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ABSTRACT
A negotiating team is a group of two or more agents who join to-
gether as a single negotiating party because they share a common
goal related to the negotiation. Since a negotiating team is composed
of several stakeholders, represented as a single negotiating party,
there is need for a voting rule for the team to reach decisions. In this
paper, we investigate the problem of strategic voting in the context
of negotiating teams. Specifically, we present a polynomial time
algorithm that finds a manipulation for a single voter when using a
positional scoring rule. We show that the problem is still tractable
when there is a coalition of manipulators that uses an approval-based
rule. The coalitional manipulation problem becomes computation-
ally hard when using Borda, but we provide a polynomial time al-
gorithm with the following guarantee: given a manipulable instance
with 𝑘 manipulators, the algorithm finds a successful manipulation
with at most one additional manipulator. Our results hold for both
constructive and destructive manipulations.
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1 INTRODUCTION
Voting is a common way to combine the preferences of several
agents in order to reach a consensus. While being prevalent in human
societies, it has also played a major rule in multi-agent systems for
applied tasks such as multi-agent planning [16] or aggregating search
results from the web [14]. In its essence, a voting process consists
of several voters along with their ranking of the candidates, and a
voting rule, which needs to decide on a winning candidate or on a
winning ranking of the candidates.

Another common mechanism for reaching an agreement among
several agents is a negotiation [19]. In a negotiation there is a dia-
logue between several agents in order to reach an agreement that
is beneficial for all of them. Extensive work has been invested in
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developing negotiation protocols for many settings, but bilateral ne-
gotiations, where there are only two negotiating parties, is the most
common type of negotiations [6]. Many works have focused on the
case where each negotiating party represents a single agent. How-
ever, there are many cases in which a negotiating party represents
more than one individual.

For example (motivated by [25]), consider an agricultural cooper-
ative that negotiates with the government. Even though the members
of the cooperative have a common goal, they may have different
preferences regarding the prohibition of importing products, govern-
ment supervision of prices, insect control, tax concessions, etc. As
another example, consider the government of the United Kingdom
that negotiates with the European Union (EU) regarding withdrawal
from the EU (i.e., the Brexit). The members of the EU have similar
interests and objectives, and thus they are considered a single party
in the negotiation process. Nevertheless, the EU is composed of dif-
ferent countries, and they may have different preferences regarding
sovereignty, migrants and welfare benefits, economic governance,
competitiveness, etc. These situations are denoted by social scientists
as negotiating teams, in which a group of two or more interdepen-
dent persons join together as a single negotiating party because
their similar interests and objectives relate to the negotiation [7].

Since a negotiating team comprises several stakeholders repre-
sented as a single negotiating party, there is need for a coordination
mechanism, and a voting rule is a natural candidate. Ideally, the
voters report their true preferences so that the voting rule will be
able to choose the most appropriate outcome. However, as shown by
Gibbard (1973) and Satterthwaite (1975), every reasonable voting
rule with at least 3 candidates is prone to strategic voting. That is,
voters might benefit from reporting rankings different from their
true ones. Clearly, this problem of manipulation also exists in a
negotiating team. For example, suppose that there is a EU council
committee that negotiates with the UK on agricultural and fishery
policies. The committee may decide that the UK will be excluded
from the agricultural policy due to Brexit, or the UK will still be
included. Similarly, the committee may decide that the fishery policy
no longer applies to the UK or include the UK. Therefore, there
are 4 possible outcomes, denoted by 𝑜1, 𝑜2, 𝑜3 and 𝑜4. Now, suppose
that Germany prefers 𝑜1 over 𝑜2, 𝑜2 over 𝑜3, and 𝑜3 over 𝑜4. We
may assume that the preferences of the UK government are publicly
known, and it is also possible that Germany, which currently holds
the presidency of the EU council, is familiar with the preferences
of the other EU council members. Since the negotiation protocol
usually is also known, Germany might be able to reason that 𝑜3
is the negotiation result, but if Germany will vote strategically and
misreport its preferences then 𝑜2 will be the negotiating result. To the
best of our knowledge, the analysis of manipulation in the context
of negotiating teams has not been investigated to date.



In this paper, we investigate manipulation in the context of nego-
tiating teams. We assume that there is a negotiation process between
two parties. One of the parties is a negotiating team, and the team
uses a voting rule to reach a decision regarding its negotiation strat-
egy. Specifically, the negotiating team uses a positional scoring rule
as a social welfare function (SWF), which outputs a complete prefer-
ence order. This preference order represents the negotiating party,
and is the input in the negotiation process. We thus assume that there
is a negotiation protocol that can work with ordinal preferences. We
use the Voting by Alternating Offers and Vetoes (VAOV) protocol
[1], since it is intuitive, easy to understand, and the negotiation re-
sult is Pareto optimal. Moreover, Erlich et al. (2018) have shown
that we can identify the negotiation result of the VAOV protocol if
both parties follow a sub-game perfect equilibrium with an intuitive
procedure.

We analyze two types of manipulation, constructive and destruc-
tive. We begin by studying constructive manipulation by a single
voter, where there is a single manipulator that would like to manip-
ulate the election so that a preferred candidate will be elected as
a result of the negotiation. We show that, surprisingly, placing the
preferred candidate in the highest position in the manipulative vote is
not always the optimal strategy, unlike in the traditional constructive
manipulation of scoring rules, and we provide a polynomial time
algorithm to find a manipulation (or decide that such a manipula-
tion does not exist). We then analyze the constructive coalitional
manipulation problem, where several voters collude and coordinate
their votes so that an agreed candidate will be the negotiation result.
We show that this problem is still tractable for approval-based rules,
but it becomes computationally hard for Borda. However, we pro-
vide a polynomial time algorithm for the coalitional manipulation of
Borda with the following guarantee: given a manipulable instance
with 𝑘 manipulators, the algorithm finds a successful manipulation
with at most one additional manipulator. Finally, we show that our
hardness result and algorithms can be adapted for destructive manip-
ulation problems, where the goal of the manipulation is to prevent a
candidate from being the result of the negotiation.

The contribution of this work is twofold. First, it provides an
analysis of a voting manipulation in the context of negotiating teams,
a problem that has not been investigated to date. Our analysis also
emphasizes the importance of analyzing voting rules within an actual
context, because it leads to new insights and a deeper understanding
of the voting rules. Second, our work concerns the manipulation of
SWF, which has been scarcely investigated.

2 PRELIMINARIES
We assume that there is a set of outcomes, 𝑂 , |𝑂 | =𝑚 and a set of
voters 𝑉 = {1, ..., 𝑛}. Each voter 𝑖 is represented by her preference
𝑝𝑖 , which is a total order over 𝑂 . We write 𝑜 ≻𝑝𝑖 𝑜 ′ to denote that
outcome 𝑜 is preferred over outcome 𝑜 ′ according to 𝑝𝑖 . The position
of outcome 𝑜 in preference 𝑝𝑖 , denoted by 𝑝𝑜𝑠 (𝑜, 𝑝𝑖 ), is the number
of outcomes that 𝑜 is preferred over them in 𝑝𝑖 . That is, the most
preferred outcome is in position𝑚−1 and the least preferred outcome
is in position 0. We also refer to the outcomes of 𝑂 as candidates,
and to the total orders over 𝑂 as votes.

A preference profile is a vector ®𝑝 = (𝑝1, 𝑝2, ..., 𝑝𝑛). In our setting
we are interested in a resolute social welfare function, which is a

mapping of the set of all preference profiles to a single strict prefer-
ence order. A scoring vector for 𝑚 candidates is ®𝑠 = (𝑠𝑚−1 . . . , 𝑠0),
where every 𝑠𝑖 is a real number and 𝑠𝑚−1 ≥ . . . ≥ 𝑠0 ≥ 0. A scoring
vector essentially defines a voting rule for𝑚 candidates: each voter
awards 𝑠𝑖 points to the candidate in position 𝑖. Then, when using the
rule as a SWF, the candidate with the highest aggregated score is
ranked first, the candidate with the second highest score is ranked
second, etc. Since ties are possible, we assume that a lexicographical
tie-breaking rule is used. We study positional scoring rules, where
each rule in this family applies an appropriate scoring vector for
each number of candidates. That is, a scoring rule is represented
by a function 𝑓 such that for each 𝑚 ∈ N, 𝑓 (𝑚) = (𝑠𝑚

𝑚−1 . . . , 𝑠
𝑚
0 )

is a scoring vector for𝑚 candidates. Some of our results hold only
for 𝑥-approval rules, in which 𝑓 (𝑚) = (1, . . . , 1, 0, . . . , 0), where the
number of 1’s is 𝑥 . Note that the well-known Plurality rule (where
each voter awards one point to her favorite candidate) is 1-approval
and Veto rule (where each voter awards one point to all the can-
didates, except for the least preferred one) is (𝑚-1)-approval and
they are thus both 𝑥-approval rules. We also analyze the Borda rule,
where each voter awards the candidate a score that equals the candi-
date’s position, i.e., 𝑓 (𝑚) = (𝑚 − 1,𝑚 − 2, . . . , 1, 0). In general, we
denote the resulting social welfare function F .

In the negotiation process we assume there are two parties: 𝑡 is
the negotiating team, which comprises a set of voters, and there is
another party. The parties negotiate over the set of outcomes 𝑂 , and
their preferences are also total orders over 𝑂 . However, since 𝑡 is a
negotiating team that comprises several stakeholders, the preference
order of 𝑡 , 𝑝𝑡 , is determined by the social welfare function over the
preference profile of the members of 𝑡 , that is, 𝑝𝑡 = F (®𝑝). We denote
by 𝑝𝑜 the preference order of the other party.

We assume that negotiating parties use the Voting by Alternat-
ing Offers and Vetoes (VAOV) protocol [1], which is a negotiation
protocol that works with ordinal preferences. The protocol works
as follows. Let 𝑝1 be the party that initiates the negotiation and
let 𝑝2 be the other party. At round 1, party 𝑝1 offers an outcome
𝑜 ∈ 𝑂 to 𝑝2. If 𝑝2 accepts, the negotiation terminates successfully
with 𝑜 as the result of the negotiation. Otherwise, party 𝑝2 offers
an outcome 𝑜 ′ ∈ 𝑂 \ {𝑜}. If 𝑝1 accepts, the negotiation terminates
successfully with 𝑜 ′ as the result of the negotiation. Otherwise, 𝑝1
offers an outcome 𝑜 ′′ ∈ 𝑂 \ {𝑜, 𝑜 ′} to 𝑝2, and so on. If no offer was
accepted until round𝑚 then the last available outcome is accepted
in the last round as the result of the negotiation. We further assume
that the negotiating parties are rational and each party has full infor-
mation on the other party’s preferences. Therefore, the parties will
follow a sub-game perfect equilibrium (SPE) during the negotiation.
Anbarci (1993) showed that if both parties follow an SPE the negoti-
ation result will be unique. We can thus call this outcome the SPE
result.

In some negotiation settings the parties are cooperative. There
are also settings where there is a central authority that can force the
parties to offer specific outcomes in a specific order. In both cases it
is common to use a bargaining rule, which is a function that assigns
each negotiation instance a subset of the outcomes that is considered
the result of the negotiation. One such bargaining rule is the Rational
Compromise (𝑅𝐶) bargaining rule [21]. Let 𝐴 𝑗

(𝑝𝑡 ) = {the 𝑗 most



preferred outcomes in 𝑝𝑡 }. 𝐴 𝑗

(𝑝𝑜 ) is defined similarly for 𝑝𝑜 . 𝑅𝐶 is
computed as follows:

(1) Let 𝑗 = 1
(2) If |𝐴 𝑗

(𝑝𝑡 ) ∩𝐴
𝑗

(𝑝𝑜 ) | > 0 then return 𝐴
𝑗

(𝑝𝑡 ) ∩𝐴
𝑗

(𝑝𝑜 ) .
(3) Else, 𝑗 ← 𝑗 + 1 and go to line 2.

Note that the 𝑅𝐶 bargaining rule is equivalent to Bucklin voting with
two voters and no tie-breaking mechanism. An important finding
of [17] shows that the negotiation result of the VAOV protocol if
both parties follow an SPE (i.e., the SPE result) is always part of the
set returned by 𝑅𝐶 rule. We use this connection between 𝑅𝐶 and the
VAOV negotiation protocol whenever we need to identify the SPE
result. Specifically, if 𝑅𝐶 returns one outcome, this is also the SPE
result. If 𝑅𝐶 returns two outcomes then the SPE result depends on the
number of outcomes and on the party that initiates the negotiation.
We assume that the decision of which party initiates the negotiation
is not always known in advance. Therefore, we write N to denote
the mapping from two preference orders, 𝑝𝑡 and 𝑝𝑜 , to the possible
SPE results. That is, N equals the set returned by 𝑅𝐶.

3 CONSTRUCTIVE MANIPULATION BY A
SINGLE VOTER

We begin by studying the problem of constructive manipulation
by a single voter. We assume that a manipulator 𝑣 ′ would like to
manipulate the election so that a preferred candidate 𝑝 will be the
SPE result, and that the SPE result will not depend on the identity
of the party that initiates the negotiation. Therefore, we require that
N consists of exactly the preferred candidate. The Constructive
Manipulation in the context of Negotiations (C-MaNego) is defined
as follows:

Definition 3.1 (C-MaNego). We are given social welfare function
F , a preference profile ®𝑝 of voters on the negotiating team 𝑡 , the
preference of the other party 𝑝𝑜 , a specific manipulator 𝑣 ′, and a
preferred candidate 𝑝 ∈ 𝑂 . We are asked whether a preference order
𝑝𝑣′ exists for the manipulator 𝑣 ′ such that N(F ( ®𝑝 ∪ 𝑝𝑣′), 𝑝𝑜 ) = {𝑝}.

