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Abstract. We study the problem of fairly allocating indivisible items
to agents with different entitlements, which captures, for example, the
distribution of ministries among political parties in a coalition govern-
ment. Our focus is on picking sequences derived from common apportion-
ment methods, including five traditional divisor methods and the quota
method. We paint a complete picture of these methods in relation to
known envy-freeness and proportionality relaxations for indivisible items
as well as monotonicity properties with respect to the resource, popu-
lation, and weights. In addition, we provide characterizations of picking
sequences satisfying each of the fairness notions, and show that the well-
studied maximum Nash welfare solution fails resource- and population-
monotonicity even in the unweighted setting. Our results serve as an
argument in favor of using picking sequences in weighted fair division
problems.
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1 Introduction

After a national election, the parties forming a coalition government are faced
with the task of dividing the ministries among themselves. How can they perform
this task in a fair manner, taking into account both their preferences on ministries
and the votes that they received in the election?

The study of fairly allocating resources to interested agents (in this case, par-
ties), commonly known as fair division, has a long history dating back several
decades [13, 26]. Among the most prominent fairness criteria are envy-freeness—
no agent prefers another agent’s allocated bundle over her own—and proportion-
ality—if there are n agents, then every agent receives at least 1/n of her value
for the entire resource. These criteria implicitly assume that all agents have the
same entitlement to the resource, an assumption that is made in the vast ma-
jority of the fair division literature, yet utterly fails in our ministry example
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as well as when allotting supplies to districts, organizations, or university de-
partments, which typically have different sizes. Fortunately, both envy-freeness
and proportionality allow for taking the entitlements, or weights, into account
in a natural way. For instance, if agent A’s weight is twice that of agent B,
then A will be satisfied with respect to weighted envy-freeness as long as she
derives at least twice as much value for her own bundle as for B’s bundle. While
such weight-based extensions of classical fairness concepts are appropriate for
scenarios with different entitlements, they sometimes cannot be satisfied when
allocating indivisible items like ministries (e.g., when every party places all of
its value on the same important ministry). Consequently, recent work has pro-
posed relaxations including weighted envy-freeness up to one item (WEF1) [19]
and weighted proportionality up to one item (WPROP1) [3], each of which can
always be fulfilled.

An attractive class of procedures for allocating items is the class of picking
sequences: these procedures let agents take turns picking their favorite items
according to a prespecified order. Picking sequences are intuitive, can be im-
plemented efficiently, and help preserve privacy since each agent only has to
reveal the picks in her turns as opposed to her full preferences. In fact, several
methods for apportioning seats in a parliament—a setting commonly known as
apportionment—can be formulated as picking sequences.4 For example, Adams’
method assigns each pick to an agent i who minimizes ti/wi, where ti and wi

denote the number of times that agent i has picked so far and her weight, re-
spectively. Brams and Kaplan [12] proposed using picking sequences to allocate
ministries, noting that such sequences have been used in Northern Ireland and
Denmark, and Chakraborty et al. [19] showed that the allocation produced by
Adams’ method always fulfills WEF1 but not necessarily WPROP1. It is there-
fore an important question which fairness criteria, if any, are satisfied by picking
sequences based on other prevalent apportionment methods.

In addition to fairness, another desirable set of properties for allocation pro-
cedures is monotonicity in terms of the parameters of the setting. In particular,
resource-monotonicity means that whenever an extra item is added, no agent
receives a lower utility as a result. Similarly, population-monotonicity stipulates
that introducing an additional agent should not increase the utility of any ex-
isting agent, and weight-monotonicity implies that when the weight of an agent
increases, her utility does not go down.5 Segal-Halevi and Sziklai [29] showed that
for divisible items in the unweighted setting, the maximum Nash welfare (MNW)
solution, which chooses an allocation maximizing the product of the agents’ util-
ities, is resource- and population-monotone. How do picking sequences and (a

4 Note that apportionment is a special case of our setting where all items are identical
[7].

5 Resource-monotonicity is known as house-monotonicity in the context of apportion-
ment; a violation of it is referred to as the Alabama paradox [7]. Likewise, violations
of (variants of) population- and weight-monotonicity are called the new states para-
dox and the population paradox, respectively.



