected (some of the movies are
selected more than once and we count each of them). Then, for each
subcategory 𝑢.𝑣 , we sum up, over all the computed committees,
how many movies from this subcategory were selected, obtaining

1We compute the 0-HUV committees using the optimal, polynomial-time algorithm.

a histogram (in this respect, our experiment is quite similar to that
of Elkind et al. [10]).

To present these histograms visually, we arrange the categories
into a 3 × 3 square, where each category is further represented as a
3×3 subsquare of subcategories, as shown in Figure 7.We show thus-
arranged histograms for simulated annealing in Figure 4 and for the
greedy algorithm in Figure 5. Each subcategory square is labeled
with the number of movies selected from this subcategory and its
background reflects this number (darker backgrounds correspond
to higher numbers). Further, in both figures next to the name of each
𝑝-HUV rule we report a vector (𝑥,𝑦, 𝑧), where 𝑥 means the number
of movies selected from subcategory 1.1, 𝑦 means the number of
movies selected from category 1 except for those in subcategory 1.1,
and 𝑧 refers to the number of all the other selected movies. Thus
we always have that 𝑥 + 𝑦 + 𝑧 = 1000.

Analysis. Our main conclusion is that, indeed, 0-HUV focuses
on very similar movies (almost all the selected movies come from
category 1.1) and as 𝑝 increases, approximate 𝑝-HUV committees
include more andmore movies from other subcategories of category
1, and, eventually, even more movies outside of it. It would be
desirable to have a value of 𝑝 for which we would get a vector
(𝑥,𝑦, 𝑧) close to, say, (450, 450, 100), meaning that, on average, the
resulting committee would contain between 4 and 5 movies from
category 1.1 (i.e., directly relevant to the search), between 4 and 5
movies from other subcategories of category 1 (i.e., similar but quite
different from the query), and 1 movie from some other category
(i.e., something very different, but possibly appealing to the people
who enjoyed the movie from the query). Yet, our algorithms do
not seem to provide committees with such vectors (this, however,
is not a major worry—after all, the setup in the experiment was
simplified and, to some extent, Example 3.6 shows that for real-life
MovieLens data we do find such committees).

4.3 Effectiveness of the Approximations

Table 4: Average ratios of com-
mittee scores computed with
the greedy algorithm andwith
simulated annealing.

rule Mean Std. Dev.

1-HUV 1.021 0.015
2-HUV 1.027 0.021
3-HUV 1.034 0.028

In the final experiment we
compare the quality of the
committees computed by
the greedy algorithm and
by simulated annealing,
for the MovieLens dataset.
To this end, we sampled
100 movies and for each
we have computed approx-
imatewinning committees
for 1-HUV, 2-HUV, and 3-
HUV, using both our algo-
rithms. For eachmoviewe calculated the ratio of the score computed
using the greedy algorithm and simulated annealing. We show the
results in Figure 6 and, in a more aggregate form, in Table 4. On
average, the greedy algorithm finds committees with about 2 − 3%
higher scores than simulated annealing (especially for the more
popular movies). Yet, as we have seen in Example 3.6, simulated
annealing has other positive features. Yet, we note that we ran
the simulated annealing algorithm for 50000 steps and using more
would certainly improve the result (yet, simulated annealing already
takes four times as long to compute as the greedy algorithm).



(a) 0-HUV, (979, 20, 1) (b) 1-HUV, (637, 230, 133) (c) 2-HUV, (392, 261, 347) (d) 3-HUV, (301, 258, 441)

Figure 4: Histograms for the synthetic experiment and simulated annealing.

(a) 0-HUV, (982, 17, 1) (b) 1-HUV, (651, 232, 117) (c) 2-HUV (434, 262, 304) (d) 3-HUV (338, 254, 408)

Figure 5: Histograms for the synthetic experiment and the greedy algorithm.

Figure 6: Effectiveness of the greedy algorithm versus sim-
ulated annealing (see Section 2 for details of the algorithm).
Each dot represents a single movie (from a set of 100 ran-
domly selected ones), and is used as a singleton query set. Its
position on the 𝑦 axis is the ratio of the scores of the com-
mittees computed for thismovie using the greedy algorithm
and simulated annealing. The position on the 𝑥-axis is per-
turbed to show all the dots. The color of the dot represents
the number of approvals of the movie in the global election
(the darker it is, the more approvals.

5 CONCLUSIONS
We have shown that multiwinner voting can be successfully used
to build a system that helps searching for movies and that lets
the users specify how strongly related should the proposed set of
movies be to those he or she asks about. Our system does not use
any advanced tools for non-personalized recommendation systems
and purely demonstrates that multiwinner voting is something that
designers of such systems might want to consider as a tool.

We do not discuss running times of our algorithms. They are
implemented using Python and are highly non-optimized, so ana-
lyzing their running times would not be very meaningful.
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