We first observe that manipulation problems in the context of
negotiations are inherently different from the traditional voting ma-
nipulation problems. First, in voting manipulation there is one set
of voters in which their preferences are the inputs of the voting rule.
The manipulator only needs to take these preferences into account
when she decides on her manipulative vote. In our case there are
two stages: in the first stage there is a set of voters and in the sec-
ond stage there are two negotiating parties, and the manipulator
needs to consider the preferences of all of these agents when she
decides on her manipulative vote. In addition, unlike constructive
manipulation in many voting rules, placing the preferred candidate
𝑝 in the highest position in the manipulative vote is not always the
optimal strategy. Indeed, the following example describes a scenario
where there is no manipulation where 𝑝 is placed in the highest
position but a manipulation is possible if 𝑝 is placed in the second
highest position. Assume that 𝑝𝑜 is the following preference order:
𝑝𝑜 = 𝑏 ≻ 𝑝 ≻ 𝑎 ≻ 𝑐. There is one manipulator 𝑣 ′, and ®𝑝 comprises 4
voters with the following preferences: 𝑝 ≻ 𝑐 ≻ 𝑎 ≻ 𝑏, 𝑝 ≻ 𝑏 ≻ 𝑎 ≻ 𝑐,
𝑏 ≻ 𝑝 ≻ 𝑎 ≻ 𝑐, 𝑏 ≻ 𝑎 ≻ 𝑐 ≻ 𝑝. Assume that we use the Borda rule,
and thus the voters of ®𝑝 give the following scores: 𝑏 gets 8 points, 𝑝
gets 8 points, 𝑎 gets 5 points and 𝑐 gets 3 points. Since we assume that

the tie-breaking rule is a lexicographical order, 𝑝𝑡 = 𝑏 ≻ 𝑝 ≻ 𝑎 ≻ 𝑐.
In order to find a successful manipulation 𝑣 ′ needs to make sure that
𝑏 will not be in the two highest positions in F (®𝑝 ∪ 𝑝𝑣′). Now, if the
manipulator places 𝑝 in the highest position then 𝑝 gets 11 points.
Then, placing the other candidates in every possible order results in
𝑏 in the second highest positions in F (®𝑝 ∪ 𝑝𝑣′). Alternatively, if 𝑣 ′

votes as follows: 𝑎 ≻ 𝑝 ≻ 𝑐 ≻ 𝑏, then 𝑝 gets 10 points, 𝑎 and 𝑏 get 8
points, and 𝑐 gets 4 points; thus F (®𝑝 ∪ 𝑝𝑣′) = 𝑝 ≻ 𝑎 ≻ 𝑏 ≻ 𝑐. Now
the SPE result is 𝑝.

We now present a polynomial time algorithm for C-MaNego with
any scoring rule. Let 𝑝𝑎 be the order that the algorithm finds (i.e.,
𝑝𝑎 is a possible 𝑝𝑣′), and let 𝑝𝑎𝑡 = F (®𝑝 ∪ 𝑝𝑎). Note that during the
algorithm we use F (®𝑝 ∪ 𝑝𝑎), where 𝑝𝑎 is not a complete preference
order. In these situations we assume that all of the candidates that
are not in 𝑝𝑎 get a score of 0 from 𝑝𝑎 . Given 𝑖, let 𝐻 be the 𝑖 most
preferred outcomes in 𝑝𝑡 that do not belong to 𝐴𝑖

(𝑝𝑜 ) . If 𝑝 is not in
𝐻 we replace the least preferred outcome in 𝐻 with 𝑝.

Our algorithm works as follows. It uses the connection between
𝑅𝐶 and the negotiation protocol to identify the SPE result. Clearly,
if the position of 𝑝 in 𝑝𝑜 is less than ⌈𝑚/2⌉ then for any possible 𝑝𝑎

𝑅𝐶 does not return 𝑝. Therefore, there is no manipulation and the
algorithm returns false (lines 1-2). Otherwise, we use the variable
𝑖 to indicate the iteration number in which 𝑅𝐶 terminates. Thus,
the algorithm iterates over the values of 𝑖 from 1 to ⌈𝑚/2⌉ (line 3).
For any given 𝑖, we need to make sure that no outcome from 𝐴𝑖

(𝑝𝑜 )
will be placed in the 𝑖 highest positions in 𝑝𝑎𝑡 . Consequently, the
algorithm places the outcomes from 𝐻 in the highest positions and
they receive the highest scores. Moreover, the outcomes are placed in
a reverse order (with regards to their order in 𝑝𝑡 ) to ensure that even
the least preferred outcome in 𝐻 will receive a score that is as high as
possible (in order to be included in the highest positions in 𝑝𝑎𝑡 ). Then,
the algorithm places the remaining outcomes, denoted𝐶, so that they
will not prevent 𝑝 from being the negotiation result (lines 6-14).
Specifically, the algorithm places a candidate from 𝐶 in the highest
available position in 𝑝𝑎 (line 9). If 𝑝 is still the negotiation result,
then the algorithm updates the set 𝐶 (line 11) and proceeds to place
another candidate from𝐶 in the next highest available position in 𝑝𝑎

(line 12). If there is a position in 𝑝𝑎 where no candidate from 𝐶 can
be placed (while keeping 𝑝 the negotiation result), then there is no
manipulation where 𝑅𝐶 terminates in iteration 𝑖 and the algorithm
proceeds to the next iteration (line 13).

THEOREM 3.2. Algorithm 1 correctly decides the C-MaNego
problem with any positional scoring rule in polynomial time.

PROOF. Clearly, the algorithm runs in polynomial time since
there are three loops, where each loop iterates at most 𝑚 times. In
addition, if the algorithm successfully constructs a manipulation
order, 𝑝 will be the negotiation result. We need to show that if an
order that makes 𝑝 the negotiation result exists, then our algorithm
will find such an order. Assume that we have a manipulative vote,
𝑝𝑚 , that makes 𝑝 the negotiation result, and let 𝑝𝑚𝑡 = F (®𝑝 ∪ 𝑝𝑚).
Thus, N(𝑝𝑚𝑡 , 𝑝𝑜 ) = {𝑝}. In addition, given a set 𝐻 let 𝐿 = {ℓ |∃ℎ ∈
𝐻 s.t. ℎ ≺𝑝𝑡 ℓ} and 𝑅 = {𝑜 |𝑜 ∈ 𝑂,𝑜 ∉ 𝐻 and 𝑜 ∉ 𝐿}.

We show that Algorithm 1 returns 𝑝𝑎 in line 14, when 𝑖 equals
the iteration in which 𝑅𝐶 terminates given 𝑝𝑚𝑡 and 𝑝𝑜 . There are two
possible cases to consider:



ALGORITHM 1: Constructive manipulation by a single voter

1 if 𝑝𝑜𝑠 (𝑝, 𝑝𝑜 ) < ⌈𝑚/2⌉ then
2 return false
3 for 𝑖 = 1 to ⌈𝑚/2⌉ do
4 define 𝐻 according to the given 𝑖

5 𝑝𝑎 ← 𝐻 in a reverse order of the positions in 𝑝𝑡

6 𝐶 ← {𝑂 \𝐻 }
7 for 𝑗 = |𝐶 | − 1 to 0 do
8 foreach 𝑐 ∈ 𝐶 do
9 place 𝑐 in 𝑝𝑎 such that 𝑝𝑜𝑠 (𝑐, 𝑝𝑎) = 𝑗

10 if N(F( ®𝑝 ∪ 𝑝𝑎), 𝑝𝑜 ) = {𝑝 } then
11 remove 𝑐 from 𝐶

12 exit the foreach loop and goto line 7
13 break the loop and goto line 3
14 return 𝑝𝑎 /* 𝐶 is empty */
15 return false

• 𝐴𝑖
(𝑝𝑎) = 𝐴𝑖

(𝑝𝑚) : according to Algorithm 1, 𝐴𝑖
(𝑝𝑎) = 𝐻 , and

since 𝐴𝑖
(𝑝𝑎) = 𝐴𝑖

(𝑝𝑚) , 𝐴
𝑖
(𝑝𝑚) = 𝐻 . By definition, ∀𝑟 ∈ 𝑅 and ∀ℎ ∈ 𝐻 ,

𝑟 ≺𝑝𝑡 ℎ and 𝑟 ≺𝑝𝑚 ℎ. Since we use a scoring rule, ∀𝑟 ∈ 𝑅 and
∀ℎ ∈ 𝐻 , 𝑟 ≺𝑝𝑚𝑡 ℎ. Since 𝑝𝑚 is a successful manipulation and 𝑅𝐶

terminates at iteration 𝑖, then ∀ℓ ∈ 𝐿 where ℓ ∈ 𝐴𝑖
(𝑝𝑜 ) , ℓ ∉ 𝐴𝑖

(𝑝𝑚𝑡 )
.

For any other ℓ ∈ 𝐿 we know that 𝑝 ≺𝑝𝑡 ℓ and for any ℎ ∈ 𝐻 \ {𝑝},
ℓ ≺𝑝𝑡 ℎ. Since 𝑝𝑚 is a successful manipulation and 𝑅𝐶 terminates at
iteration 𝑖, 𝑝 ∈ 𝐴𝑖

(𝑝𝑚𝑡 )
. Overall, 𝐴𝑖

(𝑝𝑚𝑡 )
= 𝐻 .

We first assume that all the candidates that are not in 𝐻 get a
score of 0 from 𝑝𝑎 , and we show that 𝐴𝑖

(𝑝𝑎𝑡 )
= 𝐻 . For any ℎ ∈ 𝐻 , if

𝑝𝑜𝑠 (ℎ, 𝑝𝑎) ≥ 𝑝𝑜𝑠 (ℎ, 𝑝𝑚) then 𝑝𝑜𝑠 (ℎ, 𝑝𝑎𝑡 ) ≥ 𝑝𝑜𝑠 (ℎ, 𝑝𝑚𝑡 ). Otherwise,
let ℎ ∈ 𝐻 be a candidate such that 𝑝𝑜𝑠 (ℎ, 𝑝𝑎) < 𝑝𝑜𝑠 (ℎ, 𝑝𝑚) and
let 𝑠 = 𝑝𝑜𝑠 (ℎ, 𝑝𝑎). There are 𝑚 − 𝑠 − 1 candidates from 𝐻 above ℎ
in 𝑝𝑎 . According to the pigeonhole principle, there is at least one
candidate, denoted ℎ′, that is placed in 𝑝𝑚 at position 𝑠 or lower.
That is, 𝑝𝑜𝑠 (ℎ′, 𝑝𝑚) ≤ 𝑝𝑜𝑠 (ℎ, 𝑝𝑎). By the algorithm construction,
all of the candidates that are ranked higher than ℎ in 𝑝𝑎 are ranked
lower than ℎ in 𝑝𝑡 . That is, ℎ′ ≺𝑝𝑡 ℎ. However, ℎ′ ∈ 𝐴𝑖

(𝑝𝑚𝑡 )
and thus

ℎ ∈ 𝐴𝑖
(𝑝𝑎𝑡 )

. Overall, 𝐴𝑖
(𝑝𝑎𝑡 )

= 𝐻 . Note that the previous argument

shows an even stronger claim. Given two candidates 𝑐, 𝑐 ′ and two
corresponding preference orders 𝑥, 𝑥 ′, we write (𝑐, 𝑥) ⪰ (𝑐 ′, 𝑥 ′)
when the score of 𝑐 in 𝑥 is greater than the score of 𝑐 ′ in 𝑥 ′, or when
these scores are equal but either 𝑐 = 𝑐 ′ or 𝑐 is preferred over 𝑐 ′

according to the lexicographical tie-breaking rule. Now, let ℎ𝑎 ∈ 𝐻
be the candidate that has the lowest position in 𝑝𝑎𝑡 . Similarly, let
ℎ𝑚 ∈ 𝐻 be the candidate that has the lowest position in 𝑝𝑚𝑡 . By the
algorithm construction, (ℎ𝑎, 𝑝𝑎𝑡 ) ⪰ (ℎ𝑚, 𝑝𝑚𝑡 ).

We now show that Algorithm 1 (lines 7-13) can assign scores to
all the candidates that are not in 𝐻 such that 𝑝𝑎 is a full preference
order and it is a successful manipulation. Assume by contradiction
that Algorithm 1 does not succeed in fully constructing 𝑝𝑎 . That is,
the loop is terminated in line 13 and at this stage𝐶 ≠ ∅. Let 𝑐 ∈ 𝐶 be
the most preferred candidate of 𝐶 according to 𝑝𝑚 . Assume that we
complete the preference order 𝑝𝑎 by placing 𝑐 in the highest position
that is available in 𝑝𝑎 , and by placing the other candidates from
𝐶 arbitrarily. Since 𝐴𝑖

(𝑝𝑚𝑡 )
= 𝐻 , then 𝑝𝑜𝑠 (ℎ𝑚, 𝑝𝑚𝑡 ) > 𝑝𝑜𝑠 (𝑐, 𝑝𝑚𝑡 ).