Picking Sequences and Monotonicity in Weighted Fair Division 3

weighted generalization of) MNW perform with respect to monotonicity prop-
erties in the weighted allocation of indivisible items?

1.1 Our Results

In this paper, we conduct a thorough investigation of picking sequences based
on common apportionment methods, as well as the maximum (weighted) Nash
welfare solution, in relation to fairness and monotonicity properties. In addition
to WEF1 and WPROP1, we consider weak weighted envy-freeness up to one
item (WWEF1), a weakening of WEF1 proposed by Chakraborty et al. [19]. For
brevity, we say that an allocation rule satisfies a fairness notion if the allocation
that it produces for an arbitrary input instance satisfies that notion.

We begin in Section 3 by establishing fundamental results on our properties
in the context of picking sequences. In particular, we define three consistency
properties with respect to the resource, population, and weights—for example,
resource-consistency means that whenever an item is added, the new picking
sequence should simply be the old one with an additional pick appended at
the end. We show that resource- and population-consistency imply the respec-
tive monotonicity properties for any number of agents, while weight-consistency
implies weight-monotonicity only for two agents. In addition, for each fairness
notion, we characterize the picking sequences whose output always satisfies that
notion.

With this groundwork laid, we proceed to determine the properties satisfied
by each allocation rule in Section 4. First, we consider the picking sequences
derived from five traditional divisor methods due to Adams, Jefferson, Webster,
Hill, and Dean. These methods assign each pick to an agent i who minimizes the
ratio f(ti)/wi capturing the proportion between the number of times the agent
has picked so far and the agent’s weight, where the function f varies from method
to method. We establish that all five methods satisfy resource- and population-
monotonicity for any number of agents as well as weight-monotonicity for two
agents; however, they all fail weight-monotonicity when there are three agents.
On the fairness front, all of the methods satisfy WWEF1, but Adams’ is the
only one satisfying the stronger notion of WEF1 while Jefferson’s is the only one
fulfilling WPROP1.

Next, in Section 5, we address the picking sequence derived from another
important apportionment method: the quota method. While not itself a divisor
method, the quota method has a definition similar to that of Jefferson’s method,
which uses the function f(t) = t + 1, but also imposes a “quota” to determine
each agent’s eligibility. We show that the quota method exhibits similar mono-
tonicity behavior as the divisor methods, with the notable exception that it
fails population-monotonicity. As for fairness, like Jefferson’s method, the quota
method satisfies WWEF1 and WPROP1. In fact, these two rules are the first
to have been shown to satisfy both WWEF1 and WPROP1, to the best of our
knowledge.

Finally, in Section 6, we examine the maximum weighted Nash welfare (MWNW)
solution, which is a natural generalization of the well-studied MNW solution to
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the weighted setting. Chakraborty et al. [19] already proved that MWNW sat-
isfies WWEF1 but not WEF1; we show that it fails WPROP1. We then present
examples demonstrating that even in the unweighted setting (where MWNW
reduces to MNW), the rule fails both resource- and population-monotonicity.
This result stands in stark contrast to the aforementioned result of Segal-Halevi
and Sziklai [29] that MNW is resource- and population-monotone in the context
of divisible items, and is perhaps even more striking given that MNW is known
to fulfill several desirable properties [18, 22]. On the positive side, MWNW sat-
isfies weight-monotonicity for any number of agents, and is the only rule to do
so among the ones we consider in this paper.

Our results are summarized in Table 1. Overall, we believe that they serve
as an argument in favor of using picking sequences in division problems with
unequal entitlements in view of both fairness and monotonicity considerations.

Resource-mon. Population-mon. Weight-mon. WEF1 WWEF1 WPROP1

Adams 3 3 7 3 3 7

Jefferson 3 3 7 7 3 3

Webster 3 3 7 7 3 7

Hill 3 3 7 7 3 7

Dean 3 3 7 7 3 7

Quota 3 7 7 7 3 3

MWNW 7 7 3 7 3 7

Table 1. Summary of our results. Chakraborty et al. [19] showed that Adams’ method
satisfies WEF1 and WWEF1 but not WPROP1, while MWNW satisfies WWEF1 but
not WEF1. All other results are new to this paper. All rules satisfy weight-monotonicity
in the case of two agents. MWNW fails resource- and population-monotonicity even in
the unweighted setting.