That is, (ℎ𝑚, 𝑝𝑚𝑡 ) ⪰ (𝑐, 𝑝𝑚𝑡 ). In addition, we showed that (ℎ𝑎, 𝑝𝑎𝑡 ) ⪰

(ℎ𝑚, 𝑝𝑚𝑡 ). Finally, since 𝐶 ⊆ {𝑜 ∈ 𝑂 : 𝑝𝑜𝑠 (𝑜, 𝑝𝑚) ≤ 𝑝𝑜𝑠 (𝑐, 𝑝𝑚)},
then 𝑝𝑜𝑠 (𝑐, 𝑝𝑚) ≥ 𝑝𝑜𝑠 (𝑐, 𝑝𝑎). Therefore, (ℎ𝑎, 𝑝𝑎𝑡 ) ⪰ (𝑐, 𝑝𝑎𝑡 ). That
is, 𝑝𝑜𝑠 (ℎ𝑎, 𝑝𝑎𝑡 ) > 𝑝𝑜𝑠 (𝑐, 𝑝𝑎𝑡 ). Consequently, if we place 𝑐 in the
highest position that is available in 𝑝𝑎 thenN(F ( ®𝑝 ∪𝑝𝑎), 𝑝𝑜 ) = {𝑝}.
However, we assume that Algorithm 1 terminates in line 13 without
fully constructing 𝑝𝑎 . That is, for every 𝑐 ∈ 𝐶, if we place 𝑐 in the
highest position that is available in 𝑝𝑎 , thenN(F ( ®𝑝∪𝑝𝑎), 𝑝𝑜 ) ≠ {𝑝},
a contradiction.
• 𝐴𝑖

(𝑝𝑎) ≠ 𝐴𝑖
(𝑝𝑚) : let 𝑝𝑚′ be the manipulation 𝑝𝑚 with the

following changes: each 𝑟 ∈ 𝐴𝑖
(𝑝𝑚𝑡 )

\ 𝐻 is replaced with a can-

didate ℎ𝑟 ∈ 𝐻 \ 𝐴𝑖
(𝑝𝑚𝑡 )

. That is, 𝑝𝑜𝑠 (𝑟, 𝑝𝑚′) = 𝑝𝑜𝑠 (ℎ𝑟 , 𝑝𝑚) and

𝑝𝑜𝑠 (ℎ𝑟 , 𝑝𝑚′) = 𝑝𝑜𝑠 (𝑟, 𝑝𝑚). Since 𝑝𝑚 is a successful manipulation,
if 𝑟 ∈ 𝐴𝑖

(𝑝𝑚𝑡 )
\ 𝐻 then 𝑟 ∉ 𝐴𝑖

(𝑝𝑜 ) . Thus, by the definition of 𝐻 ,

∀𝑟 ∈ 𝐴𝑖
(𝑝𝑚𝑡 )
\𝐻 and ∀ℎ ∈ 𝐻 \𝐴𝑖

(𝑝𝑚𝑡 )
, 𝑝𝑜𝑠 (𝑟, 𝑝𝑡 ) < 𝑝𝑜𝑠 (ℎ, 𝑝𝑡 ). There-

fore, since each 𝑟 ∈ 𝐴𝑖
(𝑝𝑚𝑡 )

\ 𝐻 is ranked in the highest 𝑖 positions

in 𝑝𝑚𝑡 , then ℎ𝑟 is ranked in the highest 𝑖 positions in 𝑝𝑚′𝑡 . Similarly,
since each ℎ𝑟 is not ranked in the highest 𝑖 positions in 𝑝𝑚𝑡 , then 𝑟 is
not ranked in the highest 𝑖 positions in 𝑝𝑚′𝑡 . That is, ℎ𝑟 ∈ 𝐴𝑖

(𝑝𝑚′𝑡 )
and

𝑟 ∉ 𝐴𝑖
(𝑝𝑚′𝑡 )

, and thus, 𝐻 = 𝐴𝑖
(𝑝𝑚′𝑡 )

. Let 𝑝𝑚′′ be the manipulation 𝑝𝑚′

with the following changes: each 𝑟 ∈ 𝐴𝑖
(𝑝𝑚′) \ 𝐻 is replaced with a

candidateℎ𝑟 ∈ 𝐻\𝐴𝑖
(𝑝𝑚′) . That is,𝐴𝑖

(𝑝𝑚′′) = 𝐻 . Note that 𝑐 ∉ 𝐴𝑖
(𝑝𝑚′𝑡 )

for every 𝑐 ∈ {𝑂 \𝐻 }, and therefore 𝑐 ∉ 𝐴𝑖
(𝑝𝑚′′𝑡 )

. Thus, 𝐴𝑖
(𝑝𝑚′′𝑡 )

= 𝐻 .

That is, 𝑝𝑚′′ is a successful manipulation, and 𝐴𝑖
(𝑝𝑚′′) = 𝐴𝑖

(𝑝𝑎) . This
brings us back to the first case we already considered and showed
that 𝑝𝑎 is a successful manipulation. □

4 CONSTRUCTIVE COALITIONAL
MANIPULATION

We now consider the problem of constructive manipulation by a
coalition of voters. That is, several manipulators, denoted by 𝑀 ,
might decide to collude and coordinate their votes in such a way
that an agreed candidate 𝑝 will be the SPE result. The constructive
coalitional manipulation problem is defined as follows:

Definition 4.1 (CC-MaNego). Given a social welfare function
F , a preference profile ®𝑝 of the voters of negotiating team 𝑡 , the
preference of the other party 𝑝𝑜 , a number of manipulators 𝑘 , and a
preferred candidate 𝑝 ∈ 𝑂 , we check whether a preference profile
®𝑝𝑀 for the manipulators exists such that N(F ( ®𝑝 ∪ ®𝑝𝑀 ), 𝑝𝑜 ) = {𝑝}.

We show that CC-MaNego can be decided in polynomial time
for any 𝑥-approval rule using Algorithm 2, which works as follows.
Similarly to Algorithm 1, the algorithm iterates over the possible
values of 𝑖, where 𝑖 indicates the iteration number in which 𝑅𝐶

terminates. For any given 𝑖, the algorithm iterates over the number
of manipulators and determines their votes (Lines 6-20). We refer to
each of these iterations as a stage of the algorithm. In each stage, a
vote of one manipulator is determined, denoted by 𝑝𝑎 . We begin with
an empty set of votes, ®𝑝𝑀 . Then, the algorithm places the outcomes
from 𝐻 in the highest positions in 𝑝𝑎 . The outcomes are placed in a
reverse order, with regards to their order in F (®𝑝∪ ®𝑝𝑀 ). Similarly, the
algorithm places all the other outcomes in the lowest positions in 𝑝𝑎

and the outcomes are placed in a reverse order, with regards to their
order in F (®𝑝 ∪ ®𝑝𝑀 ). Note that the set 𝐻 does not change throughout



ALGORITHM 2: Coalitional manipulation

1 if 𝑝𝑜𝑠 (𝑝, 𝑝𝑜 ) < ⌈𝑚/2⌉ then
2 return false
3 for 𝑖 = 1 to ⌈𝑚/2⌉ do
4 define 𝐻 according to the given 𝑖

5 ®𝑝𝑀 ← []
6 for ℓ = 1 to |𝑀 | do
7 𝑝𝑎 ← empty preference order
8 𝐶 ← 𝐻

9 for 𝑗 = 1 to |𝐻 | do
10 𝑐 ← the least preferred outcome from𝐶 under F( ®𝑝 ∪ ®𝑝𝑀 )
11 place 𝑐 in 𝑝𝑎 such that 𝑝𝑜𝑠 (𝑐, 𝑝𝑎) =𝑚 − 𝑗

12 𝑗 ← 𝑗 + 1
13 remove 𝑐 from 𝐶

14 𝐶 ← {𝑂 \𝐻 }
15 for 𝑗 = 1 to | {𝑂 \𝐻 } | do
16 𝑐 ← the most preferred outcome from𝐶 under F( ®𝑝 ∪ ®𝑝𝑀 )
17 place 𝑐 in 𝑝𝑎 such that 𝑝𝑜𝑠 (𝑐, 𝑝𝑎) = 𝑗 − 1
18 𝑗 ← 𝑗 + 1
19 remove 𝑐 from 𝐶

20 add 𝑝𝑎 to ®𝑝𝑀
21 if N(F( ®𝑝 ∪ ®𝑝𝑀 ), 𝑝𝑜 ) = {𝑝 } then
22 return ®𝑝𝑀
23 return false

the algorithm’s stages. However, the order of the outcomes in 𝐻 and
𝑂 \ 𝐻 according to F (®𝑝 ∪ ®𝑝𝑀 ) may change when we update ®𝑝𝑀 ,
which implies that the order in which we place the outcomes from
𝐻 and 𝑂 \ 𝐻 in 𝑝𝑎 may differ from one vote to another.

THEOREM 4.2. Algorithm 2 correctly decides the CC-MaNego
problem with 𝑥-approval rule in polynomial time.

In order to prove Theorem 4.2 we use the following definitions.
Recall that 𝑘 = |𝑀 |. Let 𝑠ℓ (𝑐) be the score of candidate 𝑐 in F (®𝑝 ∪
®𝑝𝑀 ) after stage ℓ . Note that ∀𝑠 𝑈 𝑠 ≠ 𝑈 𝑠−1 and 𝐷𝑠 ≠ 𝐷𝑠−1, and 𝑠

does not necessarily equal 𝑘 .
We begin by proving some Lemmas that are necessary for the

proof of Theorem 4.2.

LEMMA 4.3. (1) The candidates in 𝑈 are placed in each
stage 𝑙 , 1 ≤ 𝑙 ≤ 𝑘 in the |𝑈 | highest positions.

(2) The candidates in 𝐷 are placed in each stage 𝑙 , 1 ≤ 𝑙 ≤ 𝑘 in
the |𝐷 | lowest positions.

PROOF. Assume by contradiction that there exists some ℎ ∈ 𝐻 \𝑈
that was placed in some stage in one of the first |𝑈 | places, then
there exists some 𝑢 ∈ 𝑈 that was placed below ℎ at this stage. Let
𝑠 ≥ 0 such that 𝑢 ∈ 𝑈 𝑠 . By definition, ℎ ∈ 𝑈 𝑠+1 and thus ℎ ∈ 𝑈 ,
which is a contradiction to the choice of ℎ. The proof for the set 𝐷 is
similar. □

LEMMA 4.4. If ∀𝑢 ∈ 𝑈 in each stage 𝑗 , 𝑢 receives 1 point, then
|𝑈 | = 1. Similarly, if ∀𝑑 ∈ 𝐷 in each stage 𝑗 , 𝑑 receives 0 points,
then |𝐷 | = 1.

PROOF. Let 𝑢0 = 𝑈 0. Assume to contradiction that there exists
some 𝑢 ∈ 𝑈 such that 𝑢 ≠ 𝑢0. By definition of the set 𝑈 , after
some stage, 𝑢 was positioned lower than 𝑢0. But 𝑢 and 𝑢0 gained in

each stage 1 point, and therefore 𝑢 could not have bean positioned
lower than 𝑢0 in any stage. Contradiction to the existence of such a
candidate 𝑢. The proof for the set 𝐷 is similar. □

LEMMA 4.5. For all 𝑢1, 𝑢2 ∈ 𝑈 , |𝑠𝑘 (𝑢1) − 𝑠𝑘 (𝑢2) | ≤ 1. Similarly,
for all 𝑑1, 𝑑2 ∈ 𝐷 , |𝑠𝑘 (𝑑1) − 𝑠𝑘 (𝑑2) | ≤ 1.

PROOF. Recall that 𝑈 0 = argminℎ∈𝐻 𝑝𝑜𝑠 (ℎ, 𝑝𝑡 ), and for each
𝑠 = 1, 2, ..., 𝑈 𝑠 = 𝑈 𝑠−1 ∪ {𝑢 : 𝑢 was ranked above some 𝑢 ′ ∈ 𝑈 𝑠−1

in some stage 𝑙 , 1 ≤ 𝑙 < 𝑘 , but 𝑢 was ranked below some 𝑢 ′ ∈ 𝑈 𝑠−1

in stage 𝑙 + 1}. In addition,𝑈 =
⋃

0≤𝑠 𝑈
𝑠 . We prove by induction on

the index 𝑠, that for all 𝑢1, 𝑢2 ∈ 𝑈 , |𝑠𝑘 (𝑢1) − 𝑠𝑘 (𝑢2) | ≤ 1. In the base
case, when 𝑠 = 0, |𝑈 0 | = 1 and thus the inequality trivially holds.
Assume that for 𝑠 − 1, for all 𝑢1, 𝑢2 ∈ 𝑈 𝑠−1, |𝑠𝑙 (𝑢1) − 𝑠𝑙 (𝑢2) | ≤ 1.
We show that 𝑢1, 𝑢2 ∈ 𝑈 𝑠 , |𝑠𝑙+1 (𝑢1) − 𝑠𝑙+1 (𝑢2) | ≤ 1.

There are several possible cases:
(1) 𝑢1, 𝑢2 ∈ 𝑈 𝑠−1 and 𝜎𝑙+1 (𝑢1) = 𝜎𝑙+1 (𝑢2). Following the induc-

tion assumption, |𝑠𝑙+1 (𝑢1) − 𝑠𝑙+1 (𝑢2) | ≤ 1.
(2) 𝑢1, 𝑢2 ∈ 𝑈 𝑠−1 but 𝜎𝑙+1 (𝑢1) ≠ 𝜎𝑙+1 (𝑢2) and 𝑠𝑙 (𝑢2) = 𝑠𝑙 (𝑢1).

By the definition of 𝑥-approval, |𝑠𝑙+1 (𝑢1) − 𝑠𝑙+1 (𝑢2) | = 1.
(3) 𝑢1, 𝑢2 ∈ 𝑈 𝑠−1 but 𝜎𝑙+1 (𝑢1) ≠ 𝜎𝑙+1 (𝑢2) and, with out loss of

generality, 𝑠𝑙 (𝑢2) > 𝑠𝑙 (𝑢1). By the algorithm construction,
𝜎𝑙+1 (𝑢2) = 0 and 𝜎𝑙+1 (𝑢1) = 1 and thus by the induction
assumption, 𝑠𝑙+1 (𝑢2) = 𝑠𝑙+1 (𝑢1).