1.2 Related Work

The fair allocation of indivisible items has received substantial recent attention,
notably among computer scientists—see the surveys of Bouveret et al. [9] and
Markakis [25]. A large majority of work assumes that all agents have equal enti-
tlements, in which case the notions envy-freeness up to one item (EF1) [17, 24]
and proportionality up to one item (PROP1) [1, 20] are often considered. Both
WEF1 and WWEF1 reduce to EF1 in the unweighted setting, while WPROP1
reduces to PROP1. Even though EF1 implies PROP1, Chakraborty et al. [19]
showed that no rule can simultaneously satisfy WEF1 and WPROP1. Aziz et
al. [3] gave a protocol satisfying WPROP1 along with the economic efficiency
notion of Pareto optimality, while Babaioff et al. [5] considered competitive equi-
librium for agents with different budgets representing their weights. Farhadi et
al. [21] proposed a weighted version of maximin share fairness [17, 23], and Aziz
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et al. [2] studied the analogous notion for chores (i.e., items that yield negative
utilities).

Like fair division, apportionment methods have given rise to a long line of
work that analyzes their advantages and disadvantages according to various
desiderata [7, 27]. As Balinski and Young [7] noted, Adams’ method tends to
favor agents with smaller weights and Jefferson’s typically benefits those with
larger weights, whereas the other three divisor methods lie in between. Appor-
tionment has also attracted interest in artificial intelligence [14–16] as well as in
philosophy [31].

Finally, picking sequences have been studied by several authors due to their
simplicity and practicality [4, 8, 10, 11, 30, 32], with a number of authors investi-
gating manipulation issues. We assume in this paper that agents are not strategic
and always pick their most preferred item available. In the unweighted setting,
a popular picking sequence is the round-robin algorithm, which lets agents pick
items in cyclic order until the items run out.

2 Preliminaries

We consider a discrete resource allocation setting with a set of agents N = [n]
and a set of indivisible items M = [m], where [k] := {1, 2, . . . , k} for any k ∈ N.
Each agent i ∈ N is endowed with a weight wi > 0 and a utility function
ui : 2M → R≥0; for convenience, we sometimes write ui(j) instead of ui({j})
for an item j ∈M . As is very common in the fair division literature, we assume
that the utility functions are additive, i.e., ui(M

′) =
∑

j∈M ′ ui(j) for all i ∈ N
and M ′ ⊆M . An allocation M = (M1, . . . ,Mn) is a partition of the items into
n bundles so that agent i receives bundle Mi. An instance consists of the agents,
items, weights, and utility functions. When all weights are equal (in which case
we can take them to be 1 without loss of generality), we refer to the resulting
setting as the unweighted setting.

We consider the following three fairness notions. The first two notions were
proposed by Chakraborty et al. [19] and the third by Aziz et al. [3].

Definition 2.1. An allocation (M1, . . . ,Mn) is said to satisfy

– weighted envy-freeness up to one item (WEF1) if for any i, j ∈ N , there

exists B ⊆Mj with |B| ≤ 1 such that ui(Mi)
wi

≥ ui(Mj\B)
wj

;

– weak weighted envy-freeness up to one item (WWEF1) if for any i, j ∈ N ,

there exists B ⊆Mj with |B| ≤ 1 such that ui(Mi)
wi

≥ ui(Mj\B)
wj

or ui(Mi∪B)
wi

≥
ui(Mj)

wj
;

– weighted proportionality up to one item (WPROP1) if for any i ∈ N , there

exists B ⊆ M \Mi with |B| ≤ 1 such that ui(Mi) ≥
(

wi∑
i′∈N wi′

· ui(M)
)
−

ui(B).

Chakraborty et al. [19] showed that no rule can simultaneously satisfy WEF1
and WPROP1. In particular, consider an instance where m = n and every agent
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has a nonzero utility for every item. Any WEF1 allocation has to assign exactly
one item to each agent.6 On the other hand, if a certain agent has the same utility
for all items and a sufficiently larger weight than every other agent, WPROP1
will require this agent to receive at least m− 1 items.