(4) With out loss of generality, 𝑢1 ∈ 𝑈 𝑠−1 and 𝑢2 ∉ 𝑈 𝑠−1. In addi-
tion, 𝜎𝑙+1 (𝑢1) = 𝜎𝑙+1 (𝑢2). By the definition of𝑈 𝑠−1, 𝑠𝑙 (𝑢2) ≥
𝑠𝑙 (𝑢1), and since 𝜎𝑙+1 (𝑢1) = 𝜎𝑙+1 (𝑢2) then 𝑠𝑙+1 (𝑢2) ≥ 𝑠𝑙+1 (𝑢1).
Since 𝑢2 ∈ 𝑈 𝑠 , then ∃𝑢 ∈ 𝑈 𝑠−1 such the 𝑠𝑙+1 (𝑢) ≥ 𝑠𝑙+1 (𝑢2).
According to cases 1, 2 or 3, 𝑠𝑙+1 (𝑢) − 𝑠𝑙+1 (𝑢1) ≤ 1. Combin-
ing the inequalities we get that 𝑠𝑙+1 (𝑢2) − 𝑠𝑙+1 (𝑢1) ≤ 1.

(5) With out loss of generality, 𝑢1 ∈ 𝑈 𝑠−1 and 𝑢2 ∉ 𝑈 𝑠−1. In
addition, 𝜎𝑙+1 (𝑢1) ≠ 𝜎𝑙+1 (𝑢2). By the definition of 𝑈 𝑠−1,
𝑠𝑙 (𝑢2) ≥ 𝑠𝑙 (𝑢1). In addition, by the algorithm construction
𝜎𝑙+1 (𝑢1) = 1 and 𝜎𝑙+1 (𝑢2) = 0. There are two possible cases:
• 𝑠𝑙+1 (𝑢2) < 𝑠𝑙+1 (𝑢1). That is, 𝑠𝑙 (𝑢2) = 𝑠𝑙 (𝑢1) and thus
𝑠𝑙+1 (𝑢1) − 𝑠𝑙+1 (𝑢2) = 1
• 𝑠𝑙+1 (𝑢2) ≥ 𝑠𝑙+1 (𝑢1). Since 𝑢2 ∈ 𝑈 𝑠 , then ∃𝑢 ∈ 𝑈 𝑠−1

such that 𝑠𝑙+1 (𝑢) ≥ 𝑠𝑙+1 (𝑢2). According to cases 1, 2 or
3, 𝑠𝑙+1 (𝑢) − 𝑠𝑙+1 (𝑢1) ≤ 1. Combining the inequalities we
get that 𝑠𝑙+1 (𝑢2) − 𝑠𝑙+1 (𝑢1) ≤ 1.

(6) 𝑢1, 𝑢2 ∉ 𝑈 𝑠−1. Since 𝑢1, 𝑢2 ∈ 𝑈 𝑠 then ∃𝑢 ′1, 𝑢
′
2 ∈ 𝑈

𝑠−1 such
the 𝑠𝑙+1 (𝑢 ′1) ≥ 𝑠𝑙+1 (𝑢1) and 𝑠𝑙+1 (𝑢 ′2) ≥ 𝑠𝑙+1 (𝑢2). Accord-
ing to cases 4 or 5, 𝑠𝑙+1 (𝑢 ′1) − 𝑠𝑙+1 (𝑢1) ≤ 1 and 𝑠𝑙+1 (𝑢 ′2) −
𝑠𝑙+1 (𝑢2) ≤ 1. Let 𝑢 = argmax{𝑢 ′1, 𝑢

′
2}. Then, 𝑠𝑙+1 (𝑢) −

𝑠𝑙+1 (𝑢1) ≤ 1 and 𝑠𝑙+1 (𝑢) − 𝑠𝑙+1 (𝑢2) ≤ 1, and thus |𝑠𝑙+1 (𝑢2) −
𝑠𝑙+1 (𝑢1) | ≤ 1.

The proof for the set 𝐷 is similar. □

LEMMA 4.6. For all 𝑢1, 𝑢2 ∈ 𝑈 , if 𝑠𝑘 (𝑢1) = 𝑠𝑘 (𝑢2) + 1 then 𝑢2
is preferred over 𝑢1 according to the lexicographical tie-breaking
rule. Similarly, for all 𝑑1, 𝑑2 ∈ 𝐷, if 𝑠𝑘 (𝑑1) = 𝑠𝑘 (𝑑2) + 1 then 𝑑2 is
preferred over 𝑑1 according to the lexicographical tie-breaking rule.

PROOF. Recall that 𝑈 0 = argminℎ∈𝐻 𝑝𝑜𝑠 (ℎ, 𝑝𝑡 ), and for each
𝑠 = 1, 2, ..., 𝑈 𝑠 = 𝑈 𝑠−1 ∪ {𝑢 : 𝑢 was ranked above some 𝑢 ′ ∈
𝑈 𝑠−1 in some stage 𝑙 , 1 ≤ 𝑙 < 𝑘, but 𝑢 was ranked below some
𝑢 ′ ∈ 𝑈 𝑠−1 in stage 𝑙 + 1}. In addition, 𝑈 =

⋃
0≤𝑠 𝑈

𝑠 . We prove by
induction on the index 𝑠, that for all𝑢1, 𝑢2 ∈ 𝑈 , if 𝑠𝑘 (𝑢1) = 𝑠𝑘 (𝑢2)+1



then 𝑢2 is preferred over 𝑢1 according to the lexicographical tie-
breaking rule. In the base case, when 𝑠 = 0, |𝑈 0 | = 1 and thus the
claim trivially holds. Assume that for 𝑠 − 1, for all 𝑢1, 𝑢2 ∈ 𝑈 𝑠−1,
if 𝑠𝑙 (𝑢1) = 𝑠𝑙 (𝑢2) + 1 then 𝑢2 is preferred over 𝑢1 according to the
lexicographical tie-breaking rule. We show that ∀𝑢1, 𝑢2 ∈ 𝑈 𝑠 , if
𝑠𝑙+1 (𝑢1) = 𝑠𝑙+1 (𝑢2) + 1 then 𝑢2 is preferred over 𝑢1 according to the
lexicographical tie-breaking rule. There are several possible cases:

(1) 𝑢1, 𝑢2 ∈ 𝑈 𝑠−1 and 𝜎𝑙+1 (𝑢1) = 𝜎𝑙+1 (𝑢2). Following the induc-
tion assumption, since 𝑠𝑙 (𝑢1) = 𝑠𝑙 (𝑢2) + 1 then 𝑢2 is preferred
over 𝑢1 according to the lexicographical tie-breaking rule.
Now, 𝑠𝑙+1 (𝑢1) = 𝑠𝑙+1 (𝑢2) + 1 and 𝑢2 is preferred over 𝑢1
according to the lexicographical tie-breaking rule.

(2) 𝑢1, 𝑢2 ∈ 𝑈 𝑠−1 and 𝜎𝑙+1 (𝑢1) ≠ 𝜎𝑙+1 (𝑢2). Since 𝑠𝑙+1 (𝑢1) =
𝑠𝑙+1 (𝑢2) + 1 and 𝜎𝑙+1 (𝑢1) ≠ 𝜎𝑙+1 (𝑢2) then 𝑠𝑙 (𝑢1) = 𝑠𝑙 (𝑢2).
Since 𝑠𝑙+1 (𝑢1) = 𝑠𝑙+1 (𝑢2)+1 then 𝜎𝑙+1 (𝑢1) = 1 and 𝜎𝑙+1 (𝑢2) =
0. That is,𝑢2 is preferred over𝑢1 according to the lexicograph-
ical tie-breaking rule (by the algorithm construction).

(3) 𝑢1 ∈ 𝑈 𝑠−1, 𝑢2 ∉ 𝑈 𝑠−1. That is, 𝑢1 was ranked lower than
𝑢2 in stage 𝑙 . However, 𝑠𝑙+1 (𝑢1) = 𝑠𝑙+1 (𝑢2) + 1, and thus
𝜎𝑙+1 (𝑢2) = 0 and 𝜎𝑙+1 (𝑢1) = 1, and so 𝑠𝑙 (𝑢1) = 𝑠𝑙 (𝑢2). Since
𝑢1 was ranked lower than 𝑢2 in stage 𝑙 then it must be that
𝑢2 is preferred over 𝑢1 according to the lexicographical tie-
breaking rule.

(4) 𝑢1 ∉ 𝑈 𝑠−1, 𝑢2 ∈ 𝑈 𝑠−1. Since 𝑢1 ∈ 𝑈 𝑠 , then ∃𝑢 ∈ 𝑈 𝑠−1 such
that 𝑢 is ranked higher than 𝑢1 in stage 𝑙 + 1. Thus, 𝜎𝑙+1 (𝑢1) =
0 and 𝜎𝑙+1 (𝑢) = 1. Since 𝑢,𝑢1, 𝑢2 ∈ 𝑈 𝑠 , 𝑠𝑙+1 (𝑢1) = 𝑠𝑙+1 (𝑢2) +
1 and 𝑢 is ranked higher than 𝑢1 in stage 𝑙 + 1, by Lemma 4.5,
𝑠𝑙+1 (𝑢1) = 𝑠𝑙+1 (𝑢). Since 𝑢 is ranked higher than 𝑢1 in stage
𝑙 + 1, 𝑢 is preferred over 𝑢1 according to the lexicographical
tie-breaking rule. There are two possible cases:
• 𝑠𝑙 (𝑢) = 𝑠𝑙 (𝑢2). That is, 𝜎𝑙+1 (𝑢2) = 0 and 𝜎𝑙+1 (𝑢) = 1. Thus,
𝑢2 is preferred over 𝑢 according to the lexicographical tie-
breaking rule, by the algorithm construction. Therefore,
𝑢2 is preferred over 𝑢1 according to the lexicographical
tie-breaking rule.
• 𝑠𝑙 (𝑢) = 𝑠𝑙 (𝑢2) + 1. Following the induction assumption,

since 𝑠𝑙 (𝑢) = 𝑠𝑙 (𝑢2) + 1 then 𝑢2 is preferred over 𝑢 ac-
cording to the lexicographical tie-breaking rule. Therefore,
𝑢2 is preferred over 𝑢1 according to the lexicographical
tie-breaking rule.

(5) 𝑢1, 𝑢2 ∉ 𝑈 𝑠−1. Since 𝑢1, 𝑢2 ∈ 𝑈 𝑠 , by definition of 𝑈 𝑠 , ∃𝑢 ∈
𝑈 𝑠−1 such that 𝑢 is ranked higher than 𝑢1 and 𝑢2 in stage
𝑙 + 1, but 𝑢 was ranked lower than 𝑢1 and 𝑢2 in stage 𝑙 . Thus,
𝜎𝑙+1 (𝑢1) = 𝜎𝑙+1 (𝑢2) = 0 and 𝜎𝑙+1 (𝑢) = 1. Since 𝑠𝑙+1 (𝑢1) =
𝑠𝑙+1 (𝑢2) +1 and 𝜎𝑙+1 (𝑢1) = 𝜎𝑙+1 (𝑢2), then 𝑠𝑙 (𝑢1) = 𝑠𝑙 (𝑢2) +1.
Therefore, 𝑠𝑙 (𝑢) = 𝑠𝑙 (𝑢2) and 𝑠𝑙+1 (𝑢) = 𝑠𝑙+1 (𝑢1). That is,
𝑢 is preferred over 𝑢1 according to the lexicographical tie-
breaking order. In addition, since 𝑠𝑙 (𝑢) = 𝑠𝑙 (𝑢2) and𝑢 ∈ 𝑈 𝑠−1

and 𝑢2 ∉ 𝑈 𝑠−1, then 𝑢2 is preferred over 𝑢 according to the
lexicographic tie-breaking order. Thus, 𝑢2 is preferred over
𝑢1 according to the lexicographical tie-breaking rule.

The proof for the set 𝐷 is similar. □

LEMMA 4.7. The set |𝑈 | = 1 or |𝐷 | = 1.

PROOF. Recall that |𝐻 | = 𝑖,𝑈 0 = {𝑢0} where𝑢0 = argminℎ∈𝐻 𝑝𝑜𝑠 (ℎ, 𝑝𝑡 )
and 𝐷0 = {𝑑0} where 𝑑0 = argmax𝑑∈{𝑂\𝐻 } 𝑝𝑜𝑠 (𝑑, 𝑝𝑡 ). Since we

use 𝑥-approval, if 𝑥 ≥ 𝑖 then by Lemma 4.3 all of the candidates
of 𝐻 get a score of 1 in each stage. Therefore, there is no candidate
from 𝐻 that is ranked lower than 𝑢0, and thus 𝑈 = 𝑈 0. On the other
hand, if 𝑥 < 𝑖 then by Lemma 4.3 all of the candidates of {𝑂 \ 𝐻 }
get a score of 0 in each stage. Therefore, there is no candidate from
𝐷 that is ranked higher than 𝑑0, and thus 𝐷 = 𝐷0. □

LEMMA 4.8. Let 𝑑∗ ∈ 𝐷 such that ∀𝑑 ∈ 𝐷 , 𝑑 ≠ 𝑑∗ and 𝑑∗ ≻𝑝𝑎𝑡 𝑑 .
Similarly, let 𝑢∗ ∈ 𝑈 such that ∀𝑢 ∈ 𝑈 , 𝑢 ≠ 𝑢∗ and 𝑢 ≻𝑝𝑎𝑡 𝑢∗. If
𝑢∗ ≻𝑝𝑎𝑡 𝑑∗, and there are 𝑘 manipulators then there is a manipulation
that makes 𝑝 the SPE result, and Algorithm 2 will find it.

PROOF. First we show that for all 𝑜 ∈ {𝑂 \ (𝐻 ∪𝐷)} and ∀𝑑 ∈ 𝐷 ,
it holds that 𝑑 ≻𝑝𝑎𝑡 𝑜. Assume by contradiction that there exists
𝑜 ∈ {𝑂 \ (𝐻 ∪ 𝐷)} and 𝑑 ∈ 𝐷, such that 𝑜 ≻𝑝𝑎𝑡 𝑑. Then, by the
definition of 𝐷, 𝑜 ∈ 𝐷, which is a contradiction to the choice of
𝑜. Let ℎ∗ ∈ 𝐻 such that ∀ℎ ∈ 𝐻 , ℎ ≠ ℎ∗ and ℎ ≻𝑝𝑎𝑡 ℎ∗. Now, if
𝑢∗ ≻𝑝𝑎𝑡 𝑑∗, then for all 𝑜 ∈ 𝑂 \ 𝐻 , 𝑜 ≺𝑝𝑎𝑡 𝑢∗ = ℎ∗ (otherwise, ℎ∗
would have been part of 𝑈 ). Therefore, 𝐴𝑖

(F( ®𝑝∪®𝑝𝑀 ))
= 𝐻 , and by

definition of 𝐻 , 𝐴𝑖
(𝑝𝑜 ) ∩ 𝐻 = {𝑝}. That is, the algorithm finds a

manipulation that makes 𝑝 the SPE result. □

LEMMA 4.9. Let 𝑞(𝑈 ) and 𝑞(𝐷) be the average score of can-
didates in 𝑈 and 𝐷 after 𝑘 stages, respectively. That is, 𝑞(𝑈 ) =
1
|𝑈 |

∑
𝑢∈𝑈 𝑠𝑘 (𝑢), 𝑞(𝐷) = 1

|𝐷 |
∑
𝑑∈𝐷 𝑠𝑘 (𝑑). Let 𝑑∗ ∈ 𝐷 such that

∀𝑑 ∈ 𝐷, 𝑑 ≠ 𝑑∗ and 𝑑∗ ≻𝑝𝑎𝑡 𝑑. Similarly, let 𝑢∗ ∈ 𝑈 such that
∀𝑢 ∈ 𝑈 , 𝑢 ≠ 𝑢∗ and 𝑢 ≻𝑝𝑎𝑡 𝑢∗. If 𝑑∗ ≻𝑝𝑎𝑡 𝑢∗, and there are 𝑘 manip-
ulators then there is no manipulation that makes 𝑝 the SPE result,
and the algorithm will return false.

PROOF. Assume that there is a successful manipulation ®𝑝𝑚 with
𝑘 manipulators. Let 𝑖 be the corresponding iteration in which 𝑅𝐶

returns 𝑝. Let 𝑝𝑚𝑡 = F (®𝑝 ∪ ®𝑝𝑚), and let 𝑠𝑚
𝑘
(𝑐) be the score of a

candidate 𝑐 in 𝑝𝑚𝑡 . Since Algorithm 2 (as proved in Lemma 4.3)
places all the outcomes 𝑢 ∈ 𝑈 at the |𝑈 | highest positions and the
outcomes 𝑑 ∈ 𝐷 at the |𝐷 | lowest positions, then:

𝑞 (𝑈 ) = 1
|𝑈 | (

∑
𝑢∈𝑈

𝑠0 (𝑢) + 𝑘 ·min{𝑥, |𝑈 | }) ≥ (1)

1
|𝑈 | (

∑
𝑢∈𝑈

𝑠𝑚
𝑘
(𝑢)) =: 𝑞𝑚 (𝑈 )

𝑞 (𝐷) = 1
|𝐷 | (

∑
𝑑∈𝐷

𝑠0 (𝑑) + 𝑘 · (max{ |𝐷 |,𝑚 − 𝑥 } − (𝑚 − 𝑥))) ≤ (2)

1
|𝐷 |

∑
𝑑∈𝐷

𝑠𝑚
𝑘
(𝑑) =: 𝑞𝑚 (𝐷)

Since 𝑑∗ ≻𝑝𝑎𝑡 𝑢∗, then ,by Lemma 4.5, ⌈𝑞(𝐷)⌉ ≥ ⌊𝑞(𝑈 )⌋. Com-
bining the equations we get ⌈𝑞𝑚 (𝐷)⌉ ≥ ⌊𝑞𝑚 (𝑈 )⌋. Since 𝑞𝑚 (𝐷)
and 𝑞𝑚 (𝑈 ) are averages then there is at least one 𝑢 ∈ 𝑈 and one
𝑑 ∈ 𝐷, such that 𝑠𝑚

𝑘
(𝑑) = ⌈𝑞𝑚 (𝐷)⌉ and ⌊𝑞𝑚 (𝑈 )⌋ = 𝑠𝑚

𝑘
(𝑢). There-

fore, 𝑠𝑚
𝑘
(𝑑) ≥ 𝑠𝑚

𝑘
(𝑢). If 𝑠𝑚

𝑘
(𝑑) > 𝑠𝑚

𝑘
(𝑢), then 𝑑 ≻𝑝𝑚𝑡 𝑢. Otherwise,

𝑠𝑚
𝑘
(𝑑) = 𝑠𝑚

𝑘
(𝑢), and we show that ∃𝑑 ′ ∈ 𝐷 such that 𝑑 ′ ≻𝑝𝑚𝑡 𝑢.

According to Lemma 4.7 either |𝑈 | = 1 or |𝐷 | = 1, so assume that
|𝑈 | = 1 and thus 𝑢 = 𝑢∗. There are three possible cases:

(1) The algorithm assigns a score of 0 to all of the candidates
in 𝐷. In this case, according to Lemma 4.4, |𝐷 | = 1. That is,
𝑑 = 𝑑∗. Since 𝑠𝑚

𝑘
(𝑑) = 𝑠𝑚

𝑘
(𝑢) then 𝑠𝑘 (𝑑) = 𝑠𝑘 (𝑢) (according

to Equations 1,2). Since 𝑑 ≻𝑝𝑎𝑡 𝑢, then 𝑑 ≻𝑝𝑚𝑡 𝑢.



(2) The algorithm assigns a score of 0 to some of the candidates
in 𝐷, and ∀𝑑 ′ ∈ 𝐷 𝑠𝑘 (𝑑 ′) ≥ 𝑠𝑘 (𝑢). If ∃𝑑 ′′ ∈ 𝐷 such that
𝑠𝑘 (𝑑 ′′) > 𝑠𝑘 (𝑢) then 𝑑 ′′ ≻𝑝𝑚𝑡 𝑢. Otherwise, 𝑠𝑘 (𝑑) = 𝑠𝑘 (𝑑∗).
Since 𝑠𝑚

𝑘
(𝑑∗) = 𝑠𝑚

𝑘
(𝑢) then 𝑠𝑘 (𝑑∗) = 𝑠𝑘 (𝑢) (according to

Equations 1,2). Since 𝑑∗ ≻𝑝𝑎𝑡 𝑢, then 𝑑∗ ≻𝑝𝑚𝑡 𝑢.
(3) The algorithm assigns a score of 0 to some of the candidates

in 𝐷, but ∃𝑑 ′ ∈ 𝐷 𝑠𝑘 (𝑑 ′) < 𝑠𝑘 (𝑢). If ∃𝑑 ′′ ∈ 𝐷 such that
𝑠𝑚
𝑘
(𝑑 ′′) > 𝑠𝑚

𝑘
(𝑢), then 𝑑 ′′ ≻𝑝𝑚𝑡 𝑢. Otherwise, let 𝑦 be the

number of candidates from 𝐷 that have the score of 𝑠𝑘 (𝑢) ac-
cording to 𝑝𝑎𝑡 . By Equations 1,2, there are at least𝑦 candidates
𝑑 ′′ ∈ 𝐷 such that 𝑠𝑚

𝑘
(𝑑 ′′) = 𝑠𝑚

𝑘
(𝑢). By Lemma 4.6, there is

at least one candidate that, 𝑑 ′′ ∈ 𝐷 such that 𝑠𝑚
𝑘
(𝑑 ′′) = 𝑠𝑚

𝑘
(𝑢)

and 𝑑 ′′ ≻𝑝𝑚𝑡 𝑢.
Since min𝑢∈𝑈 𝑠𝑘 (𝑢) = minℎ∈𝐻 𝑠𝑘 (ℎ) and |𝐻 | = 𝑖 then there

exists 𝑑 ∈ 𝐷 such that 𝑑 ∈ 𝐴𝑖
(𝑝𝑚𝑡 )

. Let 𝐷 ′ = {𝑑 ∈ {𝑂 \ 𝐻 } : 𝑑 ∈
𝐴𝑖
(𝑝𝑚𝑡 )
} and let𝐻 ′ = {ℎ ∈ 𝐻 : ℎ ∉ 𝐴𝑖

(𝑝𝑚𝑡 )
}, where 𝐷 ′ = {𝑑1, . . . , 𝑑𝑤}

and𝐻 ′ = {ℎ1, . . . , ℎ𝑤}. Now, we switch between the candidates from
𝐷 ′ and the candidates from 𝐻 ′ in ®𝑝𝑚 . That is, given a preference
order 𝑝𝑎 ∈ ®𝑝𝑚 let 𝑝𝑎′ ← 𝑝𝑎 and then for all 1 ≤ 𝑗 ≤ 𝑤 , ℎ 𝑗 is
placed in 𝑝𝑎′ in 𝑝𝑜𝑠 (𝑑 𝑗 , 𝑝𝑎) and 𝑑 𝑗 is placed in 𝑝𝑎′ in 𝑝𝑜𝑠 (ℎ 𝑗 , 𝑝𝑎),
for 𝑑 𝑗 ∈ 𝐷 ′ and ℎ 𝑗 ∈ 𝐻 ′. Let ®𝑝𝑚′ be the manipulation where for
each 𝑝𝑎 ∈ ®𝑝𝑚, 𝑝𝑎′ ∈ ®𝑝𝑚′, let 𝑝𝑚′𝑡 = F (®𝑝 ∪ ®𝑝𝑚′), and let 𝑞𝑚′(𝑈 )
and 𝑞𝑚′(𝐷) be the average scores of candidates from 𝑈 and 𝐷,
respectively, in 𝑝𝑚′𝑡 . Clearly, Equations 1- 2 hold for 𝑞𝑚′(𝑈 ) and
𝑞𝑚′(𝐷) as well. That is, ⌈𝑞𝑚′(𝐷)⌉ ≥ ⌊𝑞𝑚′(𝑈 )⌋ and so, ∃𝑑 ∈ 𝐷

and 𝑢 ∈ 𝑈 such that 𝑑 ≻𝑝𝑚′𝑡
𝑢. On the other hand, for all ℎ ∈

𝐻 \ {𝑝} and 𝑑 ∈ 𝐷 ′, 𝑝𝑜𝑠 (ℎ, 𝑝𝑡 ) > 𝑝𝑜𝑠 (𝑑, 𝑝𝑡 ), by the definition of
𝐻 , and 𝑝 ∈ 𝐴𝑖

(𝑝𝑚′𝑡 )
. Therefore, 𝐴𝑖

(𝑝𝑚′𝑡 )
= 𝐻 , and since 𝑈 ⊆ 𝐻 then

⌊𝑞𝑚′(𝑈 )⌋ ≥ ⌈𝑞𝑚′(𝐷)⌉, and so, ∀𝑑 ∈ 𝐷 and ∀𝑢 ∈ 𝑈 , 𝑢 ≻𝑝𝑚′𝑡
𝑑, a

contradiction. Therefore, there is no manipulation that makes 𝑝 the
SPE result. The proof for the case where |𝐷 | = 1 is similar. Finally,
if Algorithm 2 returns ®𝑝𝑀 then it is a successful manipulation. Thus,
if there is no manipulation the algorithm will return false. □

PROOF OF THEOREM 4.2. Clearly, Algorithm 2 runs in polyno-
mial time. According to Lemma 4.8, if 𝑢∗ ≻𝑝𝑎𝑡 𝑑∗, then there is
a manipulation that makes 𝑝 the SPE result, and Algorithm 2 will
find it. On the other hand, according to Lemma 4.9 if 𝑑∗ ≻𝑝𝑎𝑡 𝑢∗
then there is no manipulation that makes 𝑝 the SPE result (with 𝑘

manipulators), and the algorithm will return false. Thus, Algorithm 2
correctly decides the CC-MaNego problem with 𝑥-approval. □

Unlike with the family of 𝑥-approval rules, CC-MaNego is com-
putationally hard with Borda. The reduction is from the Permutation
Sum problem [27]. Due to space constraints, the full proofs of this
theorem and all subsequent theorems are provided in the appendix.

THEOREM 4.10. CC-MaNego is NP-Complete with Borda.

Even though CC-MaNego with Borda is 𝑁𝑃-complete, it is still
desirable to have an efficient heuristic algorithm that finds a suc-
cessful coalitional manipulation. We now show that Algorithm 2 is
such a heuristic, and show its theoretical guarantee. Specifically, the
algorithm is guaranteed to find a coalitional manipulation in many
instances, and we characterize the instances in which it may fail.
Formally,

THEOREM 4.11. Given an instance of CC-MaNego with Borda,

(1) If there is no preference profile making 𝑝 the negotiation
result, then Algorithm 2 will return false.