A domain refers to a set of instances. A domain may include all instances
with any number of agents and items, weights, and utility functions, or it may
only include—for example—all instances with two agents, or all instances with
equal weights (this corresponds to the unweighted setting). An allocation rule is
a function that maps each instance in a given domain to an allocation; it is said
to satisfy a fairness notion if the allocation that it produces always fulfills that
notion. We now define the three monotonicity properties that we consider—the
first two have been studied by Segal-Halevi and Sziklai [28, 29], while the third
has not been studied in fair division to the best of our knowledge.

Definition 2.2. An allocation rule R with domain I satisfies

– resource-monotonicity if the following holds: for any instance with m items,
when an extra item is added as item m + 1, if both the original and the
modified instance belong to I, then each agent receives no higher utility from
the allocation produced by R in the original instance than in the modified
instance;

– population-monotonicity if the following holds: for any instance with n agents,
when an extra agent is added as agent n+1, if both the original and the mod-
ified instance belong to I, then each of the first n agents receives at least as
much utility from the allocation produced by R in the original instance as in
the modified instance;

– weight-monotonicity if the following holds: for any instance, when the weight
of an agent increases, if both the original and the modified instance belong to
I, the utility that the agent receives from the allocation produced by R does
not decrease.

While these monotonicity properties are intuitive and it may seem that any
reasonable allocation rule should satisfy them, this is in fact not the case: In the
full version of this paper, we show that two popular fair division algorithms—
the envy cycle elimination algorithm and the adjusted winner procedure—fail
resource-monotonicity even in the unweighted setting.

Next, we provide definitions related to picking sequences.

Definition 2.3. A picking sequence on n agents and m items is a sequence
πn,m,w = (a1, a2, . . . , am), where ai ∈ N for each i ∈ M . A family of picking
sequences is a collection Π = {πn,m,w}, with at most one picking sequence for
each pair of positive integers n,m and each weight vector w = (w1, . . . , wn). A
family of picking sequences Π is called

– resource-consistent if for every n,m,w such that both πn,m,w and πn,m+1,w

belong to Π, the sequence πn,m,w forms a prefix of πn,m+1,w;

6 Otherwise an agent with no item will (weighted-)envy an agent with at least two
items by more than one item.



Picking Sequences and Monotonicity in Weighted Fair Division 7

– population-consistent if for every n,m,w,w′ such that w′ = (w1, . . . , wn, w
′
n+1)

where w′n+1 is the weight of agent n + 1 and both πn,m,w and πn+1,m,w′ be-
long to Π, the sequence πn+1,m,w′ can be obtained from πn,m,w by inserting
agent n+ 1 in some positions (possibly none) and trimming the suffix of the
resulting sequence so that the sequence has length m.

– weight-consistent if the following holds: for every n,m,w and w′i > wi such
that both πn,m,w and πn,m,w′ belong to Π, where w′ = (w1, . . . , w

′
i, . . . , wn),

the sequence πn,m,w′ can be obtained from πn,m,w by moving some of agent
i’s picks earlier (possibly none), inserting agent i in some positions (possibly
none), and trimming the suffix of the resulting sequence so that the sequence
has length m.

Given a picking sequence (a1, . . . , am) and the agents’ utility functions, we
assume that in the ith turn, agent ai picks her highest-valued item from among
the remaining items, breaking ties in a consistent manner (say, in favor of lower-
numbered items). We sometimes drop the subscript from πn,m,w when n,m,w
are clear from the context. A family of picking sequences generates an allocation
rule, which we will refer to interchangeably with the family itself. We also refer
to a picking sequence π interchangeably with the family of picking sequences
that consists only of π.

All omitted proofs can be found in the full version of this paper.

3 General Picking Sequences

We begin by proving results for general picking sequences. In addition to be-
ing interesting in their own right, these results will later help us determine the
properties that each apportionment method satisfies. First, we present charac-
terizations of picking sequences whose output is guaranteed to satisfy each of the
fairness notions WEF1, WWEF1, and WPROP1. In particular, we show that
a picking sequence guarantees a fairness notion for agents with arbitrary util-
ity functions if and only if it does so for agents with identical utility functions
that put utility 1 on some items and 0 on the remaining items. This means that
the fairness guarantees for general utilities can be expressed as relatively simple
conditions on the number of picks in each prefix of the picking sequence.