(2) If a preference profile making 𝑝 the negotiation result exists,
then for the same instance with one additional manipulator,
Algorithm 2 will return a preference profile that makes 𝑝 the
negotiation result.

That is, Algorithm 2 will succeed on any given instance such
that the same instance but with one less manipulator is manipulable.
Thus, it can be viewed as a 1-additive approximation algorithm (this
approximate sense was introduced by [28] when analyzing Borda as
a social choice function (SCF)).

PROOF (SKETCH). Interestingly, this proof is in the same vein
as the proof of Theorem 4.2, and we again use the sets 𝑈 and 𝐷.
However, the proof here is more involved. Let 𝑠ℓ (𝑐) be the score of
candidate 𝑐 in F (®𝑝 ∪ ®𝑝𝑀 ) after stage ℓ . We first show that the sets of
scores {𝑠𝑘−1 (𝑢) : 𝑢 ∈ 𝑈 } and {𝑠𝑘−1 (𝑑) : 𝑑 ∈ 𝐷} are 1-dense, which
is the following:

Definition 4.12 (due to [28]). A finite non-empty set of integers
𝐵 is called 1-dense if when sorting the set in a non-increasing order
𝑏1 ≥ 𝑏2 ≥ · · · ≥ 𝑏𝑖 (such that {𝑏1, . . . , 𝑏𝑖 } = 𝐵), ∀𝑗, 1 ≤ 𝑗 ≤ 𝑖 − 1,
𝑏 𝑗+1 ≥ 𝑏 𝑗 − 1 holds.

Let 𝑞(𝑈 ) and 𝑞(𝐷) be the average score of candidates in 𝑈

and 𝐷, respectively, after 𝑘 − 1 stages. We show that 𝑞(𝑈 ) ≤
min𝑢∈𝑈 {𝑠𝑘 (𝑢)} −𝑚 + |𝑈 |, and similarly, max𝑑∈𝐷 {𝑠𝑘 (𝑑)} ≤ 𝑞(𝐷) +
|𝐷 | − 1. That is, we bound the distance between the minimal score
in 𝑈 (the maximal score in 𝐷) after stage 𝑘 and the average score
in 𝑈 (𝐷) after stage 𝑘 − 1. Now, suppose that there is a successful
manipulation for Borda with 𝑘 − 1 manipulators. We prove that the
average score of the candidates in 𝑈 according to the manipulation
is not higher than 𝑞(𝑈 ), and the average score of the candidates in
𝐷 according to the manipulation in not lower than 𝑞(𝐷). Therefore,
it is possible to show that by adding one additional manipulator the
algorithm will find a successful manipulation. □

5 DESTRUCTIVE MANIPULATION
In this section we study the destructive manipulation problem, where
the goal of the manipulation is to prevent an outcome from being the
SPE result. We begin with the destructive variant of manipulation by
a single voter.

Definition 5.1 (D-MaNego). We are given a social welfare func-
tion F , a preference profile ®𝑝 of the voters of negotiating team 𝑡 ,
the preference of the other party 𝑝𝑜 , a specific manipulator 𝑣 ′, and a
disliked candidate 𝑒 ∈ 𝑂 . We are asked whether a preference order
𝑝𝑣′ exists for the manipulator 𝑣 ′ such that 𝑒 ∉ N(F ( ®𝑝 ∪ 𝑝𝑣′), 𝑝𝑜 ).

Recall that C-MaNego is in 𝑃 for any scoring rule, but this does
not immediately imply that D-MaNego is also in 𝑃 . Indeed, it is
possible to run Algorithm 1 for each candidate 𝑜 ≠ 𝑒. However, since
Algorithm 1 returns a manipulation only whenN(F ( ®𝑝 ∪ 𝑝𝑣′), 𝑝𝑜 ) =
{𝑝}, it does not find a solution where N(F ( ®𝑝 ∪ 𝑝𝑣′), 𝑝𝑜 ) = {𝑜, 𝑜 ′},
where both 𝑜, 𝑜 ′ ≠ 𝑒, which is a possible solution for D-MaNego.
Nevertheless, we can use a slightly modified version of Algorithm 1
for D-MaNego.

THEOREM 5.2. D-MaNego with any positional scoring rule can
be decided in polynomial time.



We now continue with the destructive coalitional manipulation
problem, where several manipulators might decide to collude and
coordinate their votes in such a way that an agreed candidate 𝑒 will
not be the SPE result. The problem is defined as follows:

Definition 5.3 (DC-MaNego). Given a social welfare function
F , a preference profile ®𝑝 of the voters of negotiating team 𝑡 , the
preference of the other party 𝑝𝑜 , a number of manipulators 𝑘 , and a
disliked candidate 𝑒 ∈ 𝑂 , we check whether a preference profile ®𝑝𝑀
exists for the manipulators such that 𝑒 ∉ N(F ( ®𝑝 ∪ ®𝑝𝑀 ), 𝑝𝑜 ).

Similar to C-MaNego, we show that a slightly modified version
of Algorithm 2 decides DC-MaNego with any 𝑥-approval rule.

THEOREM 5.4. DC-MaNego with any 𝑥-approval rule can be
decided in polynomial time.

Unfortunately, DC-MaNego with Borda is computationally hard.
Note that this result is surprising, since the destructive coalitional
manipulation problem when using Borda as an SCF is in 𝑃 [9].

THEOREM 5.5. DC-MaNego with Borda is NP-Complete.

Finally, similar to CC-MaNego, we show that the modified Al-
gorithm 2 is an efficient heuristic algorithm that finds a successful
destructive manipulation, and we guarantee the same approximation.
That is, the algorithm succeeds in finding a destructive manipulation
for any given instance such that success for the same instance with
one less manipulator is possible.

THEOREM 5.6. There is a 1-additive approximation algorithm
for DC-MaNego with Borda.

6 RELATED WORK
The computational analysis of voting manipulation was initially per-
formed by [3], and [2], who investigated constructive manipulation
by a single voter. Following these pioneer works, many researchers
have investigated the computational complexity of manipulation,
and studied different types of manipulation with different voting
rules in varied settings. We refer the reader to the survey provided
by [18], and more recent survey by [10]. All of the works that are
surveyed in these papers analyze the manipulation of voting rules as
social choice functions, that is, the voting rules are used to output
one winning candidate (or a set of tied winning candidates). In our
work we investigate manipulation of a resolute SWF, i.e., it outputs
a complete preference order of the candidates.

There are very few papers that investigate the manipulation of
SWFs. This is possibly since the opportunities for manipulation
are not well-defined without additional assumptions. That is, since
the output of a SWF is an order, and voters do not report their
preferences over all possible orderings, some assumptions have to
be made on how the voters compare possible orders. Indeed, the
first work that directly deals with the manipulation of SWF was by
[5], who assumed that a voter prefers one order over another if the
former is closer to her own preferences than the latter according to
the Kemeny distance, and mainly presented impossibility results.
Bossert and Sprumont [4] assumed that a voter prefers one order
over another if the former is strictly between the latter and the voter’s
own preferences. Built on this definition their work studies three
classes of SWF that are not prone to manipulation (i.e., strategy-
proof). Dogan and Lainé [13] characterized the conditions to be

imposed on SWFs so that if we extend the preferences of the voters to
preferences over orders in specific ways the SWFs will not be prone
to manipulation. Our work also investigates the manipulation of
SWF, but we analyze the SWF in the specific context of a negotiation.
Therefore, unlike all of the above works, the preferences of the
manipulators are well-defined and no additional assumptions are
needed.

Our work is also connected to committee elections or multi-
winner elections, where manipulation of scoring rules has been
considered [22, 24]. However, in committee election we are given
the size of the committee as an input. In our setting the output of
the voting rule (i.e., the ranking) essentially determines the point
in which RC terminates. Using the model of committee election in
our setting we can say that the ranking determines the size of the
committee. That is, each possible manipulation determines not only
the position of each candidate but also the size of the committee.

The work that is closest to ours is the paper by [25], which in-
volves the use of voting rules for the decision process of a negotiat-
ing team, i.e., the same basic scenario that we consider. The paper
presents several strategies they developed, which use some specific,
tailored-made, voting rules, and experimentally analyzes them in
different environments. Our work analyzes voting in the context of a
negotiation from a theoretical perspective. We formally define the
general problem, show polynomial time algorithms for some cases,
and provide hardness results and approximations for others.

Finally, we note that in our setting there is a SWF, which outputs
an order over the candidates, and this order is used as an input for the
negotiation process. In Section 2 we note that there is a connection
between the sub-game perfect equilibrium of the negotiation and
the Bucklin voting rule. Therefore, our setting is also related to a
multi-stage voting. Several variants of multi-stage voting have been
considered [8, 12, 15, 23]. All of these works did not consider the
case of SWF in the first round, as we do. More importantly, in all
of these works the set of voters remains the same throughout the
application of the voting rules. In our case the set of the voters in
the first stage is different from the set in the second stage. In the
first stage the voters are the agents in the negotiating team, and they
use a scoring rule as a SWF. In the second stage there are only two
voters, which are the negotiating parties, and they use an equivalent
of Bucklin on their full preference orders.

7 CONCLUSION
In this paper we analyze the problem of strategic voting in the context
of negotiating teams. Specifically, a scoring rule is used as a SWF,
which outputs an order over the candidates that is used as an input in
the negotiation process with the VAOV protocol. We show that the
single manipulation problem is in 𝑃 with this two stage procedure,
and the coalitional manipulation is also in 𝑃 for any 𝑥-approval
rule. The problem of coalitional manipulation becomes hard when
using Borda, but we provide an algorithm that can be viewed as a
1-additive approximation for this case. Interestingly, our complexity
results hold both for constructive and destructive manipulations,
unlike the problems of manipulation when using Borda as an SCF.
Note also that our algorithms are quite general. Algorithm 1 provides
a solution with any scoring rule. Algorithm 2 solves the coalitional
manipulation problem with any 𝑥-approval and it is also an efficient
approximation with Borda.
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8 APPENDIX
8.1 Proof of Theorem 4.10
Let 𝑝𝑀𝑡 = F (®𝑝 ∪ ®𝑝𝑀 ). Clearly, the CC-MaNego problem is in 𝑁𝑃 .
The proof of the 𝑁𝑃- hardness is by a reduction from a specialized
permutation problem that is 𝑁𝑃- complete [27].

Definition 8.1 (Permutation Sum). Given 𝑛 integers 𝑋1 ≤ . . . ≤
𝑋𝑛 where

∑𝑛
𝑖=1 𝑋𝑖 = 𝑛(𝑛 + 1), do two permutations 𝜎 and 𝜋 of 1 to

𝑛 exist such that 𝜎 (𝑖) + 𝜋 (𝑖) = 𝑋𝑖 for all 1 ≤ 𝑖 ≤ 𝑛? [11]

Given an instance of the Permutation Sum we build an instance
of the CC-MaNego problem as follows. There are 2𝑛 + 4 outcomes:
𝑥1, . . . , 𝑥𝑛 , which correspond to the integers 𝑋1, . . . , 𝑋𝑛 , 𝑦1, . . . , 𝑦𝑛+1
and three outcomes 𝑎, 𝑏 and 𝑐. By Lemma 1 from [11], we can
construct an election in which the non-manipulators cast votes such
that:

𝑝𝑡 = (𝑦1, . . . , 𝑦𝑛+1, 𝑏, 𝑥1, . . . , 𝑥𝑛, 𝑎, 𝑐),
and the corresponding scores are:

(4𝑛 + 7 +𝐶, . . . , 4𝑛 + 7 +𝐶, 4𝑛 + 6 +𝐶,
4𝑛 + 6 +𝐶 − 𝑋1, . . . , 4𝑛 + 6 +𝐶 − 𝑋𝑛,𝐶, 𝑧),

where 𝐶 is a constant and 𝑧 ≤ 𝐶. The preference order of 𝑝𝑜 is as
follows:

𝑝𝑜 = (𝑥1, . . . , 𝑥𝑛, 𝑏, 𝑎, 𝑐,𝑦1, . . . , 𝑦𝑛+1)
We show that two manipulators can make the outcome 𝑎 the SPE
result iff the Permutation Sum problem has a solution.

(⇐) Suppose we have two permutations 𝜎 and 𝜋 of 1 to 𝑛 such
that 𝜎 (𝑖) + 𝜋 (𝑖) = 𝑋𝑖 . Let 𝜎−1 be the inverse function of 𝜎 , i.e.,
𝑖 = 𝜎−1 (𝑥) if 𝑥 = 𝜎 (𝑖). We define 𝜋−1 (𝑥) similarly. We construct
the following two manipulative votes:

(𝑎,𝑦1, . . . , 𝑦𝑛+1, 𝑐, 𝑥𝜎−1 (𝑛) , . . . , 𝑥𝜎−1 (1) , 𝑏)
(𝑎,𝑦1, . . . , 𝑦𝑛+1, 𝑐, 𝑥𝜋−1 (𝑛) , . . . , 𝑥𝜋−1 (1) , 𝑏)

Since the permutation sum satisfies 𝜎 (𝑖) + 𝜋 (𝑖) = 𝑋𝑖 and 𝑧 ≤ 𝐶, the
preference profile 𝑝𝑀𝑡 = F (®𝑝 ∪ ®𝑝𝑀 ) is:

(𝑦1, 𝑦2 . . . , 𝑦𝑛+1, 𝑎, 𝑏, 𝑥1, . . . , 𝑥𝑛, 𝑐),
since the corresponding scores are:

(4𝑛 + 7 +𝐶 + 2(2𝑛 + 2), 4𝑛 + 7 +𝐶 + 2(2𝑛 + 1), . . . ,
4𝑛 + 7 +𝐶 + 2(𝑛 + 2), 4𝑛 + 6 +𝐶, 4𝑛 + 6 +𝐶,

4𝑛 + 6 +𝐶 − 𝑋1 + 𝑋1, . . . , 4𝑛 + 6 +𝐶 − 𝑋𝑛 + 𝑋𝑛, 2(𝑛 + 1) + 𝑧) .
Therefore, N(𝑝𝑀𝑡 , 𝑝𝑜 ) = {𝑎}.