Theorem 3.1. A picking sequence π satisfies WEF1 if and only if for every pre-
fix of π and every pair of agents i, j with tj ≥ 2, we have ti

tj−1 ≥
wi

wj
, where ti and

tj denote the number of agent i’s and agent j’s picks in the prefix, respectively.

Theorem 3.2. A picking sequence π satisfies WWEF1 if and only if for every
prefix of π and every pair of agents i, j with tj ≥ 2, both of the following hold:

– ti
tj−1 ≥

wi

wj
if wi ≥ wj;

– ti+1
tj
≥ wi

wj
if wi ≤ wj,

where ti and tj denote the number of agent i’s and agent j’s picks in the prefix,
respectively.
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As an example of a picking sequence that satisfies WWEF1 but not WEF1,
suppose that n = 2, w1 = 1, w2 = 2, and consider the sequence (1, 2, 2, 2, 2). For
this sequence, we have t1 = 1 and t2 = 4, and therefore t1+1

t2
= w1

w2
> t1

t2−1 .

Theorem 3.3. A picking sequence π satisfies WPROP1 if and only if for every

prefix of π and every agent i, we have ti ≥
(

wi∑
i′∈N wi′

· k
)
− 1, where ti and k

denote the number of agent i’s picks in the prefix and the length of the prefix,
respectively.

Next, we establish a strong relationship between resource- and population-
consistency and the corresponding monotonicity notions.

Theorem 3.4. Any resource-consistent family of picking sequences satisfies resource-
monotonicity.

Theorem 3.5. Any population-consistent family of picking sequences satisfies
population-monotonicity.

The relationship between weight-consistency and weight-monotonicity is less
straightforward: we show that the former implies the latter in the case of two
agents. As we will see later (Proposition 4.2), this relationship breaks down when
there are three agents.

Theorem 3.6. For two agents, any weight-consistent family of picking sequences
satisfies weight-monotonicity.

4 Divisor Methods

As we explained in the introduction, a divisor apportionment method gives rise
to a picking sequence that, in each turn, lets an agent i with the smallest f(ti)/wi

pick the next item (breaking ties in a consistent manner, say, in favor of lower-
numbered agents), where ti denotes the number of times that agent i has picked
so far and f : Z≥0 → R≥0 is a strictly increasing function specific to the method
such that t ≤ f(t) ≤ t + 1. 7 We will refer to the divisor methods and their
associated families of picking sequences interchangeably. By definition, it is clear
that every divisor method yields a family of picking sequences (for all n,m,w)
that are resource-, population-, and weight-consistent. Theorems 3.4, 3.5, and
3.6 therefore imply the following:

Corollary 4.1. Every divisor method satisfies resource-monotonicity and population-
monotonicity; it also satisfies weight-monotonicity when there are two agents.

7 Some non-divisor apportionment methods such as Hamilton’s method do not give
rise to a picking sequence and are therefore not useful in our context [12, p. 149].
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The five traditional divisor methods of Adams, Jefferson, Webster, Hill, and

Dean have the function f(t) equal to t, t + 1, t + 1
2 ,
√
t(t+ 1), and t(t+1)

t+ 1
2

,

respectively [7, p. 99]. We prove that, perhaps surprisingly, all five methods fail
weight-monotonicity in the case of three agents.8 This also means that weight-
consistency does not imply weight-monotonicity beyond two agents.

Proposition 4.2. Each of the five traditional divisor methods does not satisfy
weight-monotonicity even when there are three agents.

We now explore how the five divisor methods fare with respect to the three
fairness notions, starting with WEF1.

Theorem 4.3. Of the five traditional divisor methods, Adams’ method is the
only one satisfying WEF1.

Next, we show that interestingly, all five methods satisfy WWEF1, meaning
that each of them can guarantee fairness beyond the setting with identical items
(i.e., apportionment).

Theorem 4.4. All five traditional divisor methods satisfy WWEF1.

We now turn to WPROP1, where we illustrate a strong relationship with
a notion from the apportionment setting. A picking sequence πn,m,w is said to

satisfy lower quota if for any i ∈ N , it holds that ti ≥
⌊

wi·m∑
i′∈N wi′

⌋
, where ti

denotes the number of picks in πn,m,w assigned to agent i.

Proposition 4.5. Let π be a picking sequence such that every prefix of π satis-
fies lower quota. Then π satisfies WPROP1.

Since Jefferson’s method satisfies lower quota [7, p. 130] and is resource-
consistent, any prefix of its associated picking sequence also satisfies lower quota.
By Proposition 4.5, the method satisfies WPROP1. We prove that it is the only
traditional divisor method to do so.

Theorem 4.6. Of the five traditional divisor methods, Jefferson’s method is the
only one satisfying WPROP1.

5 Quota Method

Although divisor methods are widely used in practice, they do come with an ax-
iomatic downside: no divisor method satisfies an arguably natural axiom known
as quota [7, p. 130]. A picking sequence satisfies the quota axiom if for every

8 Brams and Kaplan [12, p. 157] showed that for n = 3, an agent can do worse when
her picks move earlier in the picking sequence. However, their example does not
correspond to a weight increase with respect to a divisor method and moreover
assumes that agents are strategic rather than truthful.
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i ∈ N , it holds that
⌊

wi·m∑
i′∈N wi′

⌋
≤ ti ≤

⌈
wi·m∑
i′∈N wi′

⌉
, where ti is the number of

picks assigned to agent i by the picking sequence—note that the lower bound
simply corresponds to the lower quota notion introduced before Proposition 4.5.
Motivated by this observation, Balinski and Young [6] proposed the quota method
which satisfies the quota axiom as well as resource-consistency. Intuitively, this
method can be seen as a constrained version of Jefferson’s method where we
choose an agent i minimizing (ti + 1)/wi over a restricted subset of “eligible”
agents. The picking sequence for the quota method is determined iteratively. For
each round k ∈ [m], let ti be the number of times agent i has picked in rounds
1, . . . , k− 1. An agent is eligible if she would not exceed her upper bound in the
quota axiom upon getting an additional pick in round k. Equivalently, the set of

eligible agents is U(w, t, k) =
{
i ∈ N

∣∣∣ ti < wi·k∑
i′∈N wi′

}
, where t = (t1, . . . , tn).

Among all eligible agents, the next pick is assigned to an agent minimizing
(ti + 1)/wi, breaking ties in a consistent manner. The method trivially satisfies
resource-consistency, which by Theorem 3.4 implies the following:

Corollary 5.1. The quota method satisfies resource-monotonicity.

However, satisfying the quota axiom comes at a price: in contrast to all
divisor methods (Corollary 4.1), the quota method fails population-monotonicity.
Moreover, like the five traditional divisor methods (Proposition 4.2), the quota
method fails weight-monotonicity for n = 3.

Proposition 5.2. The quota method does not satisfy population-monotonicity.
In addition, it does not satisfy weight-monotonicity even when there are three
agents.

As we observed in Section 4, all divisor methods are weight-consistent for any
number of agents by definition, and therefore weight-monotone for two agents
by Theorem 3.6. In contrast, we show in the full version of this paper that the
quota method is not weight-consistent. However, for two agents, we prove that
the method is weight-consistent and hence weight-monotone.

Theorem 5.3. The quota method satisfies weight-consistency and weight-monotonicity
when there are two agents.

Next, we address fairness criteria for the quota method.

Theorem 5.4. The quota method fails WEF1 but satisfies WWEF1 and WPROP1.

6 Maximum (Weighted) Nash Welfare

Given any instance in the unweighted setting, the maximum Nash welfare (MNW)
solution chooses an allocation that maximizes the Nash welfare, i.e., the product
of the agents’ utilities. MNW is known to satisfy strong fairness guarantees in-
cluding EF1 [18, 22]. When weights are present, a natural generalization called
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maximum weighted Nash welfare (MWNW), which maximizes9 the weighted
product

∏n
i=1 ui(Mi)

wi , satisfies WWEF1 but not WEF1 [19].

Segal-Halevi and Sziklai [29] showed that for divisible items in the unweighted
setting, MNW satisfies both resource- and population-monotonicity. It is there-
fore rather surprising that the same is not true for indivisible items.

Proposition 6.1. In the unweighted setting, MNW satisfies neither resource-
monotonicity nor population-monotonicity.