(⇒) Assume we have a successful manipulation. Such manipula-
tion must ensure that all of the candidates 𝑥1, . . . , 𝑥𝑛 , and 𝑏 are not
placed in the 𝑛 + 2 highest positions in 𝑝𝑀𝑡 , but 𝑝𝑜𝑠 (𝑎, 𝑝𝑀𝑡 ) ≥ 𝑛 + 2.
That is, to ensure that outcome 𝑎 is ranked higher than outcome 𝑏,
both manipulators have to place 𝑎 in the highest position in their
preferences, and 𝑏 in the lowest position in their preferences. Thus,
the score of outcome 𝑎 in 𝑝𝑀𝑡 will be 4𝑛+6+𝐶. Let 𝜎 (𝑖) be a function
that determines the score where the first manipulator assigned to
outcome 𝑥𝑖 . 𝜋 (𝑖) is defined similarly for the second manipulator.
Since the manipulation is successful, for every 𝑖, 1 ≤ 𝑖 ≤ 𝑛,

4𝑛 + 6 +𝐶 − 𝑋𝑖 + 𝜎 (𝑖) + 𝜋 (𝑖) ≤ 4𝑛 + 6 +𝐶,
and thus,

𝜎 (𝑖) + 𝜋 (𝑖) ≤ 𝑋𝑖 .

Since
∑𝑛
𝑖=1 𝑋𝑖 = 𝑛(𝑛 + 1),

𝑛∑
𝑖=1

𝜎 (𝑖) + 𝜋 (𝑖) ≤ 𝑛(𝑛 + 1) .

On the other hand, since 𝑏 is placed in the lowest position by both
manipulators,

𝑛∑
𝑖=1

𝜎 (𝑖) ≥ 𝑛(𝑛 + 1)
2

and
𝑛∑
𝑖=1

𝜋 (𝑖) ≥ 𝑛(𝑛 + 1)
2

.

Therefore,
∑𝑛
𝑖=1 𝜎 (𝑖) +𝜋 (𝑖) = 𝑛(𝑛+1), and

∑𝑛
𝑖=1 𝜎 (𝑖) =

∑𝑛
𝑖=1 𝜋 (𝑖) =

𝑛 (𝑛+1)
2 . That is, 𝜎 and 𝜋 are permutations of 1 to 𝑛. Moreover, since

there is no slack in the inequalities,

𝜎 (𝑖) + 𝜋 (𝑖) = 𝑋𝑖 .

That is, there is a solution to the permutation sum problem.

8.2 proof of Theorem 4.11
We begin by proving some Lemmas that are necessary for the proof
of Theorem 4.11.

LEMMA 8.2. If max𝑑∈𝐷 {𝑠𝑘 (𝑑)} < min𝑢∈𝑈 {𝑠𝑘 (𝑢)}, and there
are 𝑘 manipulators then there is a manipulation that makes 𝑝 the
SPE result, and Algorithm 2 will find it.

PROOF. First we show that for all 𝑜 ∈ {𝑂 \ (𝐻 ∪ 𝐷)}, it holds
that 𝑠𝑘 (𝑜) ≤ 𝑚𝑖𝑛𝑑∈𝐷 {𝑠𝑘 (𝑑)}. Assume by contradiction that there
exists 𝑜 ∈ {𝑂 \ (𝐻 ∪ 𝐷)} and 𝑑 ∈ 𝐷, such that 𝑠𝑘 (𝑜) > 𝑠𝑘 (𝑑).
Then, by the definition of 𝐷, 𝑜 ∈ 𝐷, which is a contradiction to the
choice of 𝑜 . Now, if max𝑑∈𝐷 {𝑠𝑘 (𝑑)} < min𝑢∈𝑈 {𝑠𝑘 (𝑢)}, then for all
𝑜 ∈ 𝑂 \ 𝐻 , 𝑠𝑘 (𝑜) < min𝑢∈𝑈 {𝑠𝑘 (𝑢)} = minℎ∈𝐻 {𝑠𝑘 (ℎ)} (otherwise,
suchℎ ∈ 𝐻 would have been part of𝑈 ). Therefore,𝐴𝑖

(F( ®𝑝∪®𝑝𝑀 ))
= 𝐻 ,

and by definition of 𝐻 , 𝐴𝑖
(𝑝𝑜 ) ∩𝐻 = 𝑝. That is, the algorithm finds a

manipulation that makes 𝑝 the SPE result. □

LEMMA 8.3. Let 𝑞(𝑈 ) and 𝑞(𝐷) be the average score of candi-
dates in 𝑈 and 𝐷 after 𝑘 − 1 stages, respectively. That is, 𝑞(𝑈 ) =
1
|𝑈 |

∑
𝑢∈𝑈 𝑠𝑘−1 (𝑢), 𝑞(𝐷) = 1

|𝐷 |
∑
𝑑∈𝐷 𝑠𝑘−1 (𝑑). If 𝑞(𝑈 ) < 𝑞(𝐷), and

there are 𝑘−1 manipulators then there is no manipulation that makes
𝑝 the SPE result, and the algorithm will return false.

PROOF. Assume that there is a successful manipulation ®𝑝𝑚 with
𝑘 − 1 manipulators. Let 𝑖 be the corresponding iteration in which 𝑅𝐶

returns 𝑝. Let 𝑝𝑚𝑡 = F (®𝑝 ∪ ®𝑝𝑚), and let 𝑠𝑚
𝑘−1 (𝑐) be the Borda score

of a candidate 𝑐 in 𝑝𝑚𝑡 . Since Algorithm 2 (as proved in Lemma 4.3)
places all the outcomes 𝑢 ∈ 𝑈 at the |𝑈 | highest positions and the
outcomes 𝑑 ∈ 𝐷 at the |𝐷 | lowest positions, then:

𝑞 (𝑈 ) = 1
|𝑈 | (

∑
𝑢∈𝑈

𝑠0 (𝑢) +
𝑘−1∑
𝑗=1

|𝑈 |−1∑
𝑖=0

𝑚 − |𝑈 | + 𝑖) ≥ (3)

1
|𝑈 | (

∑
𝑢∈𝑈

𝑠𝑚
𝑘−1 (𝑢)) =: 𝑞

𝑚 (𝑈 )

𝑞 (𝐷) = 1
|𝐷 | (

∑
𝑑∈𝐷

𝑠0 (𝑑) +
𝑘−1∑
𝑗=1

|𝐷 |−1∑
𝑖=0

𝑖) ≤ (4)



1
|𝐷 |

∑
𝑑∈𝐷

𝑠𝑚
𝑘−1 (𝑑) =: 𝑞

𝑚 (𝐷)

Combining the equations we get 𝑞𝑚 (𝐷) > 𝑞𝑚 (𝑈 ). Since 𝑞𝑚 (𝐷)
and 𝑞𝑚 (𝑈 ) are averages then there is at least one 𝑢 ∈ 𝑈 and one 𝑑 ∈
𝐷, such that 𝑠𝑚

𝑘−1 (𝑑) ≥ 𝑞𝑚 (𝐷) and 𝑞𝑚 (𝑈 ) ≥ 𝑠𝑚
𝑘−1 (𝑢). Therefore,

𝑠𝑚
𝑘−1 (𝑑) > 𝑠𝑚

𝑘−1 (𝑢). Since min𝑢∈𝑈 𝑠𝑘−1 (𝑢) = minℎ∈𝐻 𝑠𝑘−1 (ℎ) and
|𝐻 | = 𝑖 then there exists 𝑑 ∈ 𝐷 such that 𝑑 ∈ 𝐴𝑖

(𝑝𝑚𝑡 )
. Let 𝐷 ′ = {𝑑 ∈

{𝑂 \ 𝐻 } : 𝑑 ∈ 𝐴𝑖
(𝑝𝑚𝑡 )
} and let 𝐻 ′ = {ℎ ∈ 𝐻 : ℎ ∉ 𝐴𝑖

(𝑝𝑚𝑡 )
}, where

𝐷 ′ = {𝑑1, . . . , 𝑑𝑤} and 𝐻 ′ = {ℎ1, . . . , ℎ𝑤}. Now, we switch between
the candidates from 𝐷 ′ and the candidates from 𝐻 ′ in ®𝑝𝑚 . That is,
given a preference order 𝑝𝑎 ∈ ®𝑝𝑚 let 𝑝𝑎′ ← 𝑝𝑎 and then for all
1 ≤ 𝑗 ≤ 𝑤 , ℎ 𝑗 is placed in 𝑝𝑎′ in 𝑝𝑜𝑠 (𝑑 𝑗 , 𝑝𝑎) and 𝑑 𝑗 is placed in 𝑝𝑎′

in 𝑝𝑜𝑠 (ℎ 𝑗 , 𝑝𝑎), for 𝑑 𝑗 ∈ 𝐷 ′ and ℎ 𝑗 ∈ 𝐻 ′. Let ®𝑝𝑚′ be the manipulation
where for each 𝑝𝑎 ∈ ®𝑝𝑚, 𝑝𝑎′ ∈ ®𝑝𝑚′, let 𝑝𝑚′𝑡 = F (®𝑝 ∪ ®𝑝𝑚′), and let
𝑞𝑚′(𝑈 ) and 𝑞𝑚′(𝐷) be the average scores of candidates from𝑈 and
𝐷, respectively, in 𝑝𝑚′𝑡 . Clearly, Equations 3- 4 hold for 𝑞𝑚′(𝑈 )
and 𝑞𝑚′(𝐷) as well. That is, 𝑞𝑚′(𝐷) > 𝑞𝑚′(𝑈 ). On the other hand,
for all ℎ ∈ 𝐻 \ {𝑝} and 𝑑 ∈ 𝐷 ′, 𝑝𝑜𝑠 (ℎ, 𝑝𝑡 ) > 𝑝𝑜𝑠 (𝑑, 𝑝𝑡 ), by the
definition of 𝐻 , and 𝑝 ∈ 𝐴𝑖

(𝑝𝑚′𝑡 )
. Therefore, 𝐴𝑖

(𝑝𝑚′𝑡 )
= 𝐻 , and since

𝑈 ⊆ 𝐻 then 𝑞𝑚′(𝑈 ) ≥ 𝑞𝑚′(𝐷), a contradiction. Therefore, there is
no manipulation that makes 𝑝 the SPE result. Clearly, if Algorithm 2
returns ®𝑝𝑀 then it is a successful manipulation. Thus, if there is no
manipulation the algorithm will return false. □

LEMMA 8.4. 𝑞(𝑈 ) ≤ min𝑢∈𝑈 {𝑠𝑘 (𝑢)} −𝑚 + |𝑈 |, and similarly,
max𝑑∈𝐷 {𝑠𝑘 (𝑑)} ≤ 𝑞(𝐷) + |𝐷 | − 1.

PROOF. We reuse definition 4.12 and the following lemma for
the proof.

LEMMA 8.5. Let 𝑈 , 𝐷 be as before. Then the sets {𝑠𝑘−1 (𝑢) : 𝑢 ∈
𝑈 } and {𝑠𝑘−1 (𝑑) : 𝑑 ∈ 𝐷} are 1-dense.

PROOF. Zuckerman et al. [28] define a set of candidates𝐺𝑊 , and
show that the scores of the candidates in 𝐺𝑊 are 1-dense (Lemma
3.12 in [28]). Even though our definition of the set 𝐷 is slightly
different, the set of scores {𝑠𝑘−1 (𝑑) : 𝑑 ∈ 𝐷} is essentially identical
to the set of scores of the candidates in 𝐺𝑊 . Thus, it is 1-dense. The
proof for the set {𝑠𝑘−1 (𝑢) : 𝑢 ∈ 𝑈 } is similar. □

We can now prove the lemma.
Sort the members of𝑈 by their scores after stage 𝑘−1 in a decreas-

ing order, i.e., 𝑈 = {𝑢1, . . . , 𝑢 |𝑈 |} such that for all 1 ≤ 𝑡 ≤ |𝑈 | − 1,
𝑠𝑘−1 (𝑢𝑡+1) ≤ 𝑠𝑘−1 (𝑢𝑡 ). Thus, 𝑢1 = argmax𝑢∈𝑈 {𝑠𝑘−1 (𝑢)}. De-
note for 1 ≤ 𝑡 ≤ |𝑈 |, 𝑔𝑡 = 𝑠𝑘−1 (𝑢𝑡 ) + 𝑚 − |𝑈 | + 𝑡 − 1, and let
𝐺 = {𝑔1, . . . , 𝑔 |𝑈 |}. Note that according to Algorithm 2, for any
𝑡 , 𝑠𝑘 (𝑢𝑡 ) = 𝑔𝑡 . Now, since the set {𝑠𝑘−1 (𝑢) : 𝑢 ∈ 𝑈 } is 1-dense
(according to Lemma 8.5) then for any 1 ≤ 𝑡 ≤ |𝑈 | − 1, 𝑔𝑡 ≤ 𝑔𝑡+1.
Thus, for any 𝑡 > 1, 𝑔1 ≤ 𝑔𝑡 . That is, 𝑔1 = min𝑢∈𝑈 {𝑠𝑘 (𝑢)} =

𝑠𝑘−1 (𝑢1) +𝑚 − |𝑈 | = max𝑢∈𝑈 {𝑠𝑘−1 (𝑢)} +𝑚 − |𝑈 |. Clearly, 𝑞(𝑈 ) ≤
max𝑢∈𝑈 {𝑠𝑘−1 (𝑢)} since 𝑞(𝑈 ) is an average score, which is always
less than or equal to the maximum score, and thus𝑞(𝑈 ) ≤ min𝑢∈𝑈 {𝑠𝑘 (𝑢)}−
𝑚 + |𝑈 |.