Proof. For resource-monotonicity, consider four items and two agents, both with
weight 1, with the following utilities:

Item 1 Item 2 Item 3 Item 4
Agent 1 3 2 2 2
Agent 2 2 2 1 1

With only the first three items available, the unique MNW allocation gives
items 1 and 3 to agent 1 and item 2 to agent 2, resulting in a utility of 5 for
agent 1. However, when we add item 4, MNW uniquely allocates items 3 and 4
to agent 1 and items 1 and 2 to agent 2. So agent 1’s utility drops to 4, violating
resource-monotonicity.

The example for population-monotonicity uses four items and three agents
and can be found in the full version of this paper.

On the other hand, we prove that MWNW fulfills weight-monotonicity, mak-
ing it the only rule among the ones we consider in this paper to do so.

Theorem 6.2. MWNW satisfies weight-monotonicity.

The proof of Theorem 6.2 is simple: If an allocationM has a positive weighted
Nash welfare, then increasing the weight of agent i from wi to w′i changes the

weighted Nash welfare of M by a factor of ui(Mi)
w′

i−wi . The theorem then
follows by observing that this quantity is increasing in ui(Mi).

As mentioned, MWNW is known to satisfy WWEF1 but not WEF1. To
complete the picture, we show that it does not satisfy WPROP1. This contrasts
with the unweighted setting, where MNW satisfies PROP1 (since EF1 implies
PROP1).

Proposition 6.3. MWNW does not satisfy WPROP1.

9 Ties can be broken arbitrarily unless the maximum weighted Nash welfare is 0 (which
occurs, for example, when m < n). In this exceptional case, we choose a maximum
subset of agents who can be given positive utilities simultaneously, breaking ties
in a consistent manner among all such subsets independently of the weights (e.g.,
lexicographically with respect to the agent indices). We then pick an allocation
maximizing the weighted Nash welfare of the agents in this subset.
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7 Conclusion and Future Work

In this paper, we have thoroughly investigated picking sequences derived from
common apportionment methods, including the five traditional divisor methods
and the quota method, in relation to fairness and monotonicity properties. Our
results indicate that picking sequences based on divisor methods provide strong
guarantees in weighted fair division scenarios such as allocating ministries to
political parties, with Adams’ and Jefferson’s methods standing out for fulfilling
WEF1 and WPROP1, respectively. Since Jefferson’s method tends to favor large
parties while Adams’ often benefits smaller ones (see Section 1.2), an interesting
question is whether there are compelling fairness notions in addition to WWEF1
that the other three traditional divisor methods, which intuitively lie somewhere
in the middle, satisfy.

A natural direction for future work is to construct rules that exhibit a
stronger axiomatic behavior than the ones considered in this paper, or to prove
that such rules do not exist. Satisfying the three monotonicity properties si-
multaneously is trivial: one can always allocate all items to a fixed agent, or
ignore the weights and use the round-robin algorithm with a fixed ordering.
However, this will not result in a fair allocation with respect to the weights.
Does there exist a rule fulfilling the three monotonicity properties along with,
say, WWEF1? Other notions that one could consider include strategyproofness
and Pareto optimality—even in the unweighted setting, we are not aware of
any rule that simultaneously fulfills EF1, Pareto optimality, and resource- or
population-monotonicity.10 Our work leaves many intriguing combinations of
properties to investigate, which we hope will lead to more interesting rules for
fair resource allocation.
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10 We remark here that no rule that relies only on agents’ rankings over items, including
all picking sequences, can simultaneously satisfy EF1 and Pareto optimality. To see
this, consider six items and two agents who rank them in the order 1, 2, . . . , 6 from
best to worst. In order to guarantee EF1, each agent must get one item from each
of the sets {1, 2}, {3, 4}, {5, 6}. However, any such allocation is not always Pareto
optimal. Indeed, it could be that agent 1 has utilities 100, 99, 3, 2, 1, 0 for the items,
while agent 2 has utilities 100, 99, 98, 97, 96, 95. Any allocation satisfying the above
condition gives agent 1 exactly one of the first two items and agent 2 exactly three
items, but this is Pareto dominated by the allocation that gives agent 1 the first two
items and agent 2 the last four items.
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