Similarly, sort the members of 𝐷 by their scores after stage
𝑘 − 1 in an increasing order, i.e., 𝐷 = {𝑑1, . . . , 𝑑 |𝐷 |} such that
for all 1 ≤ 𝑡 ≤ |𝐷 | − 1, 𝑠𝑘−1 (𝑑𝑡 ) ≤ 𝑠𝑘−1 (𝑑𝑡+1). Thus, 𝑑1 =

argmin𝑑∈𝐷 {𝑠𝑘−1 (𝑑)}. Denote for 1 ≤ 𝑡 ≤ |𝐷 |, 𝑔𝑡 = 𝑠𝑘−1 (𝑑𝑡 )+ |𝐷 |−
𝑡 , and let𝐺 = {𝑔1, . . . , 𝑔 |𝐷 |}. Note that according to Algorithm 2, for

any 𝑡 , 𝑠𝑘 (𝑑𝑡 ) = 𝑔𝑡 . Now, since the set {𝑠𝑘−1 (𝑑) : 𝑑 ∈ 𝐷} is 1-dense
(according to Lemma 8.5) then for any 1 ≤ 𝑡 ≤ |𝐷 | − 1, 𝑔𝑡 ≥ 𝑔𝑡+1.
Thus, for any 𝑡 > 1, 𝑔1 ≥ 𝑔𝑡 . That is, 𝑔1 = max𝑑∈𝐷 {𝑠𝑘 (𝑑)} =

𝑠𝑘−1 (𝑑1) + |𝐷 | − 1 = min𝑑∈𝐷 {𝑠𝑘−1 (𝑑)} + |𝐷 | − 1. Clearly, 𝑞(𝐷) ≥
min𝑑∈𝐷 {𝑠𝑘−1 (𝑑)}, and thus max𝑑∈𝐷 {𝑠𝑘 (𝑑)} ≤ 𝑞(𝐷) + |𝐷 | − 1. □

Now we can prove our main theorem.

PROOF OF THEOREM 4.11. Clearly, if the algorithm returns a
preference profile ®𝑝𝑀 , then it is a successful manipulation that will
make 𝑝 the SPE result. Suppose that a preference profile exists that
makes 𝑝 the SPE result with 𝑘 − 1 manipulators. By Lemma 8.4,
max𝑑∈𝐷 {𝑠𝑘 (𝑑)} ≤ 𝑞(𝐷) + |𝐷 | − 1. Since for the given instance a
successful manipulation exists, then by Lemma 8.3, 𝑞(𝐷) + |𝐷 | −1 ≤
𝑞(𝑈 )+|𝐷 |−1. By Lemma 8.4, 𝑞(𝑈 )+|𝐷 |−1 ≤ min𝑢∈𝑈 {𝑠𝑘 (𝑢)}−𝑚+
|𝑈 |+|𝐷 |−1. Since |𝑈 |+|𝐷 | ≤ 𝑚, min𝑢∈𝑈 {𝑠𝑘 (𝑢)}−𝑚+|𝑈 |+|𝐷 |−1 <

min𝑢∈𝑈 {𝑠𝑘 (𝑢)}. Overall, max𝑑∈𝐷 {𝑠𝑘 (𝑑)} < min𝑢∈𝑈 {𝑠𝑘 (𝑢)}, and
by Lemma 8.2 the algorithm will find a preference profile that will
make 𝑝 the negotiation result with 𝑘 manipulators. □

8.3 proof of Theorem 5.2
We use Algorithm 1 with the following changes. We change lines 1-2
to check whether 𝑒 cannot be the SPE result. That is, if 𝑝𝑜𝑠 (𝑒, 𝑝𝑜 ) <
⌊𝑚/2⌋ the algorithm returns true, since every preference order 𝑝𝑣′
is a successful manipulation. In addition, we define 𝐻 as follows.
Given 𝑖, let 𝑝∗ ≠ 𝑒 be the most preferred outcome in 𝑝𝑡 that belongs
to 𝐴𝑖

(𝑝𝑜 ) . The set 𝐻 is composed of 𝑝∗ and the other 𝑖 − 1 most
preferred outcomes in 𝑝𝑡 that are not 𝑒. This definition of 𝐻 is
to ensure that there will be at least one outcome from 𝐴𝑖

(𝑝𝑜 ) in
the 𝑖 highest positions in 𝑝𝑎𝑡 while 𝑒 will not be in the 𝑖 highest
positions in 𝑝𝑎𝑡 . Finally, we place the remaining outcomes so that
they will not make 𝑒 the negotiation result. Therefore, we change
the condition in line 10 to check whether 𝑒 ∉ N(F ( ®𝑝 ∪ 𝑝𝑎), 𝑝𝑜 ).
Following these changes the proof of correctness is similar to the
proof of Theorem 3.2. In essence, whenever the proof of C-MaNego
shows that 𝑝 ∈ 𝐴𝑖

(𝑝𝑎𝑡 )
we can show in the setting of D-MaNego

that 𝑒 ∉ 𝐴𝑖
(𝑝𝑎𝑡 )

but that there is another outcome 𝑜 ∈ 𝐴𝑖
(𝑝𝑎𝑡 )

and

𝑜 ∈ 𝐴𝑖
(𝑝𝑜 ) .

8.4 proof of Theorem 5.4
We use Algorithm 2, and change it in the same way that we change
Algorithm 1 in the proof of Theorem 5.2. Specifically, in lines 1-
2 we return true if 𝑝𝑜𝑠 (𝑒, 𝑝𝑜 ) < ⌊𝑚/2⌋, the set 𝐻 is composed of
𝑝∗ and the other 𝑖 − 1 most preferred outcomes in 𝑝𝑡 that are not
𝑒, and in line 21 we check if 𝑒 ∉ N(F ( ®𝑝 ∪ ®𝑝𝑀 ), 𝑝𝑜 ). Following
these changes the proof of correctness is similar to the proof of
Theorem 4.2. Specifically, Lemmas 4.3, 4.4, 4.5, 4.6 and 4.7 still
hold in the DC-MaNego setting. The proofs of Lemmas 4.8 and 4.9
are slightly changed, where instead of the claim that 𝐴𝑖

(𝑝𝑜 ) ∩𝐻 = 𝑝,

we use the claim that 𝑒 ∉ 𝐴𝑖
(𝑝𝑜 ) ∩ 𝐻 and 𝐴𝑖

(𝑝𝑜 ) ∩ 𝐻 is not empty.

8.5 proof of Theorem 5.5
Clearly, the DC-MaNego problem is in 𝑁𝑃 . The proof of the 𝑁𝑃-
hardness is by a reduction from the Permutation Sum (definition 8.1).



Given an instance of the Permutation Sum we built an instance
of the DC-MaNego problem as follows. There are 𝑛 + 4 outcomes:
𝑥1, . . . , 𝑥𝑛 , which correspond to the integers 𝑋1, . . . , 𝑋𝑛 , 𝑏1, 𝑏2 and
two outcomes 𝑑 and 𝑒. By Lemma 1 from [11], we can construct an
election in which the non-manipulators cast votes such that:

𝑝𝑡 = (𝑒, 𝑑, 𝑥1, . . . , 𝑥𝑛, 𝑏1, 𝑏2),
and the corresponding scores are:

(4𝑛 + 13 +𝐶, 2𝑛 + 6 +𝐶, 2𝑛 + 6 +𝐶 − 𝑋1, . . . , 2𝑛 + 6 +𝐶 − 𝑋𝑛,
𝐶,𝑦),

where 𝐶 is a constant and 𝑦 < 𝐶. The preference order of 𝑝𝑜 is as
follows:

𝑝𝑜 = (𝑏1, 𝑏2, 𝑒, 𝑥1, . . . , 𝑥𝑛, 𝑑)
We show that two manipulators can prevent the outcome 𝑒 from
being the SPE result iff the Permutation Sum problem has a solution.

(⇐) Suppose we have two permutations 𝜎 and 𝜋 of 1 to 𝑛 such
that 𝜎 (𝑖) + 𝜋 (𝑖) = 𝑋𝑖 . Let 𝜎−1 be the inverse function of 𝜎 , i.e.,
𝑖 = 𝜎−1 (𝑥) if 𝑥 = 𝜎 (𝑖). We define 𝜋−1 (𝑥) similarly. We construct
the following two manipulative votes:

(𝑏1, 𝑏2, 𝑒, 𝑥𝜎−1 (𝑛) , . . . , 𝑥𝜎−1 (1) , 𝑑)

(𝑏1, 𝑏2, 𝑒, 𝑥𝜋−1 (𝑛) , . . . , 𝑥𝜋−1 (1) , 𝑑)
Since the permutation sum satisfies 𝜎 (𝑖) + 𝜋 (𝑖) = 𝑋𝑖 and 𝑦 < 𝐶, the
preference profile 𝑝𝑀𝑡 = F (®𝑝 ∪ ®𝑝𝑀 ) is:

(𝑒, 𝑏1, 𝑑, 𝑥1, . . . , 𝑥𝑛, 𝑏2)
since the corresponding scores are:

(4𝑛 + 13 +𝐶 + 2(𝑛 + 1), 2𝑛 + 6 +𝐶, 2𝑛 + 6 +𝐶, 2𝑛 + 6 +𝐶, . . . ,
2𝑛 + 6 +𝐶,𝑦 + 2(𝑛 + 2)) .

Therefore, N(𝑝𝑀𝑡 , 𝑝𝑜 ) = 𝑏1 ≠ 𝑒.
(⇒) Assume we have a successful manipulation. Clearly, every

outcome 𝑜 ∈ {𝑥1, . . . , 𝑥𝑛, 𝑑} cannot be the SPE result since 𝑒 ≻𝑝𝑜 𝑜.
In addition, 𝑏2 cannot be the SPE result, since in every possible
manipulation 𝑑 ≻𝑝𝑀𝑡 𝑏2. Thus, outcome 𝑏1 is the SPE result. Now, in

every possible manipulation 𝑒 is placed in the highest position in 𝑝𝑀𝑡
due to its score in 𝑝𝑡 . In addition, since 𝑏1 is the SPE result it must be
in the second highest position in 𝑝𝑀𝑡 . Therefore, both manipulators
have to place 𝑏1 in the highest position in their preferences, and 𝑑 in
the lowest position in their preferences. Let 𝜎 (𝑖) be a function that
determines the score that the first manipulator assigned to outcome
𝑥𝑖 . 𝜋 (𝑖) is defined similarly for the second manipulator. Since the
manipulation is successful,

2𝑛 + 6 +𝐶 − 𝑋𝑖 + 𝜎 (𝑖) + 𝜋 (𝑖) ≤ 2𝑛 + 6 +𝐶,
and thus,

𝜎 (𝑖) + 𝜋 (𝑖) ≤ 𝑋𝑖 .

Since
∑𝑛
𝑖=1 𝑋𝑖 = 𝑛(𝑛 + 1),

𝑛∑
𝑖=1

𝜎 (𝑖) + 𝜋 (𝑖) ≤ 𝑛(𝑛 + 1).

On the other hand, since 𝑑 is placed in the lowest position by both
manipulators,

𝑛∑
𝑖=1

𝜎 (𝑖) ≥ 𝑛(𝑛 + 1)
2

and
𝑛∑
𝑖=1

𝜋 (𝑖) ≥ 𝑛(𝑛 + 1)
2

.

Therefore,
∑𝑛
𝑖=1 𝜎 (𝑖) +𝜋 (𝑖) = 𝑛(𝑛+1), and

∑𝑛
𝑖=1 𝜎 (𝑖) =

∑𝑛
𝑖=1 𝜋 (𝑖) =

𝑛 (𝑛+1)
2 . That is, 𝜎 and 𝜋 are permutations of 1 to 𝑛. Moreover, since

there is no slack in the inequalities,

𝜎 (𝑖) + 𝜋 (𝑖) = 𝑋𝑖 .

Namely, there is a solution to the permutation sum problem.

8.6 proof of Theorem 5.6
We use Algorithm 2, and change it in the same way that we change
Algorithm 1 in the proof of Theorem 5.2. Specifically, in lines 1- 2
we return true if 𝑝𝑜𝑠 (𝑒, 𝑝𝑜 ) < ⌊𝑚/2⌋, the set 𝐻 is composed of 𝑝∗

and the other 𝑖 − 1 most preferred outcomes in 𝑝𝑡 that are not 𝑒,
and in line 21 we check if 𝑒 ∉ N(F ( ®𝑝 ∪ ®𝑝𝑀 ), 𝑝𝑜 ). Following these
changes the proof of correctness and the approximation is guaranteed
similar to the proof of Theorem 4.11. Specifically, Lemmas 4.3,
8.5 and 8.4 still hold in the DC-MaNego setting. The proofs of
Lemmas 8.2 and 8.3 are slightly changed, where instead of the claim
that𝐴𝑖

(𝑝𝑜 )∩𝐻 = 𝑝, we use the claim that 𝑒 ∉ 𝐴𝑖
(𝑝𝑜 )∩𝐻 and𝐴𝑖

(𝑝𝑜 )∩𝐻
is not empty.
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